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ABSTRACT  22 

 23 

Skeletal muscle repair is driven by the coordinated self-renewal and fusion of myogenic stem and progenitor 24 

cells. Single-cell gene expression analyses of myogenesis have been hampered by the poor sampling of 25 

rare and transient cell states that are critical for muscle repair, and do not provide spatial information that is 26 

needed to understand the context in which myogenic differentiation occurs. Here, we demonstrate how large-27 

scale integration of new and public single-cell and spatial transcriptomic data can overcome these limitations. 28 

We created a large-scale single-cell transcriptomic dataset of mouse skeletal muscle by integration, 29 

consensus annotation, and analysis of 23 newly collected scRNAseq datasets and 79 public single-cell 30 

(scRNAseq) and single-nucleus (snRNAseq) RNA-sequencing datasets. The resulting compendium includes 31 

nearly 350,000 cells and spans a wide range of ages, injury, and repair conditions. Combined, these data 32 

enabled identification of the predominant cell types in skeletal muscle with robust, consensus gene 33 

expression profiles, and resolved cell subtypes, including endothelial subtypes distinguished by vessel-type 34 

of origin, fibro/adipogenic progenitors marked by stem potential, and many distinct immune populations. The 35 

representation of different experimental conditions and the depth of transcriptome coverage enabled robust 36 

profiling of sparsely expressed genes. We built a densely sampled transcriptomic model of myogenesis, from 37 

stem-cell quiescence to myofiber maturation and identified rare, short-lived transitional states of progenitor 38 

commitment and fusion that are poorly represented in individual datasets. We performed spatial RNA 39 

sequencing of mouse muscle at three time points after injury and used the integrated dataset as a reference 40 

to achieve a high-resolution, local deconvolution of cell subtypes. This analysis identified temporal variation 41 

in the colocalization of immune cell subtype interactions with myogenic progenitors during injury recovery. 42 

We provide a public web tool to enable interactive exploration and visualization of this rich single-cell 43 

transcriptomic resource. Our work supports the utility of large-scale integration of single-cell transcriptomic 44 

data as a tool for biological discovery. 45 
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INTRODUCTION 47 

 48 

Muscle stem cells (MuSCs) are essential for muscle homeostasis and repair. MuSCs are typically quiescent 49 

in homeostasis and are activated in muscle damage. Their subsequent proliferation, differentiation, 50 

commitment, and fusion replenishes skeletal muscle tissue in a complex, coordinated process1–3. MuSCs 51 

are a rare cell type, accounting for less than 1% of the cells within skeletal muscle at homeostasis. Even 52 

rarer are the short-lived progenitor cell states between quiescent MuSCs and fully differentiated myofiber 53 

cells. Consequently, MuSCs and muscle progenitor cells (comprised of myoblasts and myocytes) are difficult 54 

to study in their native tissue context. Conventional strategies to study MuSCs and muscle progenitor cells 55 

rely on enrichment by fluorescence-activated cell sorting using transgenic reporter or prospective isolation 56 

markers4. These methods however are ill-suited to capture the subtle, continuous cell state transitions which 57 

are critical for myogenesis due to a paucity of highly stage-specific cell isolation markers and the rarity of 58 

these cells.   59 

 60 

Single-cell RNA sequencing (scRNAseq) enables a detailed characterization of cell types and states in 61 

complex tissues without the need for targeted cell enrichment5–8. Skeletal muscle has been the focus of a 62 

number of recent scRNAseq studies, which have aimed to catalog its dynamic and heterogeneous 63 

constituent cell types and the progression of myogenic stem and progenitor cell regulation in muscle 64 

development and repair7. Single-nucleus RNA sequencing (snRNAseq) has been used to capture 65 

transcriptomic signatures from mature myofiber nuclei, which are largely lost during cell isolation required for 66 

scRNAseq9–13. Yet, despite advances in the scale of sc/snRNAseq technologies (103-104 cells per 67 

experiment), these methods still poorly sample rare cell types and transient cell states in detail without 68 

purification steps which can introduce marker bias and technical artefacts14. For example, we previously used 69 

scRNAseq to study the dynamics of hindlimb skeletal muscle regeneration in adult mice and resolved ~12 70 

muscle-resident cell types from ~35,000 single-cell transcriptomes15. However, we observed fewer than 100 71 

committed and fusing myogenic cells even though we sampled critical time-points of myogenic differentiation 72 

post-injury15. Similar studies likewise reported an infrequent sampling of committed myogenic progenitors 73 

from whole muscle samples15–17. 74 

 75 

To overcome these challenges, we sought to integrate and evaluate a more diverse collection of single-cell 76 

transcriptomic data. We collected ~95,000 additional single-cell transcriptomes from 23 new samples of 77 

regenerating mouse hindlimb muscles in older mice. We then leveraged recent improvements in batch-78 

correction algorithms18,19 to incorporate 79 publicly available sc/snRNAseq datasets from 14 prior studies in 79 

published reports and public repositories in our analysis15–17,20–28 (Table S1). This led to a data compendium 80 

that included ~350,000 cells/nuclei after quality filtering and allowed us to study the cellular composition and 81 

dynamics in response to skeletal muscle injury as function of a wide range of experimental conditions. The 82 

high depth of transcriptome coverage achieved by large-scale integration of single-cell transcriptomic data 83 

enabled us to robustly characterize rare, short-lived cell states on the myogenic cell differentiation trajectory. 84 

We identified transcription factors and surface markers that distinguish committed myoblasts (~18 per 85 

sample, on average) and fusing myocytes (~8 per sample, on average), which represent only 0.5% and 0.2% 86 

of all cells in the integrated muscle compendium, respectively. We performed spatial RNA sequencing of 87 

mouse muscle at three time points after injury and used the integrated compendium as a reference to achieve 88 

a high-resolution, local deconvolution of cell subtypes. Our analysis also brings new insights into the 89 

dynamics of stromal and immune cell colocalization with transient myogenic cell states.  90 

  91 
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RESULTS 92 

 93 

Large-scale integration enables a high-resolution view of skeletal muscle 94 

To profile skeletal muscle homeostasis and repair more deeply, we performed single-cell RNA sequencing 95 

on 23 adult mouse skeletal muscle samples using the 10x Chromium v3 platform. In addition to uninjured 96 

controls, we induced muscle damage in adult (7 mo) and aged (20 mo) C57BL/6J mice using notexin and 97 

collected tibialis anterior muscles at several time points within one week after injury (sample details in Table 98 

S1, Sup. File 1). To augment these data, we curated 79 publicly available mouse skeletal muscle 99 

sc/snRNAseq datasets that were generated on the 10x Chromium platform (v2 or v3) from PanglaoDB29 and 100 

SRA as of July 31, 2020. Herein we refer to each dataset by its citation, using the first name(s) listed in either 101 

the publication or deposition (for data not published) and year of release. Together, these comprised 102 102 

individual samples with a total of 469,603 cell barcodes, before quality control and filtering (Figs. 1A and S1, 103 

Table S1). These data vary across sex, age (10 days to 30 months of age), chemical injury model (notexin 104 

and cardiotoxin), injury-response timepoint (0.5 to 21 days post-injury [dpi]), and sample preparation strategy, 105 

including whole-muscle dissociations and FACS enrichment of specific cell types (Figs. 1B and S1).  106 

 107 

We downloaded raw sequencing data and process them using a common pipeline [see Methods]. First, we 108 

re-aligned reads to a single reference genome (mm10). After removal of ambient RNA signatures (SoupX30), 109 

filtering of low quality cells, and identification of doublets (DoubletFinder31), we merged the datasets and 110 

performed initial single-cell transcriptomic analyses with Seurat32. Because of the range of data sources, 111 

experimental conditions, and differences in library preparation, substantial batch effects arose from 112 

differences in feature detection and read-mapping (Fig. S1) and resulted in dataset-specific cell populations 113 

evident in dimensionally-reduced visualizations of these data (Fig. 1C). To remove these batch effects, we 114 

integrated the datasets using three approaches that have been recently described- Harmony, Scanorama, 115 

and BBKNN33–35 (Figs. 1D and S2). Integration of the datasets by Harmony revealed a cluster of cells that 116 

express canonical marker genes from multiple cell types (Fig. S3). Because of the enrichment of doublets 117 

and cells with high feature and transcript counts within this cluster, we reasoned that these cells were likely 118 

the result of a technical artifact and we removed them from our analyses. After removal of ambient RNA 119 

signal, doublets, and noisy cells, the resulting dataset consisted of 349,768 cells and nuclei.  120 

 121 

After data integration, we performed shared nearest neighbor (SNN) clustering and used canonical marker 122 

genes to manually identify cell types for each batch-correction output independently (Fig. S2B). The size of 123 

the aggregated dataset enabled identification of subtle cell type differences. For example, we were able to 124 

distinguish the blood vessel type for endothelial cells28, the fiber type for mature myonuclei9–11, and the 125 

differentiation potential for fibro-adipogenic progenitors (FAPs36) (Figs. 1D and S4). The gene panels used 126 

for cell type classification are shown in Fig. S4.  We found that low-resolution cell type labels (lymphocytes, 127 

myeloid cells, endothelial cells, FAPs, neural cells, smooth muscle cells, and myogenic cells) were largely 128 

consistent for each batch-correction method, but cell subtype labels varied. Variation in gene expression 129 

patterns was especially strong within the monocyte and macrophage subtypes, likely reflecting the subtle 130 

differences in transcriptional activity in these highly plastic cells. We found that Harmony performed best at 131 

integrating many heterogeneous datasets, in terms of robustness of the integration, as well as speed and 132 

memory requirements. Gene expression signatures for the cell subtypes generated by Harmony integration 133 

were the most consistent with the literature (Fig. S4). Harmony was also the only method able to resolve the 134 

differences between single-cell and single-nucleus datasets across all cell types (Fig. S2). Finally, Harmony 135 

best maintained local and global structure, especially for myogenic cells, within the dimensionally-reduced 136 

space, positioning it best for downstream analyses like pseudotime trajectory inference (Fig. 1C).  137 

 138 
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 139 

 140 

 141 

We examined the effects of sample preparation (single-cell or single-nuclei) and 10x Genomics Chromium 142 

chemistry (v2 or v3) on the measured transcriptomes (Figs. 1E and S1). We found that the Chromium v2 143 

Figure 1. Large-scale integration of 102 scRNAseq and snRNAseq samples reveals cell subtypes in skeletal 
muscle. (A) Workflow used for preparation, integration, and analysis of sc/snRNAseq compendium (see Methods). 
(B) Overview of experimental and technical variables across compendium. Percentages shown are calculated with 
respect to cell number after quality control. Ages in months (mo). Injury by cardiotoxin (CTX) or notexin (NTX). Time-
points in days post-injury (dpi). See also Table S1. (C) UMAP representation of the merged datasets, before batch-
correction, colored by the dataset source. (D) UMAP representation of integrated compendium after quality filtering 
and batch-correction (Harmony). Cells are colored by cell type, identified after Harmony integration (Fig. S3). (E) 
Differential detection of gene biotype sets between single-cell and single-nucleus datasets, including all protein 
coding genes, long intergenic non-coding RNAs (lincRNAs), transcription factors, ribosomal protein subunits, 
mitochondrial genes, and “core” dissociation-associated stress factors. 
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and v3 chemistries provided similar sensitivity and that differences between the datasets were largely driven 144 

by sequencing depth (Fig. S1). In contrast, the most substantial differences were observed between the 145 

single-cell and single-nuclei preparations. These differences include an increase in intronic and intergenic 146 

reads, an increase in non-coding RNA detection, and a decrease in mitochondrial and ribosomal protein 147 

transcripts for the single-nuclei, in comparison to the single-cell preparations. Consistent with a previous 148 

analysis10, we observed that single-cell data is enriched for genes associated with dissociation-induced 149 

stress.  150 

  151 

Integrated pseudotime analysis reveals the complete trajectory of native myogenic differentiation 152 

Previous differentiation trajectory analyses of the myogenic cell lineage have elucidated transcriptional 153 

dynamics of in vivo muscle regeneration15,17 and degeneration37, or in vitro activation23. However, because 154 

of the relatively small size of the datasets in these studies, the reported trajectories contained gaps within 155 

the continuum of myogenesis and contain very few cells from the most short-lived states of myogenic 156 

commitment and fusion. To fill these gaps, we selected the 79,784 myogenic cells within the integrated 157 

muscle compendium to construct a more continuous, consensus landscape of myogenesis. Importantly, the 158 

size and complexity of the myogenic cells required a scalable workflow that incorporates batch-corrected 159 

values. We found that applying the recently described tool PHATE (Potential of Heat-diffusion for Affinity-160 

based Trajectory Embedding38) to dimensionally-reduce Harmony values generated continuous embeddings 161 

which reflected canonical expression patterns of myogenesis (Fig. 2A,E).  162 

 163 

The PHATE embedding contained small branches emanating from the MuSCs and a distinct main branch 164 

along the first axis, toward committed progenitors and mature myofiber nuclei. Inspection of the cells in the 165 

small MuSC branches revealed that they are largely derived from samples which had been FACS-sorted 166 

and/or cultured. Consistent with previous studies showing dissociation can specifically induce stress in 167 

MuSCs10,12,13, these branches express apoptosis-associated genes, heat shock protein genes, and other 168 

core stress factors (Fig. S5). This observation suggests that dissociation-induced transcriptional responses 169 

induce distinct MuSC states that differ from native MuSC quiescence and activation, even when correcting 170 

for other technical sources of batch effect.  171 

 172 

We next used the first PHATE dimension, derived from Harmony values, as a proxy for myogenic 173 

differentiation status (Fig. 2B-E). We separated the cells into 25 evenly spaced bins along the differentiation 174 

axis to visualize gene expression more easily (Fig. 2B). This binning demonstrates the relative sparsity of 175 

coverage and diminished data sample diversity (as reflected by a Simpson Index) within intermediate 176 

myogenic cell states, both suggesting that late fusion states are non-redundantly captured across the varied 177 

datasets within the compendium (Fig. 2C). Bins #1-3 contain cellular artefacts related to dissociation 178 

methods and were set aside. Canonical marker gene analysis confirmed the dataset captured cells from the 179 

major phases of myogenesis, including Pax7hi quiescence, Myf5hi activation, Cdkn1chi proliferation, Myoghi 180 

commitment, Mymxhi fusion, and Acta1hi maturation (Fig. 2D). Consistent with previous trajectory analyses 181 

of myogenic differentiation15,17, the proportion of cells captured in intermediate differentiation states (defined 182 

as bins #8-17) was very small (0.7% of the compendium). Nonetheless, the large-scale integration of 183 

transcriptomic data yielded 2,623 committed or fusing cells, enabling a detailed analysis of the transcriptomic 184 

activity of these cell populations.  185 

 186 

We next sought to explore the continual changes in myogenic differentiation and to more deeply describe 187 

MuSC commitment. Recent work has shown that the overall number of genes expressed within a cell narrows 188 

during mouse development and human mesodermal lineage specification39. To test whether this is also a 189 

feature of adult myogenesis, we normalized the number of features in each cell to the sequencing saturation 190 

from that sample to account for differences in sequencing depth and found that the number of genes 191 
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expressed per cell is elevated in myogenic progenitor cell states (Fig. 2D). Notably, this burst in transcript 192 

diversity marks the exit from quiescence, continues through differentiation, and then is suppressed in mature 193 

myofibers. We found that activated (bins 5-7), committed (bins 8-10), and fusing (bins 11-17) myogenic cells 194 

were enriched within injured samples, most notably at time points beyond four days post-injury (Fig. 3A). 195 

Within the committed and fusing compartments (2,623 total cells), 82 of the 102 samples were represented, 196 

with between one and 131 cells captured from each sample (Fig. 3B). This observation again underscores 197 

the paucity of these cells within each individual sample and the power of large-scale integration for analyzing 198 

rare cell states.  199 

 200 

 201 

 202 

 203 

Two classes of genes, surface proteins and transcription factors, have been vital in the study of MuSCs and 204 

Figure 2. Construction of a densely sampled model of myogenesis reveals transcriptomic heterogeneity in 
intermediate cell states. (A) 79,784 myogenic and myofiber cells were selected from the integrated compendium 
and dimensionally reduced with PHATE to produce a consensus differentiation trajectory. (B) Cells were binned 
along the first PHATE axis (PHATE_Harmony_1). (C) Cell counts within each bin are shown (bar plot). Simpson's 
diversity coefficients were computed on sample identifiers to determine data-source complexity for each bin (line 
plot). (D) Transcriptomic diversity by bin, reported as the number of genes detected per cell normalized to the sample 
sequencing saturation to account for differences in sequencing depth. (E) Log-normalized expression levels of 
canonical myogenic genes, reported as violin plots for each PHATE bin, with myogenic state detailed at top. 
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myogenesis3,4,40. Surface proteins are used to isolate MuSCs and determine their regenerative potency, and 205 

the ordered expression of transcription factors has been used to define the progression of differentiation. 206 

Because these genes tend to be lowly expressed40, we postulated that our large-scale integrated dataset, 207 

which continually spans myogenesis, may be able to identify new markers, especially for transient committed 208 

cells. We performed differential gene expression (Wilcoxon Rank Sum test, Methods) between each of the 209 

bins along the first PHATE dimension. After filtering (adjusted p-value<10-10, average log2-fold-change>0.5), 210 

we found 2,481 genes which are differentially expressed across differentiation, including those genes 211 

associated with dissociation-induced stress. We selected surface markers among genes that were enriched 212 

in committed and fusing cells (bins 8-17), by cross-comparing against a list of surface proteins generated by 213 

the Cell Surface Protein Atlas41. Of the 84 resulting genes, Cd164, Ppap2a, Jam3, Cd97, Fndc5, Erbb3, and 214 

Fam171a2 were specifically and highly expressed in committed and fusing myogenic cells (Fig. 3C, Sup. 215 

File 3). Notably, we also saw latent expression of surface markers widely used to select MuSCs in committed 216 

and fusing cells (Itgb1, Vcam1, Cd34, Cxcr4, and Itga7).  217 

 218 

We next filtered the 2,481 differentially expressed genes for transcription factors (MGI GO term "DNA-binding 219 

transcription factor activity") that were enriched in committed and fusing cells. Among the 100 resulting 220 

genes, we found 10 transcription factors which were highly expressed only during the commitment and fusion 221 

stages of myogenesis (Myog, Id1, Mycl, Scx, Zbtb18, Purb, Hes6, Mef2a, E2f8, Tead4). Overall, these 222 

findings demonstrate that large-scale integration of single-cell transcriptomic data can enable detailed gene 223 

expression profiling of rare cell states, even for lowly expressed transcripts. The surface markers identified 224 

here may be used to deplete more committed cells in MuSC isolation protocols or more selectively enrich 225 

transient committed progenitor cells. The transcription factors represent potential targets for inhibiting 226 

commitment in MuSC expansion protocols. 227 

 228 

Deconvolution of spatial RNA sequencing data using a large-scale, integrated reference 229 

The biggest limitation of droplet-based scRNAseq methods is their inability to recover spatial information. 230 

Current methods for spatial RNA sequencing are limited either by the number of features they can detect or 231 

the spatial resolution which they can resolve42. We used the compendium to deconvolve low-resolution 232 

spatial RNA sequencing data and identify which cell types localize together during muscle injury response. 233 

We performed spatial RNA sequencing using the Visium platform (10x Genomics), which uses a patterned 234 

array of spots containing barcoded oligonucleotides to capture transcripts across a tissue slice. To enrich for 235 

the intermediate myogenic cell populations, we collected samples two, five, and seven days after chemical 236 

injury with notexin (Fig. 4A). Based on canonical gene expression analysis, we observed MuSC activation 237 

(Myod1) at 2 dpi followed by peaks in myogenic commitment markers (Myog) and fusogens (Mymk) at 5 dpi, 238 

within the muscle injury zone (Fig. 4B-C). 239 

 240 

Each Visium spot is 55 µm in diameter and therefore contains several cells. To deconvolve each spot we 241 

used BayesPrism, a Bayesian algorithm designed to estimate cell type composition within a bulk RNAseq 242 

dataset using a single-cell reference as prior information43. We treated each individual spot as a bulk RNA 243 

sequencing sample and used BayesPrism to estimate what fraction of the transcripts (theta) within that spot 244 

are derived from each cell type within a single-cell reference. We defined the cell types by incorporating 245 

PHATE binning labels (Fig. 2B) into our single-cell reference (Fig. 1D). We relabeled MuSCs and 246 

Myoblasts/Progenitors (Fig. 1D) as Quiescent MuSCs, Activated MuSCs, Committed Myoblasts, or Fusing 247 

Myocytes, according to the PHATE bin they occupied.  248 

 249 
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 250 

 251 

 252 

Interestingly, deconvolution by BayesPrism revealed the spatial localization of subtly different cell types (Fig. 253 

4D). We were able to distinguish quiescent and activated MuSCs, and other myogenic cell states. We next 254 

explored which stromal and immune populations co-localized with each myogenic cell type. We ranked the 255 

cell types in each spot by theta value, counted the top 10 cell types, and tallied the co-occurrence for each 256 

pair of cell types. We then normalized those tallies by the relative abundance of one cell type in the pair 257 

(Normalized Co-occurrence, Fig. 4E). We found that, at two days post-injury, “patrolling” monocytes 258 

(Fabp5hi/Cx3cr1neg/Ly6c2neg) and Cx3cr1lo M2 macrophages (Csf1rhi/C1qahi, also called anti-inflammatory 259 

macrophages) both co-localize with myogenic cells. For the time point later in the injury response (day 7), 260 

we observed a shift towards Cx3cr1hi M2 macrophages co-localizing with myogenic cells, especially fusing 261 

myocytes. We also found an increase in co-localization of FAPs during the injury response, especially “pro-262 

remodeling” FAPs (Pdgfrahi/Cd34lo/Mmp14hi/Col3a1hi). Overall, these analyses demonstrate how a large-263 

scale single-cell reference transcriptome can be used together with spatial RNA-seq data to spatially map 264 

infrequent cell types and states. 265 

Figure 3. Identification of sparsely transcribed genes marking transient states in myogenesis. (A) Cellular 
composition of each myogenic PHATE bin (see Fig. 2B-C) colored by the sample’s injury time-point. (B) The subset 
of committed and fusing cells (bins 8-17; see Fig. 2E) were examined. The number of these cells in each dataset 
source is plotted as a stacked bar, segmented by PHATE bins (see Fig. 2E). The inset shows the PHATE embedding 
with the 6,648 myogenic cells newly generated in this study. (C) Dot plots showing the expression frequency and 
average level of surface markers (top) and transcription factors (bottom) genes in each PHATE bin. Canonical 
(Itgb1, Vcam1, Cd34, Cxcr4, Itga7, Pax7, Myod1, Myog) and select differentially expressed genes are reported. 
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 266 

 267 

Figure 4. Deeply profiled cell types enable deconvolution of spatial RNA-sequencing data. (A) Workflow for 
the generation of Visium spatial RNA sequencing of regenerating skeletal muscle and spot deconvolution to cell 
subtype annotations from the sc/snRNA-seq compendium. (B) H&E images of mouse tibialis anterior samples at 
two, five, and seven days post-notexin injury used for spatial RNA sequencing. (C) Spatial expression patterns of 
canonical myogenesis gene expression (log-normalized) by Visium spot. (D) Inferred myogenic cell subtype content 
estimation via BayesPrism. Theta values reflect the estimated fraction of transcripts attributed to each cell type. (E) 
Spot co-occurrence between each of the 27 cell subtypes, normalized to the cumulative abundance across each 
row (cell subtype). Injury time-points reported separately. (F) Normalized spot co-occurrence of select immune and 
fibro/adipogenic progenitor cell subtypes with myogenic cell subtypes by injury time-point. 
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DISCUSSION 268 

 269 

scRNAseq methodologies have enabled a high resolution view of cellular dynamics in muscle injury 270 

response. However, current methods are ill-suited to study rare and transient cell populations due to 271 

limitations on the number of cells captured from each sample. For the few rare cells which are captured, even 272 

deeply sequenced samples reflect only a portion of the transcriptome in each cell, because of limitations in 273 

the number of molecules captured for each cell44. Here, we demonstrate that large-scale integration of newly 274 

generated and public single-cell transcriptomic data can overcome these limitations. We provide a scalable 275 

pipeline of alignment, quality control, processing, and integration to unify sc/snRNAseq data from diverse 276 

experimental settings and techniques for common analysis. We annotated cell subtypes using a curated 277 

panel of 115 marker genes from the literature11,15,16,28,36,45–55. This approach provides a consensus resource 278 

of cell-type annotations for the skeletal muscle field, which may enable more consistent analyses across 279 

studies and allow for more clear identification of cell subpopulations. Indeed, we observed distinct 280 

subpopulations of FAPs, endothelial cells, and immune cells which were not reproducibly evident in prior 281 

individual sc/snRNAseq studies15–17. For example, immune cells distinctly split into neutrophils, dendritic 282 

cells, three populations of monocytes (patrolling, inflammatory, Cxcl10hi), M1 (pro-inflammatory) 283 

macrophages, two populations of M2 (anti-inflammatory) macrophages, and separate clusters of B, T, and 284 

NK cells, which are the primary immune cell constituents in muscle repair56,57. 285 

 286 

We then focused our analysis on the transcriptomic changes that occur during myogenic differentiation. 287 

Though a number of prior reports have documented transcriptomic alterations between myogenic stem and 288 

progenitor cells, our integrative approach was capable of separating sample-specific artifacts from native 289 

differentiation. Furthermore, we generated a densely populated, continuous, transcriptomic model of 290 

myogenesis, including rare transitional myogenic cells. We identified candidate surface markers and 291 

transcription factor regulators distinct to the stages of myogenic commitment and myocyte fusion 292 

(represented by PHATE bins 8-10 and 11-17, respectively), which could not be resolved with individual 293 

datasets. Interestingly, we observed transcriptional signatures of surface receptors, such as Erbb3 and Cd97, 294 

specific to fusing myocytes (bins 11-17), which may enable improved prospective isolation strategies 295 

compared to less stage-specific cell markers like β1-integrin (Itgb1). Notably ERBB3/HER3 (encoded by 296 

Errb3) has been identified as a myogenic progenitor marker of human pluripotent stem cell-derived myogenic 297 

progenitors58. Similarly, we observed a set of transcription factors with specific expression at the 298 

commitment/fusion stages, including E2f8, Tead4, and Mef2a. MEF2A has been reported to be a myogenic 299 

commitment regulator37,59. Intriguingly, TEAD4 is required for myoblast differentiation and binds the E2F8 300 

gene, suggesting that E2F8 may help mediate Tead4-promoted myogenic commitment60,61. More generally, 301 

we found that myogenic progression is characterized by a wave of transcriptomic diversification. We 302 

observed a larger number of RNA transcripts per cell, after batch-correction and accounting for sequencing 303 

depth differences across studies, at the progenitor commitment and fusion stages than in muscle stem cells 304 

or myofibers. This agrees with the observation that stem/progenitor cell trajectories exhibit changes in 305 

transcriptional diversity across their maturation axis, but differs specific trends found in hematopoesis39. 306 

 307 

Lastly, we supplemented our compendium with the first, to our knowledge, transcriptome-level spatial RNA 308 

sequencing dataset of regenerating murine skeletal muscle. We repurposed BayesPrism43, a recently 309 

developed algorithm for the deconvolution of bulk RNA sequencing datasets, to estimate the cell composition 310 

of each spot. We then identified putative cellular interactions within those spots that may help drive 311 

myogenesis. Our findings suggest that dynamic alterations in immune-myogenic cell co-localizations may 312 

influence muscle repair outcomes. For example, the Cx3cr1hi M2 (anti-inflammatory) macrophage subset 313 

shifts in its colocalization tendency as muscle repair proceeds, and, at 7 days post-injury, preferentially 314 

colocalizes with fusing myocytes rather than quiescent MuSCs. 315 
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 316 

The past decade has shown rapid growth in the number of cells that can be assayed in each experiment. 317 

Recent methods which utilize combinatorial indexing have generated datasets with more than 106 cells at 318 

once62,63. Unfortunately, these methods are technically difficult, produce relatively low depth of coverage for 319 

each cell, and require huge amounts of sequencing. These factors lead to large costs which are often outside 320 

the budget of individual academic laboratories. Large collaborative efforts such as the Tabula Muris Senis or 321 

Human Biomolecular Atlas Program have generated massive reference transcriptome datasets, but have 322 

done so only for a select number of tissues and disease settings26,27,64. The popularization of platforms like 323 

the 10x Chromium have led to a wealth of data for many biological systems outside the purview of these 324 

consortia. We propose large-scale integration as the most economic and effective method for generating 325 

consortium-level reference transcriptomes. To enable access and interrogation of this unified transcriptomic 326 

compendium, we generated a public web tool (scmuscle.bme.cornell.edu) for explore these diverse 327 

transcriptomic data by cell populations and within the highly resolved myogenic continuum. 328 

 329 

Large-scale integration enables the incorporation of significant sample diversity into reference 330 

transcriptomes, which will likely better reflect the underlying biology across individuals. The necessity of 331 

including diversity in reference genomes has been realized65–67. Should transcriptomics move from the bench 332 

to the bedside, computational tools which can include the ethnic and genetic backgrounds of the entire patient 333 

population will be critical. We have shown that batch-correction algorithms for scRNAseq can account for 334 

differences in sex, age, and sample material. We found that the increased scale of the data allows improved 335 

resolution into the underlying biology. We have also demonstrated how transcriptomic references can be 336 

used to enhance other data types, like spatial RNA sequencing, which may have either lower cellular 337 

resolution or depth of coverage. Taken together, these results suggest that a large-scale integration of single-338 

cell transcriptomic data can increase the long-term impact of individual experiments and can be used a tool 339 

for biological discovery.  340 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2020. ; https://doi.org/10.1101/2020.12.01.407460doi: bioRxiv preprint 

http://scmuscle.bme.cornell.edu/
https://doi.org/10.1101/2020.12.01.407460
http://creativecommons.org/licenses/by-nc-nd/4.0/


METHODS 341 

 342 

Mice. The Cornell University Institutional Animal Care and Use Committee (IACUC) approved all animal 343 

protocols, and experiments were performed in compliance with its institutional guidelines. Adult C57BL/6J 344 

mice were obtained from Jackson Laboratories (#000664, Bar Harbor, ME) and were used at 4-7 months of 345 

age. Aged C57BL/6J mice were obtained from the National Institute of Aging (NIA) Rodent Aging Colony and 346 

were used at 20 months of age. For new scRNAseq experiments, female mice were used in each experiment. 347 

 348 

Mouse injuries and single-cell isolation. To induce muscle injury, both tibialis anterior (TA) muscles of old 349 

(20 months) C57BL/6J mice were injected with 10 µl of notexin (10 µg/ml; Latoxan, France). At 0, 1, 2, 3.5, 350 

5, or 7 days post-injury (dpi), mice were sacrificed and TA muscles were collected and processes 351 

independently to generate single-cell suspensions. Muscles were digested with 8 mg/ml Collagenase D 352 

(Roche, Basel, Switzerland) and 10 U/ml Dispase II (Roche, Basel, Switzerland), followed by manual 353 

dissociation to generate cell suspensions. Cell suspensions were filtered through 100 and 40 μm filters 354 

(Corning Cellgro # 431752 and #431750) to remove myofiber debris. Erythrocytes were removed through 355 

incubation in erythrocyte lysis buffer (IBI Scientific # 89135-030). 356 

 357 

Single-cell RNA-sequencing library preparation. After digestion, single-cell suspensions were washed 358 

and resuspended in 0.04% BSA in PBS at a concentration of 106 cells/ml. Cells were counted manually with 359 

a hemocytometer to determine their concentration. Single-cell RNA-sequencing libraries were prepared 360 

using the Chromium Single Cell 3’ reagent kit v3 (10x Genomics, Pleasanton, CA) following the 361 

manufacturer’s protocol. Cells were diluted into the Chromium Single Cell A Chip to yield a recovery of 6,000 362 

single-cell transcriptomes. After preparation, libraries were sequenced on the NextSeq 500 (Illumina, San 363 

Diego, CA). 364 

 365 

Spatial RNA sequencing library preparation. Tibialis anterior muscles of adult (5 mo) C57BL6/J mice were 366 

injected with 10µl notexin (10 µg/ml) at 2, 5, and 7 days prior to collection. Upon collection, tibialis anterior 367 

muscles were isolated, embedded in OCT, and frozen fresh in liquid nitrogen. Spatially tagged cDNA libraries 368 

were built using the Visium Spatial Gene Expression 3’ Library Construction v1 Kit (10x Genomics, 369 

Pleasanton, CA). Optimal tissue permeabilization time for 10 µm thick sections was found to be 15 minutes 370 

using the 10x Genomics Visium Tissue Optimization Kit. H&E stained tissue sections were imaged using 371 

Zeiss PALM MicroBeam laser capture microdissection system and the images were stitched and processed 372 

using Fiji ImageJ software. cDNA libraries were sequenced on an Illumina NextSeq 500 using 150 cycle high 373 

output kits (Read 1=28bp, Read 2=120bp, Index 1=10bp, and Index 2=10bp). Frames around the capture 374 

area on the Visium slide were aligned manually and spots covering the tissue were selected using Loop 375 

Browser v4.0.0 software (10x Genomics). Sequencing data was then aligned to the mouse reference genome 376 

(mm10) using the spaceranger v1.0.0 pipeline to generate a feature-by-spot-barcode expression matrix 377 

(10x Genomics). 378 

 379 

Data and code availability. Single-nucleus RNA sequencing data were kindly provided by the Millay lab11, 380 

prior to public release. Newly collected scRNAseq data for 2 samples from 7 mo mice have been deposited 381 

in GEO under accession GSE159500. The data from 20 mo mice will be released in GEO upon final 382 

publication. Spatial RNA sequencing data was deposited under GSE161318. A complete list of GEO 383 

accession numbers for the new and previously published scRNAseq data can be found in Table S1. SRR 384 

numbers for downloading each sample are compiled in Sup. File 1. All code for processing and analysis of 385 

the scRNAseq and spatial RNA sequencing data, as well as supplemental data are available on Github 386 

(github.com/mckellardw/scMuscle). The full integrated data with visualization tools is available at 387 

scmuscle.bme.cornell.edu.   388 
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 389 

Download and alignment of single-cell RNA sequencing data. For all samples available via SRA, 390 

parallel-fastq-dump (github.com/rvalieris/parallel-fastq-dump) was used to download raw .fastq files. 391 

Samples which were only available as .bam files were converted to .fastq format using bamtofastq from 392 

10x Genomics (github.com/10XGenomics/bamtofastq). Raw reads were aligned to the mm10 reference 393 

using cellranger (v3.1.0). 394 

 395 

Preprocessing and batch correction of single-cell RNA sequencing datasets. First, ambient RNA signal 396 

was removed using the default SoupX (v1.4.5) workflow (autoEstCounts and adjustCounts; 397 

github.com/constantAmateur/SoupX). Samples were then preprocessed using the standard Seurat (v3.2.1) 398 

workflow (NormalizeData, ScaleData, FindVariableFeatures, RunPCA, FindNeighbors, 399 

FindClusters, and RunUMAP; github.com/satijalab/seurat). Cells with fewer than 500 features, fewer than 400 

1000 transcripts, or more than 30% of unique transcripts derived from mitochondrial genes were removed. 401 

After preprocessing, DoubletFinder (v2.0) was used to identify putative doublets in each dataset, 402 

individually. BCmvn optimization was used for PK parameterization. Estimated doublet rates were computed 403 

by fitting the total number of cells after quality filtering to a linear regression of the expected doublet rates 404 

published in the 10x Chromium handbook. Estimated homotypic doublet rates were also accounted for using 405 

the modelHomotypic function. The default PN value (0.25) was used. Putative doublets were then removed 406 

from each individual dataset. After preprocessing and quality filtering, we merged the datasets and performed 407 

batch-correction with three tools, independently- Harmony (github.com/immunogenomics/harmony) (v1.0), 408 

Scanorama (github.com/brianhie/scanorama) (v1.3), and BBKNN (github.com/Teichlab/bbknn) (v1.3.12). We 409 

then used Seurat to process the integrated data. After initial integration, we removed the noisy cluster (Fig. 410 

S4) and re-integrated the data using each of the three batch-correction tools. After a second round of 411 

integration, we found that Harmony still yielded a cluster of noisy cells, but Scanorama and BBKNN did not.  412 

 413 

Cell type annotation. Cell types were determined for each integration method independently. For Harmony 414 

and Scanorama, dimensions accounting for 95% of the total variance were used to generate SNN graphs 415 

(Seurat, FindNeighbors). SNN clustering was then performed on the output graphs (including the 416 

corrected graph output by BBKNN) using Seurat (FindClusters). A clustering resolution of 1.2 was used 417 

for BBKNN (30 initial clusters) and Harmony (29 initial clusters), while Scanorama (38 initial clusters) required 418 

a lower resolution of 0.8. Cell types were determined based on expression of canonical genes (Fig. S4). 419 

Clusters which had similar canonical marker gene expression patterns, but were derived from different 420 

samples, were merged.  421 

 422 

Pseudotime workflow. Myogenic cells were initially subset based on the consensus cell types as 423 

determined by SNN clustering on all three integration methods. Harmony embedding values from the 424 

dimensions accounting for 95% of the total variance were used for dimensional reduction with PHATE, using 425 

phateR (v1.0.4) (github.com/KrishnaswamyLab/phateR). 426 

 427 

Deconvolution of spatial RNA sequencing spots. Spot deconvolution was performed using the 428 

deconvolution module in BayesPrism (previously known as “Tumor microEnvironment Deconvolution”, TED, 429 

v1.0; github.com/Danko-Lab/TED). First, myogenic cells were re-labeled, according to binning along the first 430 

PHATE dimension, as “Quiescent MuSCs” (bin 4), “Activated MuSCs” (bins 5-7), “Committed Myoblasts” 431 

(bins 8-10), and “Fusing Myoctes” (bins 11-17). Dissociation-associated muscle stem cells were ignored and 432 

myonuclei labels were retained from as “Myonuclei (Type IIb)” and “Myonuclei Type IIx”. Next, highly and 433 

differentially expressed genes across the 27 groups of cells were identified with differential gene expression 434 

analysis using Seurat (FindAllMarkers, using Wilcoxon Rank Sum Test; results in Sup. File 2). The 435 

resulting genes were filtered based on average log2-fold change (avg_logFC > 1) and the percentage of cells 436 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2020. ; https://doi.org/10.1101/2020.12.01.407460doi: bioRxiv preprint 

https://github.com/rvalieris/parallel-fastq-dump
https://github.com/10XGenomics/bamtofastq
https://github.com/constantAmateur/SoupX
https://github.com/satijalab/seurat
https://github.com/immunogenomics/harmony
https://github.com/brianhie/scanorama
https://github.com/Teichlab/bbknn
https://github.com/KrishnaswamyLab/phateR
https://github.com/Danko-Lab/TED
https://doi.org/10.1101/2020.12.01.407460
http://creativecommons.org/licenses/by-nc-nd/4.0/


within the cluster which express each gene (pct.expressed > 0.5), yielding 1,051 genes. Mitochondrial and 437 

ribosomal protein genes were also removed from this list, in line with recommendations in the BayesPrism 438 

vignette. For each of the cell types, mean raw counts were calculated across the 1,051 genes to generate a 439 

gene expression profile for BayesPrism. Raw counts for each spot were then passed to the run.Ted 440 

function, using the “GEP” option for input.type and default parameters for the remaining inputs. Final Gibbs 441 

theta values were used as estimates for the fraction of transcripts from each spot that were derived from 442 

each of the 27 cell types.  443 
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SUPPLEMENTAL MATERIAL 606 

 607 

Table S1. Metadata for datasets included in this study. 608 

 609 

Citation 
GEO 

Accession 
Age 
(mo) 

Injury 
(dpi) 

Muscle(s) 
Cell Isolation 
Procedures 

10x 
Chemistry 

# 
Samples 

# Cells 
(After 
QC) 

De Micheli et al, 
Cell Reports, 2020 

GSE143437, 
GSE143435 

4-7 
Notexin 

(0, 2, 5, 7) 
Tibialis 
anterior 

Dissociated 
Whole Muscle 

v2 & v3 14 64,053 

*De Micheli et al GSE159500 7 
Notexin 
(2 & 7) 

Tibialis 
anterior 

Dissociated 
Whole Muscle 

v3 2 6,953 

*McKellar/Walter 
et al 

- 20 
Notexin 

(0, 1, 2, 3.5, 
5, 7) 

Tibialis 
anterior 

Dissociated 
Whole Muscle 

v3 21 87,822 

Dell'Orso et al, 
Development, 

2019 
GSE126834 3 

Notexin 
(0 & 2.5) 

Tibialis 
anterior 

Dissociated 
Whole Muscle 

& FACS 
v2 6 7,546 

Giordani et al, 
Molc Cell, 2019 

GSE110878 2 - 
Hindlimb 
Muscles 

Dissociated 
Whole Muscle 

v2 2 11,368 

Tabula Muris, 
Nature, 2018 

GSE109774 3 - 
Tibialis 
anterior 

Dissociated 
Whole Muscle 

v2 2 4,742 

Tabula Muris 
Senis, Nature, 

2020 
GSE149590 18-24 - 

Tibialis 
anterior 

Dissociated 
Whole Muscle 

v2 10 24,040 

Li et al, The 
EMBO Journal, 

2019 
GSE134540 3 - 

Tibialis 
anterior & 

Soleus 
FACS (MuSCs) v2 3 9,425 

Jin et al, JCI 
Insights, 2018 

GSE113111 3 
Cardiotoxin 

(4) 
Hindlimb 
Muscles 

FACS 
(Macrophages) 

v2 2 7,553 

Rubenstein et al, 
Scientific Reports, 

2020 
GSE138707 3.5 - 

Quadriceps/ 
Diaphragm 

Dissociated 
Whole Muscle 

v3 2 6,829 

Kimmel et al, 
Development, 

2020 
GSE143476 

3 & 
18 

- 
Hindlimb 
Muscles 

FACS  
(MuSCs) 

v2 16 27,389 

Verma & Asakura, 
unpublished, 2019 

GSE129057 2 
Cardiotoxin 

(0 & 3) 
Hindlimb 
Muscles 

FACS  
(Endo. & 
MuSCs) 

v2 2 1,697 

Stepien et al, J 
Immunol, 2020 

GSE144270 2 
Cardiotoxin 

(0 & 3) 
Tibialis 
anterior 

Dissociated 
Whole Muscle 

v2 5 9,300 

Oprescu et al, 
iScience, 2020 

GSE138826 3 

Cardiotoxin 
(0, 0.5, 2, 

3.5, 5, 7, 10, 
21) 

Tibialis 
anterior 

FACS Whole 
Muscle 

v3 7 47,220 

**Kalucka et al, 
Cell, 2020 

- 2 - 
EDL + 
Soleus 

FACS  
(Endothelial) 

v2 2 3,487 

Petrany et al, 
bioRxiv, 2020 

GSE147127 
10d-
30 

- TA + Soleus 
Nuclei (Whole 

Muscle) 
v3 6 30,344 

 Total: 102 349,769 

* New data first reported in this study. 610 

** Available at ArrayExpress, accession number E-MTAB-8077 611 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2020. ; https://doi.org/10.1101/2020.12.01.407460doi: bioRxiv preprint 

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-8077/
https://doi.org/10.1101/2020.12.01.407460
http://creativecommons.org/licenses/by-nc-nd/4.0/


 612 

 613 

Figure S1: Sequencing metrics and sample material drive batch effects in single-cell RNA sequencing data. 
(A) The number of features and transcripts detected in each droplet, after quality filtering, is similar between versions 
2 and 3 of the 10x Chromium chemistry. (B) Quality of sequencing, as determined by mappability of the library and 
Q30 bases inside the RNA portion of the read, may also drive batch effects. (C) Sequencing depth is often sacrificed 
in favor of higher cell counts. Single-nuclei data are enriched with (D) nascent transcripts and (E) reads outside of 
annotated genes. 
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 616 

Figure S2. Comparison of batch-correction methods. UMAP plots generated after integration with either 
Harmony, BBKNN, or Scanorama are shown, colored by (A) source, (B) cell type, (C) or sample preparation 
strategy. Cell types were determined independently for each method (see Methods). 
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 619 

Figure S3: Identification of noisy cells in large-scale integration with Harmony. (A) After integration with 
Harmony and shared nearest neighbor clustering, one cluster of noisy cells with no discernible marker genes 
emerged. (B) The “Noisy” cluster is enriched with cells containing high numbers of detected features and high 
transcript counts. (C) “Noisy” cells have a four-fold enrichment for doublets, as identified by DoubletFinder, 
compared to other cells. (D) “Noisy” cells express canonical marker genes from multiple cell types. (E) Individual 
cells express multiple cell-type-specific marker genes. (G) “Noisy” cells which cluster together after Harmony 
integration are distributed across cell types after BBKNN integration and (H) Scanorama integration. Counts of 
“noisy” cells are shown as bar graphs, with a log scale, for each cluster from alternate batch-correction methods. 
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Figure S4. Canonical marker gene expression identifies cellular subtypes in clustering results from three 
batch-correction methods. Dot plots show the expression of 115 genes, curated from a literature search for cell 
type markers in skeletal muscle. Cell types shown were generated through shared nearest neighbor clustering on 
the output values from (A) Harmony, (B) BBKNN, and (C) Scanorama. Gene expression values are scaled (via 
Seurat).  
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Figure S5. (A) PHATE embedding, colored by sample preparation strategy. (B) PHATE embedding showing which 
cells were FACS-sorted. (C) Feature plots showing expression of genes related to apoptosis (Junb, Fosb) and DNA 
repair (Trp53). 
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Figure S6. Quality metrics of Visium spatial RNA sequencing datasets. (A) Number of features detected, (B) 
number of transcripts detected, (C) percent of unique transcripts mapping to mitochondrial genes, and (D) percent 
of unique transcripts mapping to hemoglobin genes, plotted for each spot. Samples shown are tibialis anterior 
muscles, collected two (D2), five (D5), or seven (D7) days post-injury (notexin). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2020. ; https://doi.org/10.1101/2020.12.01.407460doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.407460
http://creativecommons.org/licenses/by-nc-nd/4.0/

