
Noise-induced properties of active dendrites
Carl van Vreeswijka and Farzada Farkhooib,1

aCentre de Neurophysique Physiologie et Pathologie, Paris Descartes University and CNRS UMR 8002 INCC, 75006 Paris, France; bInstitute for Theoretical Biology,
Department of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany

This manuscript was compiled on November 30, 2020

Dendrites play an essential role in the integration of highly fluctuating input into neurons across all nervous systems. Nevertheless, they are
often studied under the conditions where inputs to dendrites are sparse. Up to date, the dynamic properties of active dendrites facing in-vivo-
like fluctuating input remains elusive. In this paper, we uncover fundamentally new dynamics in a canonical model of a dendritic compartment
with active calcium channels, receiving in-vivo-like fluctuating input. We show in-vivo-like noise induces non-monotonic or bistable dynamics
in the input-output relation of a dendritic compartment, both of which are absent in a noiseless condition. Our analysis shows that the
timescales of the activation gating variable of the dendritic calcium dynamics determine noise-induced spontaneous order in the system.
Noise can induce non-monotonicity or bistability with fast or slow calcium activation respectively. We characterize these noise-induced
phenomena and their influence on the input-output relation. Furthermore, we show that timescales of the emerging stochastic bistable
dynamics go far beyond a deterministic system due to stochastic switching between the solutions. Our results reveal that noise contributes
to sustained dendritic nonlinearities, and it could be considered a principal component of the dendritic input integration strategies.
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The interactions among neurons are mediated via synapses primarily located on large tree-like dendritic structures. Dendritic
trees integrate these synaptic inputs and determine the extent to which the neuron produces spiking output [1]. Dendrites
contribute substantially to neuronal plasticity and functions [2–4], and their active calcium dynamics can induce nonlinear
regenerative events such as dendritic spikes in-vitro [5] and in-vivo [6] conditions. The dendritic spikes have also been shown to
serve a functional role in in-vivo cortical visual processing, where a typical pyramidal neuron receives intense fluctuating input,
generated by the summation of hundreds to thousand synaptic inputs from excitatory and inhibitory presynaptic neurons
in the circuit [7]. Although the dendrites’ importance for integration of the relevant signal in-vivo conditions is evident [3],
how a dendritic compartment shapes its input-output relation in this noisy condition is essentially unknown. While noise is
commonly assumed to be a nuisance that has to be filtered out, it can also induce new organized behaviors in systems, which
are absent in deterministic conditions [8]. Examples where noise leads to the emergence of spontaneous order in biological
and physical systems include stochastic resonance [9], noise-induced phase transitions [10], and noise-induced bistability [11].
To investigate whether in-vivo-like fluctuating input also induces novel dynamic states in dendrites, we analytically study a
canonical model of a dendritic compartment with active calcium channels. Our results indicate that stochastic phenomena
emerge in dendritic dynamics with in-vivo-like fluctuating input, which is entirely absent in the deterministic condition. We
uncover that the noise induces non-monotonic or bistable dynamics in the dendritic input-output relation, depending on the
timescales of calcium-gating variables.

The dendritic compartment model. To study the noise-induced dynamics in dendrites, we consider the canonical conductance-
based description of the dendritic compartment membrane potential voltage, v, as expressed by

Cmem
d

dt
v = gl[ul − v] + ICa + Iext [1]

where, Cmem and gl are the membrane capacitance and leak conductance per unit area, ul is the leak reverse potential, and ICa
is the active dendritic feedback. We model in-vivo-like external input per unit area , Iext, by a generic white-noise process as

Iext = µ+ ση(t) [2]

where, µ and σ are the mean and standard deviation of the process, and η(t) is a Gaussian white noise variable, where 〈η(t)〉 = 0
and 〈η(t)η(t′)〉 = δ(t − t′). We use the notation of 〈.〉 to denote averaging over the noise realization. The dendritic active
feedback properties due to calcium dynamics in Eq. (20) is captured by

ICa = gCamh[uCa − v] [3]

where, gCa and uCa are the maximum calcium conductance per unit area and its reverse potential, respectively. The dynamics
of the activation gating variable, m, and inactivation gating variable, h, are given by

τm0
d

dt
m = αm(v)[1−m]− βm(v)m, [4]

and
τh0

d

dt
h = αh(v)[1− h]− βh(v)h, [5]
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Table 1. The dendritic compartment model parameters

Symbol Description Value

Cmem Membrane capacitance per unit area 1.0 µF/Cm2

gl Membrane leak per unit area 0.1 µS/Cm2

ul Leak reverse potential -60 mV
um Calcium-half activation potential -21 mV
uh Calcium-half inactivation potential -24 mV
gCa Calcium conductance per unit area 0.05 µS/Cm2

uCa Calcium reversal potential 40 mV
∆α Chann. opening slope param. at ux 2.4 mV
∆β Chann. closing slope param. at ux 12 mV

respectively. In Eq. (23) and Eq. (24), the channel opening occurs at a voltage-dependent rate αx(v) and the closing rate is
βx(v), where x ∈ {m,h}; and the thermodynamic model for voltage-dependent currents [12] suggests αm(v) = exp( v−um∆α,m ),
αh(v) = exp(− v−uh∆α,h

), βm(v) = exp(− v−um∆β,m
) and βh(v) = exp( v−uh∆β,h

), where ux is half-activation or -inactivation potential,
and ∆α,x and ∆β,x are slope factors for opening and closing of the channel. To reduce the number of parameters, we assume
∆α,m = ∆α,h = ∆α and ∆β,m = ∆β,h = ∆β . The time-constant of the activation and inactivation gating variables are tuned
by τm0 and τh0 , respectively. For numerical analysis and simulations, the model parameters’ values are given in Table 1, unless
it is otherwise specified.

In a noiseless dendritic compartment with a constant input µ, the equilibrium dendritic voltage depends on steady-state
values of m and h which are denoted by m̄ and h̄, and it is given by v̄(m̄h̄), where

v̄(x) = µ+ x gCauCa + glul
gl + x gCa

, [6]

and self-consistency requires m̄ = αm(v̄)/[αm(v̄) + βm(v̄)] and h̄ = αh(v̄)/[αh(v̄) + βh(v̄)]. In Figure 1, we plot the voltage
equilibrium value, v̄, as the function of constant input µ. The v̄ − µ function exhibits a monotonic increase in the average
dendritic voltage v̄, when µ increases with small acceleration when calcium feedback is sufficiently activated. Figure 1 conveys
that the equilibrium value of dendritic voltage in the deterministic system does not depend on the effective timescales of the
calcium gating variables, given by τx = τx0

αx(v̄)+βx(v̄) (note that x ∈ {m,h}). The dendritic calcium dynamics are known to
be much slower than the membrane time-constant, τmem = Cmem/gl [13]. In particular, the time-constant of the inactivation
variable, h, is large compared to the membrane [13] and the dynamics of the activation variable m is small for some calcium
channels [13], while it is large for others [13–15]. In this paper, we show that these timescales differences in calcium gatting
dynamics lead to the emergence of fundamentally new types of dynamics in the presence of in-vivo-like fluctuating input into a
dendritic compartment.

2 3 4 5
 [nA]

40

30

20

10

v 
[m

V]

Fig. 1. Input-output relation of a noiseless dendritic compartment. The equilibrium voltage (blue line), v̄, as a function of a constant input, µ, shows a monotonous relation.

Noise-induced bistability with slow calcium activation and inactivation. The dendritic calcium dynamics can be mediated by
gating variables whois their time-constants τm0 and τh0 are much larger than the membrane time-constant τmem. For these
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types of dynamics, in the timescale in which the voltage is fluctuating, we can assume both m and h are at their equilibrium m̄
and h̄, respectively. In this setting, the equilibrium dendritic membrane potential in Eq. (20), can be written as

v(t) = v̄(m̄h̄) + σv(m̄h̄)z(t) [7]

where v̄(x) is given in Eq. (38),

σ2
v(x) = σ2

2Cmem[gl + x gCa] , [8]

and z(t) is a Gaussian random variable with 〈z(t)〉 = 0 and 〈z(t)z(t′)〉 = exp(−|t− t′|/τeff(m̄h̄)), where

τeff(x) = Cmem

gl + x gCa
. [9]

Since the calcium activation gating variable is slow (τmem � τm0), its effective dynamic is specified by

τm0
d

dt
m = 〈αm(v)〉[1−m]− 〈βm(v)〉m,

Thus, the equilibrium is given by

m̄ = 〈αm(v)〉
〈αm(v)〉+ 〈βm(v)〉 . [10]

where

〈αm(v)〉 =
∫
Dx exp([v̄(m̄h̄) + σv(m̄h̄)x− um]/∆α)

= exp([v̄(m̄h̄)− um]/∆α + [σv(m̄h̄)2]/[2∆2
α]).

where Dx = dx/
√

2π exp(−x2/2) is the Gaussian measure. Similarly, 〈βm(v)〉 = exp(−[v̄(m̄h̄)− um]/∆β + [σv(m̄h̄)2]/[2∆2
β ]).

Analogously, it is straightforward to calculate the self-consistent average steady-state values for

h̄ = 〈αh(v)〉
〈αh(v)〉+ 〈βh(v)〉 [11]

where, 〈αh(v)〉 = exp(−[v̄(m̄h̄)−uh]/∆α+ [σv(m̄h̄)2]/[2∆2
α]) and 〈βh(v)〉 = exp([v̄(m̄h̄)−uh]/∆β + [σv(m̄h̄)2]/[2∆2

β ]). We plot
these equilibrium values in Figure 2. In Figure 2.A, we demonstrate the input-output relation of the dendritic compartment
for different values of noise. The result, following Figure 1, shows in the absence of noise (blue line in Figure 2.A), there is a
monotonic increase in the average dendritic voltage v̄ with small acceleration when calcium activation is sufficiently large. With
small amounts of noise (green line in Figure 2.A), the acceleration increases, which corresponds to the shifts in the activation
curve in Figure2.B and results in an increase in the maximum slope and level of m̄h̄ (green solid and dashed lines in Figure
2.B). Notably, in the presence of sufficiently large noise (magenta line in Figure 2.A), we observe that v̄-µ curve folds back, and
there is a range of mean input for which multistability of v̄ occurs. The critical value for noise level is given in the method
section. In this region, three possible values for v̄ emerge for one input level. The middle point is an unstable fixed-point of
the dynamics, and the two surrounding points are stable fixed-points for the equilibrium average dendritic voltage. With
additional noise, this region of bistability shifts to the left, but its width saturates. To understand the primary mechanism for
the emergence of bistability in this regime, in Figure 2.B, the values of m̄ (dashed lines) and h̄ (solid lines) are plotted against
v̄, for different noise levels. In the absence of noise, the activation curve is sigmoid, where m̄ increases from zero to one as
v̄ increases (blue dashed line in Figure 2.B). Similarly, the inactivation variable h̄ is a decreasing sigmoid (blue solid line in
Figure 2.B). We also show half-potential values for the activation, um, and inactivation, uh, by vertical gray dashed and solid
lines. It is noteworthy that in the absence of noise, values of um and uh are relatively close, and h̄ already starts to decrease
when m̄ reaches a significant non-zero value. As a result, when σ = 0.0, the maximum value of m̄h̄ is also small. It also is
important to note that the solution for m̄ and h̄ indicate that that adding noise to the input is equivalent to shifting um to
um − [1/∆α − 1/∆β ]σv(m̄h̄)2/2 and uh to uh + [1/∆α − 1/∆β ]σv(m̄h̄)2/2. Therefore, if ∆α < ∆β then the value of v̄, where
the calcium channel activates (m > 0), shifts to left when the noise is increased, while the value of v̄, where the channel starts
its inactivation (h < 1), shifts to the right. In the setting of Figure 2.B, with increasing noise, the activation equilibrium m̄
shifts to the left (green and magenta dashed lines in Figure 2.B) and inactivation equilibrium h̄ shifts to the right (green and
magenta solid lines in Figure 2.B) and allows a higher amplitude in the window current of the gating variables into the dendrite.
Accordingly, with sufficiently strong noise, the maximum value of m̄h̄ comes close to one and the maximum slope of m̄h̄ as the
function of v̄ also significantly increases, which corresponds to the folding back phenomenon in the input-output relation in
Figure 2.A. Therefore, sufficient noise determines the average dendritic voltage’s bistability as a function of mean input.
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Fig. 2. Noise-induced bistability in the dendritic input-output relation. (A) The equilibrium averaged voltage, v̄, is plotted against mean input, µ, for different noise levels
σ = 0.0 (blue line), σ = 1.0 (green line), and σ = 2.0 (magenta line) for a dendritic compartment with slow activation and inactivation of the calcium feedback. (B) The
average equilibrium value of the calcium activation gating variable (dashed lines) , m̄, and inactivation gating variable (solid lines), h̄, are plotted as functions of the equilibrium
averaged voltage, v̄, for different noise levels, corresponding to curves as color-coded in (A). The half-activation, um, and -inactivation, uh, potentials in the deterministic
system are indicated by vertical gray dashed- and solid-lines.

Noise-induced non-monotonicity with fast calcium activation and slow inactivation. A major class of dendritic calcium channels
exhibits a fast activation, while the inactivation variable is slower than membrane dynamics [13], (τm0 � τmem � τh0), which
allows the application of the slow-fast analysis. In the dendritic compartment with these type of calcium channels, we have the
activation gating variable converges quickly to its equilibrium value at a given voltage, thusm ism∞(v) = αm(v)/[αm(v)+βm(v)],
and in the timescale in which the voltage is fluctuating, τmem, we can neglect the fluctuation in h around its equilibrium value
h̄, since τmem � τh0 . Hence, the dendritic compartment membrane potential dynamics in Eq. (20) becomes

d

dt
v = F (v|h̄) + Ση(t). [12]

where F (v|h̄) = [gl[ul − v] + gCam∞(v)h̄[uCa − v] + µ]/Cmem and Σ = σ/Cmem. The Fokker-Planck equation [16], which
describes the evolution of voltage distribution for Eq. (12), is given by

∂

∂t
P(v; t|h̄) = − ∂

∂v
J(v; t|h̄) [13]

where J(v; t|h̄) = F (v|h̄) P(v; t|h̄)− σ2

2
∂
∂v

P(v; t|h̄). Thus, the equilibrium distribution of the voltage is

Peq(v|h̄) = Z−1 exp(φ(v|h̄)) [14]

where d
dv
φ(v|h̄) = 2F (v|h̄)/σ2 and Z is a constant that ensures

∫ +∞
−∞ dv Peq(v|h̄) = 1. In this regime, the effective inactivation

dynamics is given by
τh0

d

dt
h = A[1− h]−Bh,

where A =
∫ +∞
−∞ dv αh(v)Peq(v|h̄) and B =

∫ +∞
−∞ dv βh(v)Peq(v|h̄). Thus, the self-consistent equilibrium value of h̄ is specified

by h̄ = A/[A+B], and the average equilibrium value of the activation gating variable is given by m̄ =
∫ +∞
−∞ dv m∞(v)Peq(v|h̄).

In Figure 3.A, we plot the equilibrium mean dendritic voltage v̄ =
∫
dv v Peq(v|h̄) against µ for different values of σ. In the

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.11.30.405001doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.405001
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

B

Fig. 3. Noise-induced non-monotonicity in the dendritic input-output relation. (A) The equilibrium averaged voltage, v̄, is plotted against mean input, µ, for different noise
levels σ = 0.0 (blue line), σ = 1.0 (green line), and σ = 2.0 (magenta line) for a dendritic compartment with a fast activation and slow inactivation of the calcium feedback.
(B) The average equilibrium value of the calcium activation gating variable (dashed line), m̄, and inactivation gating variable (solid lines), h̄, are plotted as functions of the
equilibrium averaged voltage, v̄, for different noise levels, corresponding to curves as color-coded in (A). The half-activation, um, and -inactivation, uh, potentials in the
deterministic system are indicated by vertical gray dashed- and solid-lines.

deterministic case, where σ = 0, we observe the average denetric voltage in response to an increase in µ is monotonously
increasing, consistent with Figure 1. Interestingly, with sufficient noise, non-monotonous behavior of v̄ emerges. In a certain
range, we observe that an increase in µ reduces the corresponding v̄ (green and magenta lines in Figure 3.A). Thus, in the
presence of in-vivo-like fluctuations, we observe a noise-induced non-monotonicity in the canonical dendritic compartment
model with fast activation and slow inactivation of the calcium gating variables. To illustrate the underlying mechanism for
this noise-induced nonlinearity in this regime, we also plot both equilibrium averages of h̄ and m̄ as the function of v̄ for
different levels of noise in Figure 3.B. Figure 3.B shows that the activation and inactivation are standard sigmoidal curves in
the absence of noise (blue dashed- and solid-lines in Figure 3.B). In Figure 3.B, as a reference point, we indicate half-activation
potential, um, and half-inactivation potential, uh, by the vertical gray dashed- and solid-lines, respectively. By increasing the
noise level, m̄ starts to increase in the lower voltages and is tightly coupled with the dendritic average voltage (green and
magenta dashed lines in Figure 3.B). An increase in the noise level shifts the inactivation equilibrium to the left (magenta
solid-line in Figure 3.B) and when h̄ starts to decrease, it causes a reduction on the average voltage as well (green and magenta
solid lines in Figure 3.B). In return, the positive voltage feedback modifies the slope of the averaged inactivation in such a way
that we can find three equilibria values for h̄ (green solid-line in Figure 3.B). This determines also a strong nonlinearity on
m̄ during the reduction of h̄ (green and magenta solid lines in Figure 3.B), which causes the corresponding non-monotonous
behavior in v̄. Hence, these noise-induced nonlinearities contribute to the corresponding non-monotonous behavior in the
input-output relation of the dendritic compartment in Figure.3.A.

Noise-induced switching in the bistable regime. The emergence of noise-induced phenomena in Figures 2 and 3 indicate that
in-vivo-like noise significantly modifies the dendritic input-output relation. The non-monotonicity in Figure 3 suppresses input
fluctuations. Therefore, correlations in the voltage decay on the timescales at the closest to τmem. However, noise-induced
bistability can enhance the system’s sensitivity to small changes, and it can modify the timescales of the system. In deterministic
bistable systems, the additive noise allows switching between the possible solutions with a particular time-constant [17]. However,
noise induces the bistability here, and contrary to the assumptions in the slow-fast analysis (i.e., τm0 and τh0 are infinitely
large), the realistic values of τm0 and τh0 modifies the dynamics. To investigate the effect of finite τm0 and τh0 we simulate
the full system given in Eq. (20), Eq. (23) and Eq. (24). In Figure 4.A, we show a response of membrane voltage v at its
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equilibrium to a short perturbation in the mean input µ, when σ = 0.0 (blue line in Figure 4.A). The brief positive perturbation
activates calcium followed by inactivation. The induced dynamics capture a phenomenon that is widely known as a dendritic
calcium spike [5]. The voltage trace of the deterministic system (blue line in Figure 4.A) goes back to the original equilibrium
value with the timescales of τh0 . We further show the voltage response averaged over 5 × 104 realizations of the noise, for
small and large σ. In the case of small noise (green line in Figure 4.A, σ = 0.4), we observe the response to the perturbation
goes back to the deterministic baseline with the same timescale as the noiseless system. This result is consistent with the
lack of multistability when σ = 0.0 and σ = 0.4 (blue and green lines in Figure 4.A). In contrast, with sufficient noise level
that induces the bistability, the response to the perturbation decays much slower than the deterministic case (blue line in
Figure 4.A) and the system with small noise (green line in Figure 4.A). It is apparent that when τm0 and τh0 are finite, the
voltage fluctuation also induces fluctuations in m and h. These fluctuations can occasionally cause switching between the two
stable states predicated by the slow-fast analysis (Figure 2). To demonstrate this, we plot the average voltage (across trails)
on a longer time window in Figure 4.B. We observe that on the timescales slower than τh0 , the average membrane voltage
converges to an intermittent value between two predicted stable fixed points by the slow-fast analysis. The convergence to this
intermittent value in the long timescale is independent of the perturbation as the system with the same level of noise without
any perturbation also converges to this intermediate level of average voltage (black line in Figure 4.B).

A

B

Fig. 4. Simulation of a bistable dendritic compartment with a slow activation and inactivation of calcium feedback. (A) The dendritic voltage response of the full system to a
short-lived perturbation (20 millisecond as it is indicated by vertical cyan dashed lines) in the mean input for different noise levels σ = 0.0 (blue line), σ = 0.4 (green line), and
σ = 1.2 (magenta line), where τm0 = 100 and τh0 = 200. The voltage traces for the noise level σ = 0.4 (green line) and σ = 1.2 (magenta line) are averaged over
5× 104 trails. The baseline for the deterministic system (blue line) is indicated by a horizontal gray dashed line. (B). The trial averaged voltage trace of 5× 104 simulation
runs of the full system with a brief perturbation (magenta line) as in (A), and without the perturbation (black line) for the noise level σ = 1.2 that induces bistability. The system
deviates from the initial condition at the lower stable solution (indicated by the horizontal gray dashed line) and settles slowly into an intermediate voltage value due to stochastic
switches between solutions, irrespective of the perturbation.

The results in Figure 4 indicate that a complete description of the bistable stochastic dendritic dynamics may require the
inclusion of the fluctuations in v, m, and h to understand the noise-induced phenomena and its timescales. This involves the
translation of the state variables’ stochastic differential equations to a probability density evolution, using the Fokker-Planck
approach [16]. This approach specifies an evolution equation for the state variables’ joint probability density, v, m and h,
as P(v,m, h; t). However, the inclusion of all state variables does not lead to readily interpretable results. It does not use
the separation of timescales between τmem and both τm0 , τh0 , which allows one to determine the statistics of v and derive
self-consistent stochastic differential equations for m and h on a timescale larger than τmem based on the voltage statistics.
Additionally, it is also important to note that our results demonstrated in Figure 2 indicate that the emergence of bistability is
initiated by the activation of the calcium channels. Therefore, the separation of timescales and the contribution of positive
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Fig. 5. Equilibrium distribution of the activation gating variable in the bistable dendritic compartment. The equilibrium density of m is given by Eq. (18) for different values of
mean input below the bistable region (blue dashed-dotted line; µ = 2.5, in the bistable regain (black solid line; µ = 3.0), and beyond the bistable regain (magenta dashed line;
µ = 4.0), for σ = 2.0 and τm0 = 100. The maximum values are normalized to one.

activation feedback suggest that a parsimonious approximate description of the dynamics can be developed. We take into
account the fluctuations in m but neglect the fluctuation in h. This is equivalent to assuming τm0 � τh0 . To this end, we
assume h(t) = h̄ and it is in the equilibrium, and m does not change on the timescale of τmem, therefore

v(t) = v̄(mh̄) + σv(mh̄)z(t), [15]

where z(t) is a Gaussian random variable with 〈z(t)〉 = 0 and 〈z(t)z(t′)〉 = exp(−|t− t′|/τeff(mh̄)) and v̄, σv and τeff are given
in Eq. (38), Eq. (39) and Eq. (40), respectively. In this setting, the fluctuation with strength σv(mh̄) in the dendritic voltage
induces fluctuation in m. On the τm0 timescale, these fluctuations can be approximated by a white noise process, and therefore
we obtain

d

dt
m = F (m|h̄) + S(m|h̄)ξ(t) [16]

where ξ(t) is a standard white noise and F (m|h̄) and S(m|h̄) are chosen such that over a time-interval of δ, where τmem � δ �
τm0 , the Eq. (16) becomes approximately same as Eq. (23). In the method section, we derive F (m|h̄) and S(m|h̄) functions.
The stochastic differential equation in Eq. (16) is also called the Langevin equation, F (m|h̄) and S(m|h̄) are drift and diffusion
terms of the stochastic process. From this Langevin equation, we can readily derive a Fokker-Planck equation for the evolution
of the probability density P(m; t|h̄) which satisfies

∂

∂t
P(m; t|h̄) = − ∂

∂m
J(m; t|h̄) [17]

where J(m; t|h̄) = F (m|h̄)P(m; t|h̄)− S(m|h̄)
2

∂
∂m

S(m|h̄)P(m; t|h̄) with the boundary condition of J(0; t|h̄) = 0. The stationary
distribution, Peq(m|h̄), from the Fokker–Planck equation in Eq. (17) can be explicitly derived

Peq(m|h̄) = C−1 exp(φ(m|h̄))/S(m|h̄) [18]

where d
dm
φ(m|h̄) = 2F (m|h̄)

S(m|h̄)2 and C is a constant that ensures
∫ 1

0 dmPeq(m|h̄) = 1. Now, we obtain the self-consistent solution,

h̄ = ℵ
ℵ+ i

[19]

where ℵ =
∫ 1

0 dm Peq(m|h̄) exp
(
− v̄(mh̄)−uh

∆α + σv(mh̄)
2∆2

α

)
and i =

∫ 1
0 dm Peq(m|h̄) exp

(
v̄(mh̄)−uh

∆β
+ σv(mh̄)

2∆2
β

)
. In Figure 5, we

illustrate the equilibrium distribution as expressed in Eq. (18) for three values of mean input and σ = 2.0. We show for a
value of µ below the bistable region, the probability mass is concentrated close to zero (blue dashed-dotted line in Figure
5). It is also shown that for a value of µ beyond the bistable region, the density peaks significantly close to one (magenta
dashed line in Figure 5). However, for an intermittent value of µ, the probability density becomes pronouncedly bimodal,
reflecting bistable behavior in the stochastic dynamics of m (black solid line in Figure 5). In this case, noise disperses the
level of m around the two peaks, corresponding to the bistable solutions. Therefore, by initializing the system near one of
the peaks, the stochastic dynamics result in a relatively rapid fluctuation around that peak value. On a longer timescale,
the noise promotes flights to the other peak value and therefore induces stochastic switching between peaks. The timescales
on which this happens can be inferred from the eigenvalue spectrum of the Fokker-Planck operator [16]. We numerically
calculate the Fokker-Planck operator’s eigenvalue spectrum corresponding to Eq. (17) (see the methods for details). The largest
eigenvalue of the Fokker-Planck operator λ0 = 0, whose eigenfunction corresponds to the equilibrium distribution Peq(m|h̄);
since this solution is stable, all other eigenvalues have negative real parts. The rate that the system approaches this equilibrium
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A

B

Fig. 6. The timescale of the fluctuations in the bistable dendritic compartment. (A) The relaxation time, τrelax, is plotted as a function of the noise level, σ. We adjust mean
input, µ, for various noise levels to ensure that m̄ = 0.5, and therefore the system stays in the bistable region. We choose τm0 = 100. (B). The black line shows the
relaxation time derived from the one-dimensional Fokker-Planck operator for m is plotted against mean input for noise level σ = 1.5 and τm0 = 100. Corresponding to the
black line, the autocorrelation timescales of m fluctuations estimated from the simulations, when τh0 = 1000, are shown with black crosses. The green line represents the
relaxation time derived from the two-dimensional Fokker-Planck operator for the evolution of joint distribution of m and h (see the methods), as a function of mean input, where
σ = 1.5, τm0 = 100 and τh0 = 200. Corresponding to the green line, the autocorrelation timescale of m is estimated from simulations are shown with green crosses. The
blue line is the effective timescale of m in the deterministic system.

distribution from an arbitrary initial condition is determined by the second eigenvalue, λ1 , of the Fokker-Planck operator. The
timescale over which the probability density of m approaches equilibrium is given by the relaxation time, τrelax = −1/<(λ1).
In Figure 6.A, we illustrate τrelax as a function of σ, for a value of µ corresponding to m̄ = 0.5 in Eq. (41). Figure 6.A shows
the relaxation time increases as sufficient noise induces bistability and reaches its maximum, thereafter it decays gradually to
τmem as additional noise facilitates faster switches between two solutions. Furthermore, in Figure 6.B, we plot τrelax against µ
for σ = 1.5 ensuring that the system exhibits bistability (black line in Figure 6.B). The relaxation time (black line in Figure
6.B) reaches its maximum for µ in the bistable regain. Note that the relaxation time (black line in Figure 6.B) substantially
deviates from the deterministic system (blue line in Figure 6.B). In Figure 6.B, we also calculate the full system autocorrelation
timescales of m fluctuations, by simulating dynamics in Eq. (20), Eq. (23) and Eq. (24) for two different values of τh0 (black and
green cross symbols in Figure 6.B). The relaxation time derived from the parsimonious approximate description of the system
in Eq. (17) (black line in Figure 6.B) captures the behavior of the full system dynamics when τrelax � τh0 (black cross symbols
in Figure 6.B, where τh0 = 1000). However, it becomes apparent that τrelax derived from the one-dimensional Fokker-Planck
approximation in Eq. (17) can be of the same order of τh0 (green cross symbols in Figure 6.B, where τh0 = 200). Therefore,
the one-dimensional approximation in Eq. (17) (black line in Figure .B) cannot quantitatively predict the timescales of the full
system’s fluctuation. In this case, we require the inclusion of fluctuations in h, by constructing a two-dimensional Fokker-Planck
operator for the evolution of the joint probability density mathrmP (m,h; t), using the same approach as Eq. (17) (see the
the methods). In this case, the relaxation time calculated from the approximate two-dimensional Fokker-Planck operator
description of the system P(m,h; t) (green line in Figure 6.B) becomes close to the estimated autocorrelation timescales of the
full system (green cross symbols in Figure 6.B)

Discussion. The diverse calcium machinery of dendrites has been studied intensively in the last three decades [1]. While
dendritic calcium channels exhibit enormous heterogeneity, their dynamics are generally known to be slow [13, 14]. In the
absence of noise with constant input, the differences in the dynamics of calcium gating variables do not contribute to the
dendritic input-output relation (Figure 1). Our analytical delve into an active dendritic compartment uncovers that the
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differences in the dynamics of calcium gatting variables leads to qualitatively different types of noise-induced phenomena in
in-vivo-like conditions. Our results show that in the case of a fast activation of the calcium gating variable, noise-induced
non-monotonicity arises (Figure 3). For the case where both activation and inactivation gating variables are slow, noise-induced
bistability emerges in the dendritic compartment’s input-output relation (Figures 2 and 5). The noise-induced non-monotonicity
facilitates the shaping of input fluctuations by suppression of fast changes, and an interesting byproduct of noise-induced
bistability is the introduction of a long timescale due to stochastic switches between two solutions. The switching timescales
can be calculated, using the approximate Fokker-Planck equation (Figure 6).

These noise-induced phenomena can have functional importance in the single neuron strategies to integrate fluctuating input
by its various active dendritic channels. Our results show that dendrites could adjust their input-output relation in response
to noisy input to maintain different sensitivities to changes. It is important to note that here we study the dynamics of an
isolated dendritic compartment with an in-vivo-like fluctuation in the input. A necessary future research step is to investigate
interactions among dendritic compartments and their coupling with soma to understand how fluctuating dendritic inputs
affect the neuronal activity and network dynamics. For example, pyramidal neurons in cortical layer 2-3 networks receive
their feed-forward input via their basal dendrites, and the apical dendrites collect recurrent projections [18, 19]. Therefore, a
differential projection of somatostatin (SOM)-positive and parvalbumin (PV)-positive interneurons recurrent input into the
apical dendrites and various noise-induced nonlinearities could be used to modify the effect of feed-forward and recurrent input
of the network dynamics [20, 21].

We conclude that noise can function as an organizing principle that leads to new kinds of dynamics in the neuronal dendritic
compartment. Our results add to previous studies that noise induces order in many other biological and physical systems
[8–11] and imply that noise-induced dynamical processes can be an underlying mechanism for robustness in systems operating
in a fluctuating environment.

Methods. We study the influence of noisy external input in Eq. (20) on the nonlinear feedback of voltage-dependent calcium
channels given in Eq. (23) and Eq. (24). We first perform the slow-fast analysis exploiting the timescales differences in the
system as described in the main text. Below, we further calculate critical values for gCa and σ in the case of the emergence of
noise-induced bistability. Next, we describe the stochastic switching phenomenon due to finite timescales of calcium dynamics in
the bistable system (Figure 4). To calculate the switching time between the stable solutions, we use the system’s Fokker-Planck
operator eigenvalue decomposition for the activation variable, m, as it is described in the main text. The complete derivation
of Fokker-Planck approximation in Eq. (17) and the numerical method to calculate its corresponding switching time, τrelax, are
provided below. To achieve a better quantitative approximation for the cases that timescales of activation and inactivation
are close, we use a two-dimensional Fokker-Planck equation for the joint evolution of m and h (Figure 6.B). The underlining
two-dimensional Fokker-Planck description in Figure 6.B is given in the following section.

1. The emergence of meta-stability in the slow-fast analysis

To recapitulate, in this paper we consider the canonical conductance-based model of a dendritic compartment as expressed by

Cmem
d

dt
v = gl[ul − v] + ICa + Iext [20]

where, Cmem and gl are the membrane capacitance and leak conductance per unit area, ul is the leak reverse potential, and ICa
is the active dendritic feedback. We model in-vivo-like external input per unit area , Iext, by a generic white-noise process as

Iext = µ+ ση(t) [21]

where, µ and σ are the mean and standard deviation of the process, and η(t) is a Gaussian white noise variable, where 〈η(t)〉 = 0
and 〈η(t)η(t′)〉 = δ(t − t′). We use the notation of 〈.〉 to denote averaging over the noise realization. The dendritic active
feedback properties due to calcium dynamics in Eq. (20) is captured by

ICa = gCamh[uCa − v] [22]

where, gCa and uCa are the maximum calcium conductance per unit area and its reverse potential, respectively. The dynamics
of the activation gating variable, m, and inactivation gating variable, h, are given by

τm0
d

dt
m = αm(v)[1−m]− βm(v)m, [23]

and
τh0

d

dt
h = αh(v)[1− h]− βh(v)h, [24]

respectively. First, we look at the steady-state solution, v̄, in the noise-less system (σ = 0), which it satisfies,

gl[ul − v̄] + gCam̄h̄[uCa − v̄] + µ = 0 [25]

where, m̄ and h̄ are the steady-state for activation and inactivation, respectively, and are given by

αm(v̄)[1− m̄]− βm(v̄)m̄ = 0 [26]
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and
αh(v̄)[1− h̄]− βh(v̄)h̄ = 0. [27]

Thus, we have

m̄ = m∞(v̄) = αm(v̄)
αm(v̄) + βm(v̄) = ev̄−um/∆

1 + ev̄−um/∆ [28]

and
h̄ = h∞(v̄) = αh(v̄)

αh(v̄) + βh(v̄) = ev̄−uh/∆
1 + ev̄−um/∆ [29]

where 1/∆ = 1/∆α + 1/∆β . Therefore, we can write

µ = gl[ul − v̄] + gCam∞(v̄)h∞(v̄)[uCa − v̄]. [30]

This indicates v̄ varies monotonously. Next, we investigate under which condition the solution is mono-stable. To do so, we
parametrize v̄ and µ as

¯̄v(s) = uh + um
2 + ∆s

and
¯̄µ(s) = gl[∆s− Ul] + gCaΦ(s)[∆s− UCa],

where Ul = ul − [um + uh]/2, UCa = uCa − [um + uh]/2, and

Φ(s) = m∞(v̄)h∞(v̄) = eφ

2[cosh (φ) + cosh (s)] [31]

where φ = uh+um
2∆ . Since d

ds
¯̄v(s) = ∆ > 0, the system is mono-stable if and only if

d

ds
¯̄µ(s) = gl∆ + gCa∆Φ(s) + gCaΦ′(s)[∆s− UCa] > 0 [32]

for all s. To verify this condition, we require to find a minimum point and investigate its sign.The system has its minimum at
s = smin, which satisfies

d2

ds2
¯̄µ(s) = gCa

[
2∆Φ′(s) + Φ′′(s)[∆s− UCa]

]
= 0, [33]

and hence smin is given by
2∆Φ′(smin) = Φ′′(smin)[UCa −∆smin]. [34]

Hence, the input-output relation is mono-stable if and only if

gl∆ + gCa∆Φ(smin) + gCaΦ′(smin)[∆smin − UCa] > 0, [35]

which equivalently implies
gCa ≤ gl

[ 1
Φ(smin) + Φ′(smin)[smin − UCa/∆]

]
. [36]

This condition determines a critical value of calcium conductance, g∗Ca, where below which input-output relation is mono-stable
and above which it is multi-stable. Our analysis shows that the system is mono-stable when uh − um is comparable to ∆ or
smaller (keeping the other parameters fixed).

Now, we show the introduction of noise (σ > 0) effectively lower the critical value of calcium conductance, g∗Ca, in a regime
that both activation and inactivation dynamics are much slower than membrane potential fluctuation. In the noisy system,
where τmem � τm0 , τh0 , we can assume m(t) = m̄ and h(t) = h̄. Therefore, the average equilibrium voltage satisfies

v(t) = v̄(m̄h̄) + σ2
v(m̄h̄)z(t) [37]

where v̄(x) and σv(x) are defined as
v̄(x) = µ+ x gCauCa + glul

gl + x gCa
, [38]

and
σ2
v(x) = σ2

2Cmem[gl + x gCa] , [39]

and z(t) is a Gaussian random variable with zero mean and temporal correlation given by 〈z(t)z(t′)〉 = exp(−|t− t′|/τeff(m̄h̄)),
where

τeff(x) = Cmem

gl + x gCa
. [40]
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The self-consistency allows us to determined m̄ as

m̄ = 〈αm(v)〉
〈αm(v)〉+ 〈βm(v)〉 . [41]

where

〈αm(v)〉 =
∫
Dx exp([v̄(m̄h̄) + σv(m̄h̄)x− um]/∆α)

= exp([v̄(m̄h̄)− um]/∆α + [σv(m̄h̄)2]/[2∆2
α]). [42]

where Dx = dx/
√

2π exp(−x2/2) is the Gaussian measure. Similarly, 〈βm(v)〉 = exp(−[v̄(m̄h̄)− um]/∆β + [σv(m̄h̄)2]/[2∆2
β ]).

Analogously, it is straightforward to calculate the self-consistent average steady-state values for

h̄ = 〈αh(v)〉
〈αh(v)〉+ 〈βh(v)〉 [43]

where, 〈αh(v)〉 = exp(−[v̄(m̄h̄)− uh]/∆α + [σv(m̄h̄)2]/[2∆2
α]) and 〈βh(v)〉 = exp([v̄(m̄h̄)− uh]/∆β + [σv(m̄h̄)2]/[2∆2

β ]). Now,
we assume ∆β = κ∆α (or ∆α = ∆/[1 + κ]) and ∆β = ∆[1 + κ]. Thus, we obtain

m̄ = m∞(v̄(m̄h̄) + κ− 1
κ+ 1

σ2
v

2∆)

=
exp([v̄(m̄h̄)− um]/∆ + κ−1

κ+1
σ2
v

2∆ )

1 + exp([v̄(m̄h̄)− um]/∆ + κ−1
κ+1

σ2
v

2∆ )
[44]

and analogously h̄ = h∞(v̄(m̄h̄)− κ−1
κ+1

σv(m̄h̄)2
2∆ ). Using parameterization

¯̄v(s) = uh + um
2 + ∆s

and we have
¯̄µ(s) = gl[∆s− Ul] + gCaΨ(s, σv)[∆s− UCa],

where,

Ψ(s, σv) = m∞(¯̄v(s) + κ− 1
κ+ 1

σ2
v

2∆)h∞(¯̄v(s)− κ− 1
κ+ 1

σ2
v

2∆)

= e[φ+κ−1
κ+1

σ2
v

2∆ ]

2[cosh(φ+ κ−1
κ+1

σ2
v

2∆ ) + cosh(s)]
[45]

where φ = uh+um
2∆ as in Eq. (31). Therefore, adding noise has the effect of shifting φ to φeff = φ+ κ−1

κ+1
σ2
v

2∆ and for κ > 1 input
noise increases phieff . As a result, the critical value of calcium conductance, g∗Ca is a decreasing function of φeff , denoted
as g∗Ca(φeff), and as φeff → ∞, the value of g∗Ca converges to its asymptotic minimum g∗Ca(∞). Thus, if gCa is such that
g∗Ca(∞) < g∗Ca(φ) the dendrite input-output relation is mono-sable in the absence of the noise. However, there is a critical noise
level, σ∗ , such that at gCa = g∗Ca(φeff) the system switches form a mono-stable to a bistable input-output relation.

2. The approximate Fokker-Planck description of the system

One-dimensional Fokker-Planck equation for the evolution of slow activation. The slow-fast analysis for the dendrite compart-
ment predicts that when τmem � τm0 , τh0 the noise-induced bistability in the input-output relation of the dendrite. However,
in the case of finite but large time-constants for calcium gating variables, the noise also facilitates switching between solutions.
To understand this switching phenomenon, we study the approximate solution of the probability evolution of the system, in the
case where τmem/τm0 and τmem/τh0 are small and finite. First, we will investigate the case where τm0 � τh0 and thus we can
neglect the fluctuations in h(t) and assume that h(t) = h̄. Moreover, since τm0 is much larger than τmem, the statistics of the
voltage in the equilibrium to the leading order is given by,

v(t) = v̄(mh̄) + σ2
v(mh̄)z(t) [46]

where z(t) is a centred Gaussian variable with 〈z(t)z(t′)〉 = exp(−|t− t′|/τeff(mh̄). To describe the dynamics of m , it is useful
to rescale time t̂ = t/τm0 , thus

d

dt̂
m = gm(z(t̂τm0),m(t̂)). [47]
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where gm(z(t̂τm0),m(t̂)) = αm(v(t̂τm0))[1 − m] + βm(v(t̄τm0))m, where v as it is defined in Eq. (46). Assuming that
m(0) = m0, we want to derive the contribution of rapid fluctuations in v to the distribution of m, in a time window δ̂, where
τmem/τm0 � δ̂ � 1. Hereafter, to simplify notation we define δ = δ̂. The average displacement can be calculated by

F (m0) = 1
δ
〈m(δ)−m0〉 [48]

and its corresponding variance specifies by

C(m0) = 1
δ

[〈(m(δ)−m0)2〉 − 〈(m(δ)−m0)〉2 = 1
δ

[〈m(δ)2〉 − 〈m(δ)〉2] [49]

We have

F (m0) = 1
δ

〈∫ δ

0
dδ1 gm(z(δ1τm0),m(δ1))

〉
z
, [50]

where 〈〉z is the averaging operator over the Gaussian variable z. Since m(δ) close to m0, we Taylor expand the right-hand-side
(RHS) of the above equation around m0 and write

F (m0) = F0 + 1
δ

〈∫ δ

0
dδ1 [m(δ1)−m0] ∂

∂m0
gm(z(δ1τm0),m0)

〉
z

+O([τmem/τm0 ]2) [51]

where F0 = 〈gm(z,m0h̄)〉z and it corresponds to the solution of m̄ in the slow-fast analysis. The second term is an additional
contribution to the drift results from fluctuations around that solution due to noise in the voltage value. We show below that
this additional contribution to the drift is of τmem/τm0 and the higher order terms are at most of the order of [τmem/τm0 ]2. It
should be also noted that m(δ1) and z(δ1τm0), inside the integral (the second term), cannot be assume to be independent and
therefore to the leading order, furthermore

[m(δ1)−m0] =
∫ δ1

0
dδ2 gm(z(δ2τm0),m0). [52]

Thus, we obtain

F (m0) = F0 + 1
δ

〈∫ δ

0
dδ1

∫ δ1

0
dδ2 gm(z(δ2τm0),m0) ∂

∂m0
gm(z(δ1τm0),m0)

〉
z
, [53]

Note that the joint distribution of noise variables z(t1) and z(t2), P(z(t1), z(t2)), only depends |t1 − t2|, therefore in general for
two arbitrary function of k and ג we have∫ t

0
dt1

∫ t1

0
dt2
〈
k(z(t2)) (z(t1))ג

〉
z

=
∫ t

0
dt1
′
∫ t

t1′
dt2
′ 〈k(z(t− t2′)) −z(t)ג t1′))

〉
z

=
∫ t

0
dt1
′
∫ t

t1′
dt2
′ 〈k(z(t2′)) (z(t1′))ג

〉
z
, [54]

using change of the variables t1′ = t− t1 and t2′ = t− t2. Thus, this time-invariant properties implies

F (m0) = F0 + 1
δ

〈∫ δ

0
dδ1

∫ δ1

0
dδ2 gm(z(δ2τm0),m0) ∂

∂m0
gm(z(δ1τm0),m0)

〉
z

= F0 + 1
4

∂

∂m0

∫ δ

0
dδ1

∫ δ

0
dδ2

〈
gm(z(δ2τm0),m0)gm(z(δ1τm0),m0)

〉
z
. [55]

The integral in the above equation interestingly corresponds to the diffusion term, C(m0). Following the definition in Eq. (49),
to the leading order expansion

C(m0) = 1
δ

∫ δ

0
dδ1

∫ δ

0
dδ2

〈
gm(z(δ2τm0),m0)gm(z(δ1τm0),m0)

〉
z
− F 2

0 + δF 2
0 . [56]

By using δ− = δ1 − δ2, δ+ = δ1 + δ2, and dδ−dδ+ = 2dδ1dδ2, thus

C(m0) = 1
2δ

∫ +δ

−δ
dδ−

∫ 2(δ+|δ−|)

0
dδ+

〈
gm(z([δ− + δ+]/2τm0),m0)gm(z([δ− − δ+]/2τm0),m0)

〉
z
− F 2

0 + δF 2
0 . [57]

Because 〈
gm(z([δ− + δ+]/2τm0),m0)gm(z([δ− − δ+]/2τm0),m0)

〉
z

=
〈
gm(z(δ−τm0),m0)gm(z(0),m0)

〉
z
,
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and the symmetry in the noise variable auto-correlation in Eq. (54), we can write

C(m0) = 1
2δ

∫ +δ

−δ
dδ−

∫ (δ+|δ−|)

0
dδ+

〈
gm(z(δ−τm0),m0)gm(z(0),m0)

〉
z
− F 2

0 + δF 2
0

= 2
∫ δ

0
dδ−[1− δ−/δ]

[〈
gm(z(δ−τm0),m0)gm(z(0),m0)

〉
z
− F 2

0

]
+ δF 2

0 [58]

Note that the term in the bracket in the integrand becomes negligible for δ− � τmem/τm0 and thus we can neglect δ−/δ in the
regime of slow dynamics for m. The integrand is also negligible for for large δ−, hence we can change the upper bounds of the
integration

C(m0) = 2
∫ ∞

0
dδ
〈
gm(z(δτm0),m0)gm(z(0),m0)

〉
z
− F 2

0 − δF 2
0 [59]

Here, we take δ → 0 thus

C(m0) = 2
∫ ∞

0
dδ
〈
gm(z(δτm0),m0)gm(z(0),m0)

〉
z
− F 2

0 . [60]

Therefore, the corresponding Fokker-Planck equation of the system with the drift as in Eq. (55) and the diffusion as in Eq. (60)
is

∂

∂t̂
P(m; t̂|h̄) = ∂

∂m

[
F0(m) + C(m)′

]
P(m; t̂|h̄) + 1

2
∂2

∂m2C(m)P(m; t̂|h̄). [61]

This is the Fokker-Planck equation that naturally emerges as it is expected in the Stratonovich approach. Note that in the
main text, the time-rescaled Langevin equation is given by

d

dt
m = F0(m|h̄)/τm0 + (S(m|h̄)/√τm0)η(t) [62]

where S2(m|h̄) = C(m),
F (m|h̄) = [〈αm(v)〉[m− 1]− 〈βm(v)〉m]/τm0 [63]

and
S(m|h̄)2 = [A2[[1−m]2]−A1[2m[1−m]] +A0m

2]/τ2
m0 [64]

where,
A2 = 2τeff(mh̄) exp(2[v̄(mh̄)− um]/∆α + σ2

v(mh̄)/∆2
α)E(σ2

v/∆2
α) [65]

A1 = τeff(mh̄) exp([1/∆α − 1/∆β ][v̄(mh̄− um] + σv(mh̄)2/[2∆2
α] + σv(mh̄)2/(2∆2

β))E(σv(mh̄)2/[∆α∆β ]), [66]

and
A0 = 2τeff(mh̄) exp(2[v̄(mh̄)− um]/∆β + σv(mh̄)2/∆β)E(σv(mh̄)2/∆2

β) [67]

Here, we have E(x) =
∫∞

0 dz [exp(x exp(−z))− 1]. Note that in Eq. (38), we assume the system is in statistical equilibrium.
Naively, this assumption seems incorrect, however, the higher order corrections of τ2

eff/τm0 and therefore do not contribute to
the calculation presented here.

Two-dimensional Fokker-Planck equation for evolution of slow m and h. In the condition where the timescale of inactivation,
τh0 , is comparable to τm0 or the relaxation time of the system, we need to include the fluctuations of both h and m in the
description of stochastic dynamics in the form of two-dimensional Fokker-Planck equation. To calculate the Fokker-Planck
equation for the joint distribution of m and h we use the same approach as above. We re-scale the dynamics of m and h as

d

dt̂
m = gm(z(t̂τm0),m(t̂), h(t̂)) [68]

and
d

dt̂
h = gh(z(t̂τm0),m(t̂), h(t̂)). [69]

and therefore the corresponding drifts defined as

Fm(m0, h0) = 1
δ
〈m(δ)−m0〉, [70]

Fh(m0, h0) = 1
δ
〈h(δ)− h0〉, [71]

and the corresponding diffusion factors specifies by

Cmm(m0, h0) = 1
δ

[〈m(δ)2〉 − 〈m(δ)〉2], [72]
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Chh(m0, h0) = 1
δ

[〈h(δ)2〉 − 〈h(δ)〉2], [73]

The co-variation between m and h is defined as

Cmh(m0, h0) = 1
δ

[〈h(δ)m(δ)〉 − 〈h(δ)〉〈m(δ)〉]. [74]

The derivation of two-dimensional Fokker-Planck equation follows as above, which it can be written as

∂

∂t̂
P(m,h; t̂) =− ∂

∂m
Fm(m,h)P(m,h; t̂)

− ∂

∂m
Fh(m,h)P(m,h; t̂)

+ 1
2
∂2

∂m2Cmm(m,h)P(m,h; t̂)

+ 1
2
∂2

∂h2Chh(m,h)P(m,h; t̂)

+ ∂2

∂m∂h
Cmh(m,h)P(m,h; t̂) [75]

To keep the notation compacted, we define

Da,b(m,h;m′, h′) = 1/δ
∫ δ

0
dδ1

∫ δ

0
dδ2

〈
ga(z(δ1τm0),m, h)gb(z(δ2τm0),m′, h′)

〉
z

−
〈
ga(z(δ1τm0),m, h)

〉
z

〈
gb(z(δ2τm0),m′, h′)

〉
z

[76]

where a ∈ {m,h} and b ∈ {m,h}. Therefore, Cmm(m0, h0) = Dm,m(m0, h0;m0, h0), Chh(m0, h0) = Dh,h(m0, h0;m0, h0),
Cmh(m0, h0) = Dm,h(m0, h0;m0, h0) and to the leading order

Fm(m0, h0) = Fm0(m0, h0) + 1
4

∂

∂m0
Dm,m(m0, h0;m0, h0) + 1

2
∂

∂h
Dm,h(m0, h0;m0, h)

∣∣∣
h=h0

[77]

and
Fh(m0, h0) = Fh0(m0, h0) + 1

4
∂

∂h0
Dh,h(m0, h0;m0, h0) + 1

2
∂

∂m
Dh,m(m0, h0;m,h0)

∣∣∣
m=m0

. [78]

Note that Fm0(m0, h0) = 〈gm(z(t̂τm0),m0, h0)〉 and Fh0(m0, h0) = 〈gh(z(t̂τm0),m0, h0)〉. The integral in Eq. (76) to the
leading order can be computed as

Da,b(m,h;m′, h′) = τ∗

[
Aa(m,h)Ab(m′, h′)

∫ ∞
0

dx[exp(σv(mh)σ(m′h′)
∆2
α

) exp(−x)− 1]

−
[
Aa(m,h)Bb(m′, b′) +Ba(a, b)Ab(m′, h′)

] ∫ ∞
0

dx[exp(σv(mh)σ(m′h′)
∆α∆β

) exp(−x)− 1]

Ba(m,h)Bb(m′, h′)
∫ ∞

0
dx[exp(σv(mh)σ(m′h′)

∆2
β

) exp(−x)− 1]

]
[79]

where Aa(m,h) = [1 − a] exp( v̄(mh)−ua)
∆α + σv(mh)2

2∆_alpha2 ), Ba(m,h) = a exp(− v̄(mh)−ua)
∆β

+ σv(mh)2
2∆_beta2 ) and τ∗ is the effective

timescales of noise due to both m and h fluctuations and it corresponds to

〈z(t)z(t′)〉 = exp
(
−
∫ t′

t

dt1
τeff(m(t1)h(t1))

)
. [80]

To compute the integral in Eq. (80) to determine τ∗, we assume t < t′ and the slow dynamics of m and h indicate that
m(t) = m, h(t) = h, m(t′) = m′ and h(t′) = h′. Thus, to the leading order

τ∗ = τeff(mh) + τeff(m′h′)
2τeff(mh)τeff(m′h′) . [81]

This determines all terms for the two-dimensional Fokker-Planck equation in Eq. (75) to describe the stochastic dynamics of
the slow fluctuations in m and h.
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One-dimensional Fokker-Planck equation for evolution of slow h when m is fast. In this regime, we do not expect to see an
increase in the timescales of the fluctuation. However, we can still characterize the system via a one-dimensional Fokker-Planck
equation for the evolution of slow h density. As described in the main text, we need to derive the evolution of v density and
then use the statistics of rapid fluctuation in v; we drive the Fokker-Planck equation for the evolution of slow h distribution.
Here, we have

Cmem
d

dt
v = gl(ul − v) + gCam∞(v)h(uCa − v) + µ+ ση(t). [82]

Note that the distribution of v cannot be Gaussian due to its coupling with m∞(v), however we can drive P(v; t) as Gaussian
expansions. To do so, it is useful to apply a change of variable d

dt
x = σ/[

√
2glCmem] d

dt
v. Therefore,

d

dt
x = −gl/Cmemx+ gCah/Cmemf(x) +

√
2glCmemη(t) [83]

where, f(x) = m∞(v)
[
[ul + µ]/gl + σ/

√
2glCmemx

][√
2glCmem[uCa − ul − µ/gl]/σ − x

]
and the equivalent Fokker-Planck

equation is

Cmem/gl
∂

∂t
P(x; t) = − ∂

∂x

[
− x+ gCah/glf(x)

]
P(x; t) + ∂2

∂x2 P(x; t). [84]

It is straightforward to drive the equilibrium distribution Peq(x). The time dependent solution to this equation in terms of
Hermite polynomials, Hen(x), can be written as

P(x; t) = e−x
2/2

2π
∑
l

Cl(t)Hel(x) [85]

where C0(t) = 1 and for l 6= 0 we have

d

dt
Cl(t) = 1

l!

∫
dxHel(x) d

dt
P(x; t)

= 1
l!

∫
dxP(x; t)

[
− x d

dx
Hel(x) + d2

dx2 Hel(x) + h/glf(x) d
dx

Hel(x)
]

= 1
[l − 1]!

∫
dxP(x; t)

[
− xHel−1(x) + [l − 1]Hel−2(x) + f(x)iHel−1(x)

]
= 1

[l − 1]!

∫
dxP(x; t)Hel(x) + i 1

[l − 1]!

∞∑
k=0

Ck(t)
∫
dx

e−x
2/2

2π Hek(x)f(x)Hek−1(x)

= −lC(t) + i
∞∑
k=1

[ ∫
Dx

Hel−1(x)
[l − 1]! f(x)Hek(x)

]
Ck(t) +

∫
Dx

Hel−1(x)
[l − 1]! f(x) [86]

where Dx = e−x
2/2 dx
2π and i = gCah

gl
. Thus,

d

dt
Cl(t) = −lCl(t) + i

∞∑
k=1

Fk,lCk(t) + iAl [87]

where Fk,l =
∫
Dx

Hel−1(x)
[l−1]! f(x)Hek(x) and Al =

∫
Dx

Hel−1(x)
[l−1]! f(x). At equilibrium we have

− l Cl,eq + i
∞∑
k=1

Fk,lCk,eq + iAl = 0 [88]

Using matrix notation, we have at equilibrium
Ceq = −ℵ−1A [89]

where matrix ℵ = i
[
D + iF

]
. This allows us to express Ck(t) = [Ck,eq + dk]eλkt, where dk is the off-set in the dynamics due

to the non-zero vector A and it corresponds to k-th element in the vector of −ℵ−1A and λk is the k-th eigenvalue and Ck,eq is
the corresponding eigenvectors of the matrix ℵ . Assuming initially P(x; 0|x′) = δ(x− x′), we have

δ(x− x′) = e−(x2+x′2)/2
√
π

∞∑
k=0

Hek (x) Hek (x′)
2kk! . [90]

Now, using Eq. (85), we determine

Ck(0) = 2
√
πe−x

′2/2 Hek(x′)
2kk! . [91]
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Thus,

P(x; t|x′) = e−(x2+x′2)/2
√
π

∑
l

1
2l l!Hel(x)Hel(x′) Cl,eq e

λlt. [92]

Since the equilibrium voltage distribution is stable (all λl ≤ 0), hence the series is converging quickly. The conditional
distribution of the re-scaled voltage further allows to determine fluctuation in h. On the τh0 timescale, these fluctuations can
be approximated by a white noise process. Therefore, the Langevin equation for h in that time scale specifies by

d

dt
h = F (h) + S(h)η(t) [93]

where, F (x) = [[1− h]〈αh(x)〉x − h〈βh(x)〉x]/τh0 (note that 〈.〉x indicates the averaging over the equilibrium distribution of x,
Peq(x)), and

S(h)2 = [1− h]2
∫ ∞

0
dt

[∫ +∞

−∞
dx

∫ +∞

−∞
dx′P(x; t|x′)αh(v)αh(v′)−

[
Peq(x)αh(x)

]2]

− 2h[h− 1]
∫ ∞

0
dt

[∫ +∞

−∞
dx

∫ +∞

−∞
dx′P(x; t|x′)αh(v)βh(v′)−

[
Peq(x)αh(x)

][
Peq(x)βh(x)

]]

+ h2
∫ ∞

0
dt

[∫ +∞

−∞
dx

∫ +∞

−∞
dx′P(x; t|x′)βh(x)βh(x′)−

[
Peq(x)βh(x)

]2]
. [94]

The integration over t can be performed analytically,

S(h)2 =
∑
l

Cl,eq + dl√
π2l l!λl

[
[1− h]2

[∫ +∞

−∞
dx

∫ +∞

−∞
dx′G(x, x′)Hel(x)Hel(x′)αh(v)αh(v′)−

[
Peq(x)αh(x)

]2]

− 2h[h− 1]

[∫ +∞

−∞
dx

∫ +∞

−∞
dx′G(x, x′)Hel(x)Hel(x′)αh(v)βh(v′)−

[
Peq(x)αh(x)

][
Peq(x)βh(x)

]]

+ h2

[∫ +∞

−∞
dx

∫ +∞

−∞
dx′G(x, x′)Hel(x)Hel(x′)βh(x)βh(x′)−

[
Peq(x)βh(x)

]2]]
, [95]

where G(x, x′) = e−(x2+x′2)/2. This integral can be numerically evaluated with arbitrary accuracy by the inclusion of n-th
number of terms in the summation. Note that the prefactor in the summation goes quickly to zero. The corresponding
Fokker-Planck equation to the Langevin equation for h is

∂

∂t
P(h; t) = − ∂

∂h
J(h; t) [96]

where J(h; t) = F (h)P(h; t)− S(h)
2

∂
∂h
S(h)P(h; t) with the boundary conditions of J(0; t) = 0 and J(1; t) = 0.

Numerical methods for calculation of relaxation time. The Fokker-Planck equations in this work describe the approximate
evolution of the probability density of the relevant variable in the system and generally can be written as

∂

∂t
P(x; t) = LFPP(x; t) [97]

where LFP is the Fokker-Planck operator. We use centred finite differences to discretize the operator in the space of variable x,

∂

∂t
P(x; t) = LFP Pt. [98]

where Pt is the probably vector at time t and LFP is the Fokker-Planck matrix. Furthermore, note that in our one-dimensional
Fokker-Planck description for the activation variable, we require to adjust LFP to express boundary conditions ensuring that
the probability flux is zero outside of the domain of m. In the case of two-dimensional Fokker-Planck equation for evaluation
of P(x, y; t), the discretization can be map also to a two dimensional matrix, LFP. To do so, we need to concatenate the
probability matrix P(i∆x, j∆y) into vector P(ki,j), where ki,j-th element in the vector corresponds to i∆x+ jN∆y, where N
is the number of points in the probably grid for each variable. To calculate the eigenvalues of LFP we use Arnoldi and Lanczos
algorithm implemented in ARPACK.To relaxation time to the equilibrium solution corresponds to the real part of the second
largest eigenvalue and defined as τrelax = −1/<(λ1).
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