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2 

Summary 31 

Over evolutionary timescales, shifts in plant secondary chemistry may be associated with 32 

patterns of diversification in associated arthropods. Although foundational hypotheses of plant-33 

insect codiversification and plant defense theory posit closely related plants should have similar 34 

chemical profiles, numerous studies have documented variation in the degree of phylogenetic 35 

signal, suggesting phytochemical evolution is more nuanced than initially assumed. We utilize 36 

proton nuclear magnetic resonance (1H NMR) data, chemical classification, and genotyping-by-37 

sequencing to resolve evolutionary relationships and characterize the evolution of secondary 38 

chemistry in the Neotropical plant clade Radula (Piper; Piperaceae). Sequencing data 39 

substantially improved phylogenetic resolution relative to past studies, and spectroscopic 40 

characterization revealed the presence of 35 metabolite classes. Broad metabolite classes 41 

displayed strong phylogenetic signal, whereas the crude 1H NMR spectra featured evolutionary 42 

lability in chemical resonances. Evolutionary correlations were detected in two pairs of 43 

compound classes (flavonoids with chalcones; p-alkenyl phenols with kavalactones), where the 44 

gain or loss of a class was dependent on the other’s state. Overall, the evolution of secondary 45 

chemistry in Radula is characterized by strong phylogenetic signal of broad compound classes 46 

and concomitant evolutionary lability of specialized chemical motifs, consistent with both classic 47 

evolutionary hypotheses and recent examinations of phytochemical evolution in young lineages.  48 

 49 

Keywords: genotyping-by-sequencing, nuclear magnetic resonance (1H NMR), phylogenetic 50 

comparative analyses, phylogenetic signal, phytochemistry, Piper, Radula  51 
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Introduction 52 

 Plant secondary chemistry affects plant-herbivore interactions at various stages 53 

throughout an insect’s lifespan: mixtures of compounds can shape adult oviposition preferences 54 

(Thompson & Pellmyr, 1991), specific chemical compounds can stimulate larval feeding 55 

(Bowers, 1983, 1984), plant chemistry can deter insect herbivores via toxicity or physiological 56 

disruptions (Malcolm, 1994; Zagrobelny et al., 2004), and sequestered metabolites can alter 57 

immune function against natural enemies (Smilanich et al., 2009; Richards et al., 2012). Plants 58 

capable of developing novel chemical defenses are hypothesized to accrue higher fitness in 59 

response to enemy release (e.g., Berenbaum, 1978), potentially resulting in the diversification of 60 

plant lineages with conserved chemical phenotypes (the escape and radiate hypothesis; Ehrlich & 61 

Raven, 1964; Thompson, 1989; reviewed by Janz, 2011). Coevolutionary hypotheses and plant 62 

defense theory (reviewed by Mithöfer & Boland, 2012) have yielded clear predictions that 63 

herbivory, additional trophic interactions, and resource availability shape the evolution of plant 64 

defenses, including secondary metabolites (Agrawal et al., 2009; Maron et al., 2019). However, 65 

an evolutionary response to these biotic and abiotic pressures could be complex and highly 66 

context-dependent.  67 

 Due in part to the enzymatic complexity of metabolic biosynthesis, phylogenetic 68 

conservatism is the null hypothesis for the evolution of plant secondary chemistry (Agrawal & 69 

Fishbein, 2006; Salazar et al., 2018). Indeed, expectations of phylogenetic conservatism appear 70 

to hold at deep evolutionary scales; for example, the family Solanaceae is characterized by the 71 

presence of tropane alkaloids (Griffin & Lin, 2000), though they are consistently present in only 72 

3 of 19 tribes (Datureae, Hyoscyameae, Mandragoreae) and sporadically found elsewhere (Wink, 73 

2003). Further, recent work suggests more classes of secondary metabolites are phylogenetically 74 

conserved in large seed plant clades (e.g., eudicots and superasterids) than at lower taxonomic 75 

scales (e.g., orders and families) (Zhang et al., 2020). However, at shallower scales, numerous 76 

studies provide evidence for evolutionary lability in chemical traits within genera (e.g., Becerra, 77 

1997; Kursar et al., 2009; Agrawal et al., 2009; Rasmann & Agrawal, 2011; Salazar et al., 2016; 78 

Moreira et al., 2018; Allevato et al., 2019), suggesting that surveys of phytochemical variation 79 

within young plant lineages might yield variable perspectives on the evolution of secondary 80 

chemistry. Adding further complexity, many studies have found evidence for strong evolutionary 81 

associations among chemical classes (Kariñho-Betancourt et al., 2015; Boachon et al., 2018; 82 
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Allevato et al., 2019). For example, Johnson et al. (2014) found a strong positive correlation 83 

between flavonoids and phenolic diversity and a strong negative correlation between 84 

ellagitannins and flavonoids across a phylogeny of 26 evening primroses (Oenethera: 85 

Onagraceae). Such associations are relevant because they may reflect evolutionary constraints, 86 

and their causes may be varied. For example, positive associations may be associated with 87 

chemical defense syndromes (Agrawal & Fishbein, 2006; Agrawal, 2007) or synergistic effects 88 

of multiple classes on herbivore deterrence (Dyer et al., 2003; Richards et al., 2016). 89 

Alternatively, negative associations might be consistent with evolutionary tradeoffs or at least 90 

different optima in defense space (Agrawal, 2007; Johnson et al., 2014). By leveraging advances 91 

in organic chemistry and genomics, we stand to increase phylogenetic and metabolomic 92 

resolution to provide novel insight into the evolution of phytochemistry.  93 

 Recent advances in chemical ecology have improved perspectives on phytochemical 94 

diversity across a broad range of taxonomic groups and metabolite classes (Sedio, 2017; Dyer et 95 

al., 2018). High throughput processing of plant tissue, rapid advances in spectroscopy, and 96 

improved ordination and network analyses have enabled characterization of metabolomic 97 

variation across plant communities (Richards et al., 2016; Salazar et al., 2016, 2018; Dyer et al., 98 

2018; Sedio et al., 2018; Ernst et al. 2019; Kang et al. 2019) and stand to enhance our 99 

understanding of phytochemical evolution across taxonomic scales (Sedio, 2017). Additionally, 100 

structural metabolomic approaches like 1H NMR can provide improved resolution of structural 101 

variation across a wide range of metabolite classes. Selection on the plant metabolome is 102 

inherently multivariate, arising from diverse herbivore communities and environmental 103 

conditions (Fine et al., 2006; Salazar et al., 2018), and even relatively small structural changes 104 

can impart disproportionate shifts in bioactivity. Thus, approaches that capture a larger 105 

proportion of the structural variation underlying phytochemical phenotypes could be well suited 106 

to addressing hypotheses concerning evolutionary patterns. 107 

 Next-generation sequencing data has reinvigorated phylogenetic analyses of traditionally 108 

challenging groups characterized by recent or rapid diversification (Wagner et al., 2013; Bagley 109 

et al., 2020; Léveillé-Bourret et al., 2020) as well as hybridization (Eaton & Ree, 2013; Carter et 110 

al., 2019; Hipp et al., 2020). Reduced representation DNA sequencing approaches [e.g., 111 

RADseq; genotyping-by-sequencing (GBS)] have been increasingly utilized in phylogenetic 112 

studies due to their ability to effectively sample large numbers of orthologous loci throughout the 113 
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genomes of non-model organisms without the need for prior genomic resources (Leaché & Oaks, 114 

2017; Parchman et al., 2018). Nearly all such studies have reported increased topological 115 

accuracy and support compared with past phylogenetic inference based on smaller numbers of 116 

Sanger-sequenced loci (Herrera & Shank, 2016; Massatti et al., 2016; Du et al., 2020), especially 117 

when applied to diverse radiations (Wagner et al., 2013; Fernández-Mazuecos et al., 2017; 118 

Hamon et al., 2017; Paetzold et al., 2019). While reduced representation approaches have clear 119 

phylogenetic utility at relatively shallow time scales, they have also performed well for 120 

moderately deep divergence (Eaton et al., 2017; Du et al., 2020). 121 

 Piper (Piperaceae) is a highly diverse, pantropical genus of nearly 2,600 accepted species 122 

(Callejas-Posada, 2020), with the highest diversity occurring in the Neotropics (Gentry, 1993; 123 

Martínez et al., 2015). Chemically, Piper is impressively diverse (Parmar et al., 1997; Dyer & 124 

Palmer, 2004; Richards et al., 2015): chemical profiling in a modest number of taxa has yielded 125 

667 different compounds from 11 distinct structural classes thus far (Parmar et al., 1997; Dyer et 126 

al., 2004; Kato & Furlan, 2007; Richards et al., 2018). This phytochemical diversity has likely 127 

contributed to the diversification of several herbivorous insect lineages that specialize on Piper, 128 

including most notably the geometrid moth genus Eois (Strutzenberger et al., 2012; Wilson et 129 

al., 2012; Jahner et al., 2017). Furthermore, phytochemical variation in Piper communities has 130 

been shown to shape tri-trophic interactions and the structure of tropical communities (Dyer et 131 

al., 2004; Glassmire et al., 2016; Richards et al., 2018). As a species-rich genus with abundant 132 

and ecologically consequential phytochemical variation, Piper represents a valuable system for 133 

understanding how the history of diversification underlies the evolution of phytochemical 134 

variation. 135 

 Piper is an old lineage (~72 Ma), yet most of its diversification occurred in the 136 

Neotropics during the last 30-40 My following Andean uplift and the emergence of Central 137 

America (Smith et al., 2008; Martínez et al., 2015). The largest clade of Piper, Radula, 138 

exemplifies this pattern, as much of its extant diversity (~450 species) arose relatively recently 139 

during the Miocene (Martínez et al., 2015). Such bouts of rapid and recent diversification have 140 

limited the efficacy of traditional Sanger sequencing methods to resolve the timing and tempo of 141 

diversification in Piper (Jaramillo et al., 2008; Smith et al., 2008). Past phylogenetic analyses 142 

utilizing Sanger-sequenced nuclear and chloroplast regions have consistently inferred eleven 143 

major clades within Piper; however, phylogenetic resolution within these clades has been elusive 144 
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(Jaramillo et al., 2008; Smith et al., 2008; Molina-Henao et al., 2016; Asmarayani, 2018). 145 

Phylogenetic inference based on genome-wide data spanning a range of genealogical histories 146 

has recently improved phylogenetic resolution for diverse radiations (e.g., Wagner et al., 2013; 147 

Paetzold et al., 2019), and should facilitate an understanding of evolutionary patterns of 148 

phytochemical variation in Piper and their consequences for plant-insect codiversification. 149 

 We leveraged complementary phylogenomic, metabolite classification, and 1H NMR data 150 

sets to generate a Piper phylogeny and explore the evolution of secondary chemistry within the 151 

largest Piper clade (Radula). Specifically, our goals were to: 1) resolve the evolutionary 152 

relationships within the Radula clade of Piper included in this study; 2) characterize 153 

metabolomic variation across the genus and within Radula in particular; and 3) quantify the 154 

strength of phylogenetic signal and detect evolutionary associations in Radula secondary 155 

chemistry. Because secondary chemistry is an emergent composite phenotype of many traits that 156 

can evolve semi-independently, we expected to detect mixed strengths of phylogenetic signal 157 

and strong associations among a subset of traits over evolutionary time. 158 

 159 

Materials and Methods 160 

Study system and sample collection 161 

 For phylogenetic and chemical analyses, we collected leaf material from 71 individuals 162 

representing 65 Neotropical Piper species from the following clades: Churumayu (N = 3), 163 

Hemipodium (N = 1), Isophyllon (N = 5), Macrostachys (N = 4), Peltobryon (N = 2), 164 

Pothomorphe (N = 1), Radula (N = 44), and Schilleria (N = 5). For chemical profiling and DNA 165 

sequencing, we collected the youngest, fully expanded leaves and dried them immediately with 166 

silica gel. Vouchers were pressed, dried, and deposited in one or more herbaria for future 167 

reference and species verification (Table S1). To investigate the evolution of phytochemistry at a 168 

relatively shallow evolutionary scale, we conducted the majority of our sampling within Radula 169 

(Martínez et al., 2015).  170 

 171 

Phylogenetic analyses 172 

 Genome-wide polymorphism data was generated for 71 individuals for phylogenetic 173 

analyses. Either the same accession sampled for chemical analysis, or an individual from the 174 

same population as the one sampled, were sequenced with a genotyping-by-sequencing approach 175 
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(Parchman et al., 2012) that is analogous to ddRADseq (Peterson et al. 2012). Briefly, genomic 176 

DNA was digested with two restriction enzymes, EcoRI and MseI. Sample-specific barcoded 177 

oligos containing Illumina adaptors were annealed to the EcoRI cut sites, and oligos containing 178 

the alternative Illumina adaptor were annealed to the MseI cut sites. Fragments were PCR 179 

amplified and pooled for sequencing. The library was size-selected for fragments between 350 - 180 

450 base pairs (bp) with the Pippin Prep System (Sage Sciences, Beverly, MA), and sequenced 181 

on two lanes of an Illumina HiSeq 2500 at the University of Texas Genome Sequencing and 182 

Analysis Facility (Austin, TX). Single-end, 100 bp, raw sequence data were filtered for 183 

contaminants (E. coli, PhiX, Illumina adaptors or primers) and low quality reads using 184 

bowtie2_db (Langmead & Salzberg, 2012) and a pipeline of bash and perl scripts 185 

(https://github.com/ncgr/tapioca). We used custom perl scripts to demultiplex our reads by 186 

individual and trim barcodes and restriction site-associated bases. 187 

 Assembly and initial filtering was conducted with ipyRAD v.0.7.30 (Eaton, 2014). 188 

ipyRAD was specifically designed to assemble RADseq data for phylogenetic applications, 189 

permits customization of clustering and filtering, and allows for indel variation among samples 190 

(Eaton, 2014). Because a suitable Piper genome was not available at the time of analysis, we 191 

generated a de novo consensus reference of sampled genomic regions with ipyRAD. Briefly, 192 

nucleotide sites with phred quality scores lower than 33 were treated as missing data. Sequences 193 

were clustered within individuals according to an 85% similarity threshold with vsearch 194 

(Rognes et al., 2016) and aligned with muscle (Edgar, 2004) to produce stacks of highly similar 195 

RADseq reads (hereafter, RADseq loci). The sequencing error rate and heterozygosity were 196 

jointly estimated for all RADseq loci with a depth >6, and these parameters informed statistical 197 

base calls according to a binomial model. Consensus sequences for each individual in the 198 

assembly were clustered once more, this time across individuals, and discarded if possessing >8 199 

indels (max_Indels_locus), >50% heterozygous sites (max_shared_Hs_locus), or >20% variable 200 

sites (max_SNPs_locus). To reduce the amount of missing data in our alignment matrix, 201 

RADseq loci were retained if they were present in at least 50 of 71 samples. The nexus file of 202 

concatenated consensus sequences for each individual, including invariant sites, were used as 203 

input for the Bayesian phylogenetic methods described below. The nexus alignment as well as 204 

complete information on additional parameter settings for this analysis are archived at Dryad 205 

(https://doi.org/10.5061/dryad.j6q573nc7). 206 
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 To resolve patterns of diversification and to provide a foundation for investigating 207 

variation in the rates of phytochemical evolution, we estimated a rooted, calibrated tree 208 

according to a relaxed clock model in RevBayes v.1.0.12 (Höhna et al., 2016), which provides 209 

the ability to specify custom phylogenetic models for improved flexibility compared with other 210 

Bayesian approaches. The prior distribution on node ages was defined by a birth-death process in 211 

which the hyper priors on speciation and extinction rates were exponentially distributed with λ = 212 

10. We relaxed the assumption of a global molecular clock by allowing each branch-rate variable 213 

to be drawn from a lognormal distribution. After comparing the relative fits of JC, HKY, GTR, 214 

and GTR+Gamma nucleotide substitution models with Bayes factors, we modeled DNA 215 

sequence evolution according to the best-fit HKY model. Eight independent MCMC chains were 216 

run for 100,000 generations with a burn-in of 1,000 generations and sampled every 10 217 

generations. Chains were visually assessed for convergence with Tracer v.1.7.1 (Rambaut et 218 

al., 2018) and numerically assessed with effective sample sizes (ESS), the Gelman−Rubin 219 

convergence diagnostic (Gelman & Rubin, 1992), and by comparing the posterior probabilities 220 

of clades sampled between MCMC chains. The maximum clade credibility (MCC) tree provided 221 

the ultrametric fixed tree topology and relative node ages for phylogenetic comparative methods 222 

described below. 223 

 224 

Chemical profiling 225 

 Crude proton nuclear magnetic resonance (1H NMR) spectroscopy was chosen for 226 

chemotype mapping due to its ability to characterize subtle structural variation across a wide 227 

range of compound classes in a single, reproducible, non-destructive analysis (Richards et al. 228 

2018). Briefly, after leaf samples were ground to fine powder, 2.00 g were transferred to a glass 229 

screw cap test tube with 10.0 ml of methanol, sonicated for 10 minutes, and filtered. This step 230 

was repeated and both filtrates were combined in a pre-weighed 20 ml scintillation vial. The 231 

solvent was removed in vacuuo and dissolved in 0.6 ml methanol-d4 for 1H NMR analysis. 232 

Extracts were analyzed on a Varian 400 MHz solution state NMR spectrometer with 233 

autosampler. Data were processed using MestReNova software (Mestrelab Research, Santiago de 234 

Compostela, Spain). Spectra from the crude extracts were aligned with the solvent peak (CD3, δ 235 

= 3.31 ppm), baseline corrected, phase corrected, and binned (0.04 ppm; 0.5 - 12 ppm). Solvent 236 
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and water peaks were removed and the binned spectra were normalized to a total area of 100. 237 

This data set is referred to subsequently as “crude 1H NMR”. 238 

In addition to crude 1H NMR spectral chemotyping, we further annotated and 239 

characterized samples based upon the presence or absence of compound classes and in some 240 

cases, specific compounds. To further gain structural resolution across the crude extracts that 241 

were sampled, aliquots of the 1H NMR extracts were diluted and subjected to GC-MS and LC-242 

MS analysis. Crude extracts were classified using chemotaxonomic classifications outlined in 243 

Parmar’s comprehensive review of Piper phytochemistry (Parmar et al., 1997).  244 

Presumptive compounds and compound classes were annotated based upon structural 245 

elucidation using 1H NMR, GC-MS fragmentation, and high-resolution LC-MS data. 246 

Comparison of the 1H NMR data to literature values of related compounds was used to increase 247 

confidence in these assignments. In some cases, crude 2D-NMR analysis was used to confirm 248 

structural classifications. Presence of a compound or compound class was determined based 249 

upon abundant and spectroscopically apparent evidence. This data set is referred to subsequently 250 

as “metabolite classes”. 251 

 252 

 253 

Phylogenetic signal and evolution of metabolite classes 254 

 To assess whether metabolite classes were phylogenetically conserved across Radula, we 255 

quantified phylogenetic signal in these binary traits using the D statistic (Fritz & Purvis, 2010). 256 

The D statistic calculates the sum of sister-clade differences, Σdobs (Felsenstein, 1985) for an 257 

observed tree and binary trait, and scales this value with the distributions of sums expected under 258 

two disparate evolutionary models, random and Brownian motion (Σdr and Σdb, respectively), 259 

using the following equation:  260 

� �
�Σ���� � ��	
�Σ��

�

���	
�Σ��
� �  ��	
�Σ��

�
 

Thus, D is expected to equal 1 when the observed binary trait is distributed randomly, lacking 261 

phylogenetic signal, and is expected to equal 0 when it is exhibits phylogenetic signal as 262 

expected under Brownian motion. Tests of phylogenetic signal with the D statistic are most 263 

accurate when the ratio of presences and absences is closer to 1:1 (Fritz and Purvis, 2010). We 264 

used the phylo.d function in the caper package (Orme et al., 2018) in R v.4.0.0 (R Core Team, 265 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.11.30.404855doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.404855
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

2020) to calculate the observed D for a subset of binary traits that were sufficiently present 266 

across the phylogeny. This value was compared to a distribution of D values simulated under 267 

models of phylogenetic randomness (D = 1) and pure Brownian motion (D = 0) to determine 268 

whether the observed D differed from either zero or one.  269 

 To detect evolutionary associations among pairs of metabolite classes within Radula, we 270 

used Pagel’s (1994) method that models evolutionary changes in two binary traits, X and Y, as 271 

continuous-time Markov processes in which the probabilities of state transition at one trait may 272 

depend on the state at the other trait. Significant tests of correlated evolution were followed by 273 

tests of contingency, in which changes at X depend on the state of Y, or vice versa. Model fits, 274 

comparisons, and plots were performed with the fitPagel function in the phytools package 275 

(Revell, 2012) in R.  276 

 277 

Multivariate analyses of phylogenetic signal with crude 1H NMR spectra 278 

 While the analyses above based on broad classifications of structurally determined 279 

metabolites provide a coarse view of phytochemical evolution, these classifications are anchored 280 

to the foundations of plant secondary metabolite biosynthesis. Using 1H NMR spectra as a raw 281 

chemotype should allow a more detailed multivariate perspective on phytochemical variation. 282 

Studies on other plant taxa have typically detected some signal and evolutionary correlations for 283 

broad classes of compounds but not necessarily for specific compounds or biologically active 284 

moieties, both of which can be inferred from 1H NMR data. Multivariate approaches to 285 

phylogenetic comparative methods have provided insight into covarying suites of related traits, 286 

while simultaneously increasing the statistical power to detect phylogenetic signal (Zheng et al., 287 

2009) and differences in trait means among taxa (Clavel et al., 2015). Indeed, these multivariate 288 

approaches might be particularly useful when exploring the evolution of complex phenotypes, 289 

like the plant metabolome, which exhibit trait covariances due to metabolomic or functional 290 

associations (Dyer et al., 2003; Richards et al., 2010; Fukushima et al., 2011). Here we utilize 291 

three multivariate methods to detect patterns of phylogenetic signal for 263 resonances found in 292 

the crude 1H NMR data: 1) principal components analyses (PCA); 2) multiple regression on 293 

distance matrices (MRM); and 3) multivariate estimation of phylogenetic signal.  294 

 To visualize patterns of chemotypic variation across all sampled species from all clades, 295 

we first analyzed the 1H NMR data with PCA using the prcomp function in R. If the major axes 296 
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of metabolomic variation are phylogenetically conserved, the plotted species scores should be 297 

clustered by clade in a rotated principal component (PC) space. Alternatively, if metabolomic 298 

variation is randomly distributed across the phylogeny, there should be little to no clustering by 299 

clade (Klingenberg & Gidaszewski, 2010). The degree to which plant clade predicted chemical 300 

similarity was assessed using permutational multivariate analysis of variance (permanova; 301 

Anderson, 2001) in the vegan package (Oksanen et al., 2019) in R based on Euclidean distances 302 

of the first four PCs. 303 

 Mantel tests have been frequently used to assess the degree of phylogenetic signal in 304 

multivariate data (e.g., Cardini & Elton, 2008; Easson & Thacker, 2014; Salazar et al., 2018) by 305 

estimating the relationship between phylogenetic and phenotypic distances. Simulations under 306 

scenarios of measurement error have found instances where Mantel tests outperform traditional 307 

univariate methods in detecting phylogenetic signal, especially as the number of traits increases 308 

(Hardy & Pavoine, 2012). Because we were unable to account for measurement error in our 309 

study, we utilized MRM to examine the relationship between metabolomic and phylogenetic 310 

distance at two evolutionary scales (within Radula and across all clades). Euclidean distances 311 

were calculated with the crude 1H NMR spectra using the dist function in R, and two measures of 312 

phylogenetic distance were used as predictors: 1) Abouheif’s proximity (Abouheif, 1999; 313 

Pavoine et al., 2008) was calculated using the proxTips function in the adephylo package 314 

(Jombart et al., 2010) in R; and 2) the square root of patristic distance was calculated using the 315 

cophenetic.phylo function in the ape package (Paradis et al., 2004) in R. MRM analyses were 316 

implemented using the MRM function with 1000 permutations in the ecodist package (Goslee 317 

& Urban, 2007) in R. 318 

 Since Blomberg et al.’s (2003) K statistic exhibits higher statistical power to detect 319 

phylogenetic signal relative to Mantel tests (Harmon & Glor, 2010), we quantified phylogenetic 320 

signal of the crude 1H NMR at both evolutionary scales using a multivariate generalization of the 321 

K statistic (Kmult; Adams, 2014) with the physignal function in the geomorph package (Adams 322 

et al., 2013) in R. The K statistic provides a statistical estimate of phylogenetic signal relative to 323 

expectations under Brownian motion, where values of K greater than 1 indicate phylogenetic 324 

signal greater than expected under Brownian motion, whereas values between 0 and 1 indicate 325 

less signal than expected under Brownian motion. Significance for the generalized K statistic was 326 

assessed by permuting the 1H NMR peak data among the tips of the phylogeny for 999 iterations. 327 
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To determine whether the zero-inflated nature of the 1H NMR data influenced the detection of 328 

phylogenetic signal, we permuted our 1H NMR data set over 1000 iterations by randomly 329 

indexing our original 1H NMR data matrix. This permutation method preserves the original 330 

proportion of zeros in the matrix while obfuscating any observed phylogenetic signal. The 331 

generalized K statistic test was calculated for each permutation, and our observed generalized K 332 

statistic was compared to the null distribution of permuted values. 333 

 334 

Results 335 

Phylogenetic analyses  336 

 After contaminant filtering and demultiplexing, we retained ~313 million Illumina reads 337 

for phylogenetic analyses. Initial clustering, variant calling, and filtering clustered reads into 338 

362,169 RADseq loci. There was a high proportion of missing data, presumably due to allelic 339 

dropout increasing with high levels of divergence among Piper clades. For Bayesian 340 

phylogenetic inference, we mitigated the influence of missing data by removing loci absent in 341 

>30% of samples. The final dataset for phylogenetic analyses consisted of 641 RADseq loci (~86 342 

bp in length each) that housed 9,113 genetic variants (51% parsimony informative). Aligned loci 343 

were concatenated into a nexus alignment with missing data at 18.9% of sites.  344 

 Bayesian phylogenetic analysis of ddRADseq data resolved eight major Neotropical 345 

Piper clades with high posterior support (Fig. 1). While past phylogenetic studies supported the 346 

monophyly of seven of these eight clades (Macrostachys, Radula, Peltobryon, Pothomorphe, 347 

Hemipodion, Isophyllon, and Schilleria) (Jaramillo et al., 2008; Martínez et al. 2015), our 348 

analysis resolved an additional clade, Churumayu. Notably, Isophyllon and Churumayu were 349 

highly supported, monophyletic clades and not nested within Radula as was inferred in previous 350 

analyses (Jaramillo et al., 2008). Contrary to previous phylogenetic hypotheses of Piper 351 

(Jaramillo et al., 2008; Martínez et al., 2015), our analyses might suggest Churumayu is the most 352 

basal clade, but we caution that this node had very low posterior support (51%). Intrageneric 353 

relationships below the clade level were highly resolved, with nearly all nodes exhibiting greater 354 

than 95% posterior support (Fig. 1), including within the diverse Radula clade (Fig. 1). Our 355 

phylogenetic hypothesis for Radula indicates three species (P. hispidum, P. colonense, P. 356 

lucigaudens) may be paraphyletic, reflecting past taxonomic uncertainty for these taxa.  357 

 358 
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Phytochemical variation in Piper 359 

Nearly all common compound classes that have been previously reported in Piper were 360 

observed from our compound characterization analysis (Salehi et al., 2019). This analysis 361 

revealed the presence of metabolite classes that are ubiquitous across plant families (lignans, 362 

flavonoids/chalcones, etc.) as well as classes that are specifically common in Piper (amides) 363 

(Fig. 2). Specific compound characterization revealed genus specific compounds and compound 364 

classes (piplartine, cenocladamide, crassinervic acid, kava lactones), as well as metabolites that 365 

are more rarely reported in plants (putrescine diamides, nerolidyl catechol, alkenyl phenols, 366 

anuramide peptides) (Fig. 2). 367 

 368 

Metabolite phylogenetic signal and evolutionary associations 369 

 For all eight metabolite classes that were examined, estimates of D (Fritz & Purvis, 2010) 370 

were low and did not deviate from a null distribution generated under a scenario of Brownian 371 

motion (Table 1), consistent with phylogenetic signal. Two of the eight traits, phenolic 372 

glycosides and lignans, exhibited strong phylogenetic signal (D < 0), while the remaining six 373 

traits exhibited weak phylogenetic signal (0 < D < 1). Further, all metabolite classes had 374 

observed values of D that differed from a null distribution generated under a phylogenetic 375 

randomness scenario (Table 1). The mean of the observed D estimates for the metabolite classes 376 

was 0.04, with the largest D statistic observed for the flavonoid class (���� = 0.49) and the 377 

smallest observed for the phenolic glycosides (���� = -1.18) (Table 1).  378 

 Evidence for correlated evolution was detected in two pairs of metabolite classes: 1) 379 

flavonoids and chalcones; and 2) p-alkenyl phenols and kavalactones/butenolides. For the first 380 

pair of traits, a model of contingency in which changes in chalcones depend on the state of 381 

flavonoids provided the best fit to the data (Table 2). In this model, when flavonoids are present, 382 

chalcone gains are almost two times more probable than chalcone losses; however, when 383 

flavonoids are absent, chalcone losses are much more probable than chalcone gains (Fig. 3). The 384 

alternative contingency model for this pair of traits (i.e., changes in flavonoids depend on the 385 

state of chalcone) was also a good fit to the data (Table 2). According to this model, when 386 

chalcones are present, flavonoid transitions are extremely probable, with flavonoid gains being 387 

approximately eight times more probable than flavonoid losses. Alternatively, when chalcones 388 

are absent, flavonoid losses are approximately five times more probable than flavonoid gains 389 
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(Fig. 3). For the second pair of traits, p-alkenyl phenols and kavalactones/butenolides, the best fit 390 

model was one of interdependent correlated evolution in which changes in p-alkenyl phenol 391 

depend on the state of kavalactones/butenolides, and vice versa (Table 2). When 392 

kavalactones/butenolides are present, p-alkenyl phenol transitions are more probable than when 393 

they are absent, with the loss of p-alkenyl phenols being much more probable than the gain of p-394 

alkenyl phenols under both scenarios. Alternatively, when p-alkenyl phenols are present, the loss 395 

of kavalactones/butenolides is extremely probable relative to the gain of 396 

kavalactones/butenolides, which is rarely observed. When p-alkenyl phenols are absent, 397 

kavalactones/butenolides are rarely gained or lost (Fig. 3).  398 

 399 

Phylogenetic signal in high-dimensional metabolomic data  400 

 While broad metabolite classes uniformly exhibited at least moderate levels of 401 

phylogenetic signal, evidence for phylogenetic signal in multivariate analyses of the crude 1H 402 

NMR data was mixed. PCs 1 & 2 and 3 & 4 explained 47.89% and 17.16% of variance in the 1H 403 

NMR data, respectively, but showed little clustering by clade (Fig. 4a). Permutational 404 

multivariate analyses of variance were not significant for combinations of neither PC 1 & 2 (P = 405 

0.635) nor 3 & 4 (P = 0.445), suggesting that different clades do not form distinct clusters in 406 

chemospace based on their 1H NMR spectra.  407 

 According to the MRM models, both patristic distance and Abouheif’s proximity 408 

significantly predict a small proportion of variation in chemical distance calculated among Piper 409 

samples from all clades (patristic: β = -6400.217, R2 = 0.002, P = 0.005; Abouheif: β = -8.673, 410 

R2 = 0.003, P = 0.001) and among Radula samples only (patristic: β = -5480.108, R2 = 0.004, P = 411 

0.003; Abouheif: β = -6.456, R2 = 0.002, P = 0.005) (Fig. 4bc). Though explained variance is 412 

small, the slope coefficients for these significant relationships are negative, indicating that 413 

decreasing phylogenetic distance is associated with increasing chemical distance.  414 

 Analyses with the generalized K statistic (Kmult; Adams, 2014) indicated lower levels of 415 

phylogenetic signal in the metabolomic data than expected under a Brownian motion model of 416 

evolution for Piper generally (Kmult = 0.1606, P = 0.001) and for Radula specifically (Kmult = 417 

0.1803, P = 0.001). Still, the observed Kmult was higher than all Kmult values obtained with 418 

permutations of the 1H NMR dataset (Fig. S1). Additionally, few Kmult tests of the permuted data 419 

yielded significant P-values (4.4% of permutations), indicating that the estimate we observed, 420 
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though subtle and lower than Brownian motion expectations, was real and not a statistical artifact 421 

of zero-inflation in the data. 422 

 423 

Discussion 424 

Piper is a hyper-diverse lineage in which phytochemical variation has influenced 425 

evolutionary and ecological processes and shaped complex tropical communities (e.g., Salazar et 426 

al., 2016; Richards et al., 2018). However, there have been limitations in both the degree of 427 

phylogenetic resolution and the understanding of phytochemical variation in this group. 428 

Phylogenies inferred here with ddRADseq data substantially improved resolution and support 429 

compared to past studies of Piper, which were limited by interspecific variation in small 430 

numbers of Sanger-sequenced loci (Jaramillo et al., 2008; Smith et al., 2008; Martínez et al., 431 

2015). Although the data set did not include members from all previously recognized groups, 432 

analyses resolved eight monophyletic Neotropical Piper clades, six of which have been inferred 433 

in previous analyses of the genus based on chloroplast psbJ-petA and ITS (Jaramillo et al., 2008; 434 

Martínez et al., 2015). Two of the eight clades, Churumayu and Isophyllon, had been previously 435 

nested within Radula (Jaramillo et al., 2008); however, our results suggest that they are 436 

independent monophyletic lineages (Fig. 1). Despite low support for several deep divergences, 437 

the phylogeny inferred here had strong resolution and support for recent relationships, including 438 

within Radula (Fig. 1), consistent with other recent reduced representation sequencing studies 439 

that have generated high quality phylogenies at shallow time scales (Massati et al., 2016; Eaton 440 

et al., 2017; Lecaudey et al., 2018; Paetzold et al., 2019). However, a potential limitation of such 441 

sequencing designs may include the recovery of fewer loci shared by more distantly related 442 

samples due to allelic dropout (Cariou et al. 2013; Cooke et al., 2016). It is possible that allelic 443 

dropout, potentially acerbated by strict filtering of missing data, led to weak support values for 444 

deep splits in the phylogeny, many of which occurred early in the history of the Neotropical 445 

Piper lineage (Martínez et al. 2015). Nonetheless, the resulting subset of data (641 loci; 9,113 446 

SNPs) was sufficient for inferring a largely resolved phylogeny, highlighting the potential 447 

promise of reduced representation sequencing for resolving evolutionary histories even in groups 448 

spanning moderately deep divergence.  449 

 Comparative studies have taken diverse approaches to analyzing metabolomic data, each 450 

providing a unique perspective on the evolution of specialized metabolites (e.g., Salazar et al., 451 
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2018; Sedio et al., 2018, 2019; Ernst et al. 2019; Kang et al. 2019). Here, we first characterized 452 

the presence/absence of 35 metabolite classes commonly used to categorize plant secondary 453 

compounds that are hierarchically nested into three levels of structural resolution. Specific 454 

categories at the lowest level of the hierarchy, representing specialized structural motifs or 455 

specific molecules, were rare across species and precluded tests of phylogenetic signal at our 456 

level of taxonomic sampling (Fig. 2). Despite not being able to test for phylogenetic signal, 457 

clustering is evident for more specific categories, such as crassinervic acid and prenylated 458 

flavonoids, which are only present in small subclades but include particularly effective defenses 459 

(Dyer & Palmer, 2004; Salehi et al., 2019). Alternatively, broader metabolite classes at 460 

intermediate and high positions in the hierarchy that are directly tied to fundamental secondary 461 

metabolite biosynthetic pathways were more abundant across species and exhibited moderate-462 

high levels of phylogenetic signal across Radula (Table 1, Fig. 2). This pattern may be expected 463 

if initial biosynthetic steps are conserved over longer evolutionary scales, permitting the 464 

abundance of broad chemical classes, yet later stage modifications of these core structures are 465 

more evolutionarily labile, causing structural similarity to be low even among related species. 466 

Flavonoids are a good example of this pattern, with pathways that form the flavonoid scaffold 467 

being very conserved, as they are catalyzed by modified enzymes from ubiquitous metabolic 468 

pathways, but then subsequent biosynthetic steps (e.g., those catalyzed by p450 enzymes) modify 469 

these scaffolds (Yonekura-Sakakibara et al., 2019), yielding unique molecules towards the tips 470 

of evolutionary trees (Fig. 3E). For example, late-stage modification of common flavonoid 471 

scaffolds can result in the production of non-aromatic protoflavanoids. These compounds rarely 472 

occur across the plant kingdom and have only recently been found in one species of Piper 473 

(Freitas et al., 2014). Importantly, this subtle structural modification that leaves most of the 474 

flavonoid scaffold intact has been demonstrated to dramatically enhance the cytotoxic properties 475 

compared to that of the parent flavonoid (Hunyadi et al., 2014; Latif et al., 2020). 476 

One key prediction from the escape and radiate hypothesis is that adaptive defensive 477 

traits should be phylogenetically conserved within the lineage they evolved, but this prediction 478 

has mostly been evaluated with broad classes of secondary metabolites at high taxonomic scales 479 

(e.g., Ehrlich & Raven, 1964; Moreira et al., 2018; Yonekura-Sakakibara et al., 2019; Zhang et 480 

al., 2020) rather than specific compounds in recent diversifications (e.g., Agrawal et al., 2009; 481 

Salazar et al., 2018; Allevato et al., 2019). A growing number of studies conducted at shallower 482 
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evolutionary scales suggest chemical traits may be evolutionarily labile and highlight the need 483 

for determining the level at which chemical defense is conserved, and which compound classes 484 

are more likely to exhibit phylogenetic signal and evolutionary correlations (Kursar et al., 2009; 485 

Sedio, 2013; Johnson et al., 2014; Salazar et al., 2016; Maldonado et al., 2017; Moreira et al., 486 

2018). Further, an understanding of the phylogenetic scale of chemical trait conservation will 487 

enable insights into the drivers of herbivorous insect radiations, as the nature of codiversification 488 

in many of these lineages is likely structured by complex associations between geology, 489 

geography, chemical defense, and biotic interactions (Endara et al. 2017; Jahner et al. 2017). Our 490 

results are generally consistent with the predictions of signal (and conservatism) for broad 491 

classes of compounds, as well as the lack of signal for specific structures captured by 1H NMR 492 

data.  493 

The 1H NMR data address a different set of hypotheses than data from categorization of 494 

individual molecules – peaks represent resonances associated with particular molecular 495 

structures rather than individual compounds, and the chemical shift (frequency), shape, and 496 

abundance of these resonances are extremely sensitive to subtle structural changes. 1H NMR 497 

spectroscopy easily detects a great range and subtle differences in compositional and structural 498 

complexity, including increasing size, asymmetry and oxidation states, that might be predicted to 499 

evolve in response to divergent selection across plant populations responding to different suites 500 

of enemies (Dyer et al., 2018). Low levels of phylogenetic signal in the 1H NMR data and 501 

evidence for phylogenetic overdispersion (Fig. 4) is also likely due to the fact that many 502 

molecular features of small defensive molecules have potentially evolved in a convergent 503 

manner across Piper, such as the kavalactones, p-alkenyl phenols, piplartine, oxidized prenylated 504 

benzoic acids, chromanes, anuramide peptides, and phenethyl amides.  505 

 There are numerous limitations that could affect estimates of phylogenetic signal in 506 

comparative studies (reviewed by Kamilar & Cooper, 2013) that are relevant to the analyses 507 

presented here. First, incomplete taxon sampling and unresolved tree structure can substantially 508 

influence tests of phylogenetic signal and likely influenced our results to some degree. However, 509 

we made great effort to sample species from across the entire known phylogeny of Radula to 510 

reduce sampling bias, and more comprehensive genomic sampling produced enhanced 511 

phylogenetic resolution of the Radula clade, where we focused the majority of phylogenetic 512 

comparative methods. In addition, we were unable to quantify the measurement error associated 513 
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with the chemical traits within species (e.g., Johnson et al., 2014), which can decrease the 514 

statistical power for detecting phylogenetic signal (Blomberg et al., 2003; Ives et al., 2007; 515 

Hardy & Pavoine, 2012). It is also possible that environmental effects on our chemical traits 516 

could bias estimates of phylogenetic signal and correlations (Ives et al., 2007).  517 

 The causes of correlated evolution, including linkage, epistasis, and selection, are 518 

difficult to detect without careful approaches in quantitative genetics and population genomics. 519 

Nevertheless, one advantage of examining the presence/absence of multiple classes of defensive 520 

compounds in a phylogenetic context is that it is possible to test for expected patterns of 521 

correlated evolution due to shared metabolic pathways (e.g., flavonoids and cardenolides; 522 

Agrawal et al., 2009) or due to adaptive advantages of specific mixtures. Recent studies 523 

detecting evolutionary associations among chemical traits (Johnson et al., 2014; Kariñho-524 

Betancourt et al., 2015; Boachon et al., 2018) have posited that the branching structure of 525 

metabolic pathways could potentially drive this pattern. If metabolite classes share a common 526 

precursor, one might expect evolutionary tradeoffs and negative covariation. Alternatively, if 527 

metabolite classes lie along the same metabolic pathway, an increase in one class may be 528 

concomitant with increases in another (or vice versa) causing positive covariation among the 529 

classes. There are also numerous empirical examples supporting the hypotheses that positive 530 

correlations may be driven by functional redundancy (Jones & Firn, 1991; Romeo et al., 2013) or 531 

selection for synergistic effects on herbivores (Dyer et al., 2003; Richards et al., 2010) rather 532 

than the structural constraints of metabolism. Suites of covarying defensive traits, or defense 533 

syndromes, have been detected in several plant genera (Becerra et al. 2001; Agrawal & Fishbein, 534 

2006; Endara et al. 2017) and plant communities (Kursar & Coley, 2003), and have been 535 

predominantly used to describe covariation among mechanical and chemical defenses. It is 536 

interesting to note the correlated evolution of the flavones/chalcones and the p-alkenyl 537 

phenols/kavalactones could be due to metabolic constraints, as well as possible adaptations via 538 

synergistic (e.g., kavalactones in P. methysticum) or other mixture-associated defensive attributes 539 

(reviewed in Dyer et al., 2018). Flavonoids and chalcones are directly linked biosynthetically, 540 

such that the inherent reactivity of the chalcone moiety permits the enzymatic processes that 541 

result in cyclization to the flavonoid scaffold (Fig. 3E). This strong biosynthetic tie predicts the 542 

presence of one would depend on the other, and indeed our structural analysis found many cases 543 

where both metabolite classes co-occurred in the same sample. Revealing the relationship 544 
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between the kavalactones and p-alkenyl phenols is more tenuous because both classes are less 545 

prevalent across our samples. Kavalactones and p-alkenyl phenols are dramatically different 546 

compounds that diverge at a much earlier branch point from a common cinnamic/coumaric acid 547 

precursor. Whereas one polyacetate chain extension pathway leads to the long-chain lipophilic 548 

substituent, characteristic of the p-alkenyl phenols, the other chain extension pathway conserves 549 

oxidation states through the chain extension process to produce the lactones (kavalactones or 550 

butenolides) through cyclization reactions (Fig. 3E). The overall outcome is different than the 551 

chalcone-flavonoid relationship; in this case, two dramatically different compounds are produced 552 

by divergence from a common early-stage biosynthetic precursor in contrast to the immediate 553 

biosynthetic precursor relationship between chalcones and flavonoids. Broader sampling across 554 

Piper and Radula will be necessary to confirm this unexpected relationship between 555 

kavalactones and p-alkenyl phenols. 556 

 557 

Conclusion 558 

Here we sought to advance understanding of phylogenetic relationships within Piper 559 

while simultaneously investigating the mode and manner of phytochemical evolution in this 560 

group. In addition to generating a well-resolved phylogeny, our results support theoretical 561 

expectations that broad classes of compounds display higher degrees of phylogenetic 562 

conservatism than the more evolutionarily labile molecular features revealed by 1H NMR data. In 563 

addition, trait associations observed in Radula can be used to pose functional hypotheses about 564 

genetic constraints or biases on phytochemical evolution and how these factors structure plant-565 

animal interactions. Such investigations are one of the emerging frontiers in terrestrial ecology, 566 

and we hope that our study provides one example of how collaborative and multi-disciplinary 567 

research can progress in this area. 568 
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Table 1. Estimates of phylogenetic signal (D) (Purvis and Fritz, 2010) for a subset of metabolite classes (see 

Methods for explanation of subset). To ask whether traits evolved under scenarios of Brownian motion (D = 

0) or phylogenetic randomness (D = 1), observed values of D were compared to null distributions of D 

modeled under each scenario. 

  

 Randomness (H0: D=1) Brownian (H0: D=0) 

Metabolite class Observed D Σ����  mean�Σ��� P mean�Σ��� P 

Flavonoids 0.49 14.18 17.56 0.012 11.01 0.093 

Chalcones 0.39 9.77 12.18 0.019 8.24 0.235 

Phenolic glycosides -1.18 3.11 7.01 0.000 5.19 0.95 

Lignans -0.02 4.16 5.47 0.036 4.19 0.564 

PBA 0.22 12.40 17.51 0.001 10.96 0.293 

p-alkenyl phenols 0.33 9.47 12.30 0.010 8.19 0.265 

Kavalactones/butenolides 0.02 5.17 6.99 0.027 5.18 0.504 

Piper amides 0.1 5.37 7.00 0.033 5.18 0.482 
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Table 2. Correlated evolution was detected in two pairs of metabolite classes with Pagel’s (1994) method: 1) chalcones and flavonoids; 

and 2) kavalactones/butenolides and p-alkenyl phenols. A model comparison framework was employed to evaluate four potential models 

of trait evolution using AIC: correlated evolution (transition rate in one trait depends on state at another, and vice versa); contingent 

change (transition rate in one trait depends on state at another, but not the converse); and independent evolution. 

Comparison Model AIC Δ AIC AIC weight 

Chalcones, flavonoids Chalcones contingent on flavonoids 87.40 0 0.55 

 

Flavonoids contingent on chalcones 88.41 1.01 0.33 

 

Correlated evolution 90.54 3.14 0.11 

 

Independent evolution 95.32 7.92 0.01 

kavalactones/butenolides, p-alkenyl 

phenols 
Correlated evolution 62.35 0 0.95 

 

p-alkenyl phenols contingent on kavalactones/butenolides 69.65 7.29 0.03 

 

Kavalactones/butenolides contingent on p-alkenyl phenols 70.61 8.26 0.02 

 

Independent evolution 71.57 9.22 0.01 
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 931 

Figure legends 932 

 933 

Figure 1. Maximum clade credibility tree of 48 species from the Radula clade of Piper and 23 934 

outgroup species inferred with a Bayesian analysis of 641 concatenated RADseq loci (55,298 935 

base pairs) comprising 9,113 genetic variants (of which 4,674 are parsimony informative). The 936 

outgroup taxa were sampled across multiple Piper clades: Isophyllon, Churumayu, 937 

Macrostachys, Hemipodium, Peltobryon, Pothomorphe, and Schilleria. All nodes are supported 938 

by at least 95% posterior support except where noted with circles or labels. Blue circles indicate 939 

support values between 85-95%. Red circles indicate support values between 75-85%. Three 940 

nodes with less than 75% posterior support were given numerical support values. Blue bars at 941 

each node denote the 95% highest posterior density interval on node ages.  Diversity of Piper 942 

with the clade they belong to in parentheses. Images of outgroups include A. Piper hillianum 943 

(Macrostachys), B. P. acutifolium (Peltobryon), and C. P. umbellatum (Pothomorphe).  944 

Examples of the Radula clade of Piper include D. P. pseudofuligineum, E. P. concepcionis, F. P. 945 

disparipes, G. P. friedrichsthalii, H. P. dilatatum, I. P. bredemeyeri, J. P. immutatum, K. P. 946 

erubescentispicum, and L. the widespread and often weedy P. aduncum. 947 

 948 

Figure 2. Taxa comprise the columns of the matrix and are ordered according to their inferred 949 

phylogenetic relationships. Groups of columns are colored according to their designated Piper 950 

clade. Black circles within the phylogenetic tree designate nodes with posterior support values 951 

greater than 85%. Each row of the matrix represents a metabolite class which was detected from 952 
1H NMR, GC-MS, and LC-MS data, with dark grey cells indicating the presence of that class in 953 

that taxa. Rows outlined in white indicate traits which were analyzed for phylogenetic signal in 954 

Radula. To the left of the matrix are representative compounds for a subset of metabolite classes 955 

which were detected in our samples.  956 

 957 

Figure 3. Evolutionary associations were detected in two pairs of traits according to Pagel’s 958 

(1994) test of correlated evolution: 1) flavonoids and chalcones and 2) p-alkenyl phenols and 959 

kavalactones/butenolides. Filled shapes indicate presences and unfilled shapes indicate absences 960 

of flavonoids (circles), chalcones (squares), p-alkenyl phenols (diamonds), and 961 
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kavalactones/butenolides (triangles), respectively. The shapes used in the cophylogenetic plots 962 

(A and C) are repeated below (B and D) to depict four states comprising all combinations of 963 

presences and absences in the pair of traits. Arrows represent transition rates between states. B. 964 

As both models of contingent change provided good fits to the flavonoid and chalcone data, both 965 

sets of transition rates are displayed, with the first set of values (bolded) corresponding to the 966 

best supported model (chalcone evolution contingent on flavonoid state) and the second set of 967 

values corresponding to the alternative contingency model (flavonoid evolution contingent on 968 

chalcone state). D. The best fit model to the p-alkenyl phenol and kavalactone/butenolide data 969 

was one of dependent evolution, where p-alkenyl phenol evolution is dependent on the state at 970 

the kavalactone/butanolide trait, and vice versa. Panel E illustrates the enzymatic processes and 971 

branch points along biosynthetic pathways that give rise to the four classes of metabolites. 972 

Chalcones are immediate biosynthetic precursors of flavonoids, where the inherent reactivity of 973 

the chalcone moiety permits cyclization to the flavonoid scaffold. Subtle structural changes to 974 

the flavonoid scaffold caused by late-stage oxidation can produce protoflavonoids, a rare class of 975 

metabolite with potent cytotoxic activity. In contrast, the pathways of p-alkenyl phenols and 976 

kavalactones diverge much earlier and embark on distinct chain elongation pathways which lead 977 

to long-chain lipophilic substituent characteristic of the p-alkenyl phenols in one case, and 978 

lactones (kavalactones and butenolides) in the other case.  979 

 980 

Figure 4. A. Chemospace of all 71 species constructed with the crude 1H NMR data across 277 981 

peaks. Point shapes and colors are formatted according to clade designation as portrayed in the 982 

phylogenetic tree in Figure 1. MRM analyses recovered significant negative relationships 983 

between phylogenetic and chemical distances calculated among samples from all clades (B), or 984 

from the Radula clade only (C); however, the proportion of variance explained was low for all 985 

tests.  986 
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Fig. 1 988 
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Fig. 2 991 
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Fig. 3 994 
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Fig. 4 997 
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