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Abstract:  
Plants initiate immunity upon recognition of a wide array of self and non-self molecular 

patterns. Whether plants tune their immune outputs to patterns of different biological 

origins or of different biochemical nature remains mostly unclear. Here, we performed a 

detailed early time-series transcriptomics analysis in Arabidopsis thaliana, revealing that the 

response to diverse patterns is remarkably congruent. Early transcriptional reprogramming 

is dominated by a plant general stress response (GSR), which is essential for pattern-induced 

immunity. The definition of ‘core immunity response’ genes common and specific to pattern 

response in addition revealed the function of previously uncharacterized GLUTAMATE 

RECEPTOR-LIKE calcium-permeable channels in immunity. This study thus illustrates 

general and unique properties of early immune transcriptional reprogramming and 

uncovered important components of plant immunity. 

 

One Sentence Summary:  

Time-resolved transcriptomics reveals new properties of pattern-triggered immunity and function 
of calcium-permeable channels.  

 

Main Text:  
Plants are challenged by a wide variety of potentially pathogenic organisms; their health relies on 

their ability to recognize and respond to this plethora of challenges. This recognition is partly 

accomplished through cell surface-localized pattern recognition receptors (PRRs), which 
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recognize pathogen-associated molecular patterns (PAMPs) or host-derived damage-associated 

molecular patterns (DAMPs), leading to pattern-triggered immunity (PTI) (1). While a wide 

variety of PRRs with an equivalent variety of cognate ligands have been identified in various plant 

species (2), it is still unclear to what extent plants discriminate among patterns from different 

source organism, of different chemical nature, or that are recognized by different PRR classes. 

Notably, while a few studies have compared transcriptional responses (as a proxy of a dynamic 

large immune cellular output) triggered by two or three patterns together (3–5), or used meta 

analyses to compare responses (6, 7), these studies were limited in scale or utilized different 

experimental conditions, which hinders meaningful comparisons. 

 

To ascertain the timing and degree of discrimination among pattern-triggered transcriptional 

responses, we selected a panel of seven patterns with known PRRs, representing a variety of source 

organism, chemical composition, and recognition mechanisms. This included bacterial flg22 (a 

22-amino acid epitope derived from bacterial flagellin) recognized by the leucine-rich repeat 

receptor kinase (LRR-RK) FLAGELLIN SENSING 2 (FLS2) (8), elf18 (an 18-amino acid epitope 

derived from bacterial elongation factor Tu) recognized by the LRR-RK EF-TU RECEPTOR 

(EFR) (7), Pep1 (a 23-amino acid peptide potentially released as DAMP upon cellular damage) 

recognized by the LRR-RKs PEP1-RECEPTOR (PEPR1) and PEPR2 (9–11), nlp20 (a 20-amino 

acid peptide derived from bacterial, oomycete, and fungal NECROSIS AND ETHYLENE-

INDUCING PEPTIDE 1 -LIKE PROTEINS) recognized by the LRR-receptor protein 

RECEPTOR-LIKE PROTEIN 23 (RLP23) (12), chitooctaose (CO8, an octamer fragment of 

fungal cell walls) recognized by the LysM-RKs LYSM-CONTAINING RECEPTOR KINASE 4 

(LYK4) and LYK5 (13), 3-OH-FA (a bacterial hydroxylated fatty acid) recognized by the S-lectin-

RK LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITATION (LORE) (14, 15), and 

oligogalacturonides (OGs, derived from the plant cell wall) proposed to be recognized by the 

epidermal growth factor receptor-like-RK WALL-ASSOCIATED KINASE 1 (WAK1) (16). Both 

Pep1 and OGs are considered DAMPs, while the other patterns are PAMPs. Each pattern was 

applied in four replicate experiments to two-week-old Arabidopsis thaliana (hereafter 

Arabidopsis) seedlings grown in liquid culture, at concentrations either previously used in 

transcriptomics studies or shown to be saturating for upstream signaling responses (7, 14, 17–19). 

Each pattern was applied to Col-0 wild-type (WT) or cognate receptor mutant seedlings grown in 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.11.30.404566doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.404566
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

3 
 

liquid culture and seedlings were flash frozen for RNA extraction at 0, 5, 10, 30, 90, and 180 min 

post-treatment (Fig. 1A). Note that wak1 mutants are not viable (16), and thus OG treatment was 

paired with a mock water treatment.   

 

Transcript abundance was assessed by RNA-seq and differentially expressed genes (DEGs) were 

identified by comparison with time 0 [log2(fold change, FC) >1, padj<0.05], resulting in a total of 

10,730 DEGs throughout the experiment (5,718 up-regulated; 5,012 down-regulated), with the 

strongest treatment being flg22 (8,451 DEGs; 4,816 up and 3,635 down) and the weakest being 3-

OH-FA (1,633 DEGs; 1,246 up and 387 down; Tables S1 & S2; Fig. 1B). One selection criterium 

for treatments chosen here were saturation of upstream signaling outputs (e.g. ROS, Ca2+ influx), 

but it cannot be ruled out that higher concentrations of ‘weaker’ patterns would  match responses 

observed here for ‘stronger’ patterns. Treatments in this study were also selected to match 

previously published transcriptomics experiments – indeed, log2(FC) expression values were 

similar to those published with single patterns (3, 6, 7), supporting the experimental and analysis 

setups used here (Fig. S1A, B). Principal component analysis (PCA) of DEGs revealed strong 

responses at 30, 90, and 180 min in WT plants that are absent in receptor mutant or mock controls 

(Figure S1C).  Any genes behaving similarly in WT and controls were removed from further 

analysis. Similar to the PCA, correlation analysis implicated time post treatment as the main factor 

determining transcriptome response; WT samples became highly correlated at later time points 

(Fig. S1D; Pearson correlation at 5 min, 0.08; at 10 min, 0.49; at 30 min, 0.89; at 90 min, 0.80; at 

180 min, 0.71). 

 

We then collected the set of DEGs up- or down-regulated by each pattern at each time point, and 

subdivided these sets by the number of patterns similarly affecting each gene (Fig. 1B). This 

revealed a large set of DEGs induced by all tested patterns (n=970; Table S3; Fig. 1B, darkest bar 

segment). Furthermore, with the exception of flg22, no pattern induced or repressed a large number 

of genes uniquely (Figure S2; Table S4). To ascertain whether there exist sets induced specifically 

by pattern subclasses (e.g. by PRR type, pattern origin, etc.), we identified DEGs induced or 

repressed by all possible combinations of patterns (Fig. S3), and determined the extent to which 

the relative sizes of these sets departed from that of a random assortment of genes among patterns 

(deviation) (20). To avoid potential effects of accelerated or delayed induction, we collected all 
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DEGs induced by a pattern in this experiment, into one representative set. As expected, this 

confirmed that the largest two sets were DEGs induced uniquely by flg22 (n=1,041) or commonly 

by all tested patterns (Fig. 1C; Fig. S3). Both of these sets were larger than would be expected by 

chance (deviation 0.16 for each). The next two largest sets comprised DEGs induced by at least 

five of the tested patterns – indeed the treatment of CO8 and 3-OH-FA in this experiment were 

relatively weaker than other patterns (Fig. 1B), suggesting that DEGs in these sets may also be 

induced by all patterns under specific conditions. Remarkably, none of the pattern subsets we 

identified a priori induced unique sets of DEGs much larger or smaller than would be expected by 

chance (Fig. S3). Taken together, these results suggest that gene induction within the first three 

hours mostly constitutes a general pattern-triggered response (against ‘non-self’ or ‘damaged-

self’), rather than being pattern- or pattern-subclass-specific. 

 

To explore the set of ~1,000 DEGs up-regulated commonly by all treatments, we first 

hierarchically clustered these genes according to their log2(FC) values for each pattern/time 

combination (Fig. 1D). This revealed four clusters with characteristic expression patterns, 

described here as ‘Very rapid’, ‘Rapid transient’, ‘Rapid stable’, and ‘Late’ (Fig. 1E). Interestingly, 

though all tested patterns induced all DEGs and the overall expression patterns were similar, some 

differences in timing of gene induction could be observed. Among the ‘Very rapid’ and ‘Rapid’ 

sets OGs, flg22, elf18 and Pep1 induced gene expression already at 5 min, only detectable in 

response to nlp20, 3-OH-FA and CO8 after 10 min. This partially correlated with the total number 

of DEGs up-regulated (Fig. 1B), suggesting a potential relationship between amplitude and 

rapidity of transcriptional response, similar to that observed in some earlier steps of PTI signaling 

(21, 22). Of note, differences in diffusion cannot be excluded as contributing to this observation. 

A similar analysis of down-regulated DEGs revealed no similar congruence in pattern response – 

indeed, most sets had similar sizes to those expected by chance (deviation -0.03 – 0.11). There are 

approximately 100 DEGs down-regulated by all tested patterns (Table S5). Although this set was 

not significantly larger or smaller than expected by chance, we nevertheless clustered these genes 

to identify characteristic expression patterns, finding differences in kinetics similar to up-regulated 

genes (Fig. S4). Taken together, these results show that expression patterns in response to pattern 

perception are dominated by a small number of pattern-specific responses, and a large set of 

commonly-induced genes.  
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In order to investigate transcriptional regulators controlling this response, we expanded this 

analysis from the genes up-regulated by all patterns to the entire dataset. As timing was the 

dominant effect in pattern-induced transcriptional patterns (Fig. 1; Fig. S1), we grouped the up-

regulated DEGs by the time at which they first became induced, regardless of the inducing pattern, 

as previously done in response to other stimuli (23). GO term enrichment of these five gene sets 

supports progressive waves of transcriptional response (Fig. 2A). A cis-element enrichment 

analysis revealed enrichment of binding sites for a large number of WRKY transcription factors 

(TFs) in the promoters of DEGs first induced at 10-30 min post-elicitation (Fig. 2B). This is in line 

with the established roles of many WRKY TFs in PTI (24). In contrast, among genes first induced 

at 5 or 10 min post-elicitation, there is enrichment in the binding sites for CALMODULIN-

BINDING TRANSCRIPTIONAL ACTIVATORs (CAMTAs; Fig. 2B). TFs of the CAMTA 

family bind the core element vCGCGb, and are the major transcriptional regulators of the plant 

general stress response (GSR) – a rapid and transient induction of a core set of genes in response 

to a wide variety of stimuli (25–27). Given the congruence of pattern-induced gene sets, and the 

presence of CAMTA binding sites in promoters of rapidly up-regulated DEGs, we sought to 

ascertain the degree to which pattern-induced genes are also affected by varied abiotic stresses. To 

do this, we utilized the published AtGenExpress dataset of Arabidopsis seedling response to cold, 

drought, genotoxic stress, heat, osmotic stress, salt, UVB irradiation, or wounding (28). We then 

classified each of the DEGs up-regulated in this study according to (i) the time at which it is first 

induced, (ii) the number of patterns that induce it throughout the experiment, and (iii) the number 

of abiotic stresses tested in the AtGenExpress experiment that induce it within 3 h.  Plotting each 

DEG according to these criteria, with the color of the point determined by the maximum log2(FC) 

observed in this study, revealed that rapidly induced genes tend to be strongly induced by all tested 

patterns, and induced by most tested abiotic stresses (Fig. 2C). This analysis extended the 

observation of a common set of genes induced by all tested patterns to the conclusion that the rapid 

transcriptional response to pattern perception is dominated by the GSR. As such, our analysis of 

transcriptional responses indicated that plant cells mostly respond to ‘stress’. 

 

A similar analysis of down-regulated DEGs revealed mostly later responses than for up-regulated 

DEGs, with notably no down-regulated DEGs identified at 5 min (p<0.05).  Comparison with gene 
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repression under abiotic stress treatment did not reveal a trend like the GSR; though, interestingly, 

the most strongly affected genes do tend to be down-regulated commonly by most or all tested 

patterns (Fig. S5). Finally, while relatively few GO terms or TF binding sites were enriched in 

down-regulated genes found, many enriched GO terms were associated with growth hormones and 

response to light, consistent with previous reports that pattern treatment impedes photosynthesis 

(29, 30).  

 

We next sought to test whether the GSR is required for PTI. CAMTA3 is the primary member of 

the CAMTA family in inducing the GSR (26). The genetic analysis of a role of CAMTA3 in PTI 

is however confounded by the autoimmune phenotype of camta3 loss-of-function mutants, due at 

least in part to activation of the two nucleotide-binding leucine-rich repeat receptor proteins 

(NLRs) DOMINANT SUPPRESSOR OF CAMTA3 1 (DSC1) and DSC2 (31). We thus utilized 

the camta3/dsc1/dsc2 triple mutant; while WT plants were able to mount an effective flg22-

induced resistance to the bacterium Pseudomonas syringae pv. tomato DC3000 (Pto), this effect 

was almost completely lost in the GSR-deficient camta3/dsc1/dsc2 (p=0.0007, Fig. 2D), consistent 

with similar results obtained with the dominant-negative camta3D allele (32). Interestingly, basal 

susceptibility to Pto was also significantly reduced in camta3/dsc1/dsc2 compared to WT 

(p=0.0008, Data S1), in contrast to camta3D but in line with studies showing a negative role for 

CAMTA3 in salicylic acid-mediated immunity regardless of DSC1/2 (33–35). 

 

Beyond highlighting the importance of the GSR in PTI, our comparison with AtGenExpress 

(extended to selected abiotic stress RNA-seq studies) (36–38) further identified DEGs up-

regulated commonly by all tested patterns, but not by abiotic stresses. Notably, among these 39 

‘core immunity response’ (CIR) genes (Table S6), the most strongly up-regulated gene encodes 

GLUTAMATE RECEPTOR 2.9 (GLR2.9), and GLR2.7 is also among the CIR set. GLR2.7 and 

2.9 are closely related and are present in a tandem repeat on the genome with GLR2.8 (39), which 

is similarly induced by all tested patterns (Table S3). GLRs are Ca2+-permeable channels of which 

Arabidopsis GLR3 clade members, for example, are key for wound-responsive signaling (40–42). 

In contrast, GLR2 clade members – to which GLR2.7, 2.8 and 2.9 belong – are poorly 

characterized. Notably, previous pharmacological studies showed that GLRs contribute to pattern-

induced Ca2+ influx in Arabidopsis (43), but the identity of relevant GLRs is still unknown. Given 
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the high sequence similarity between GLR2.7, 2.8 and 2.9, as well as their chromosomal clustering, 

we generated a glr2.7/2.8/2.9 triple mutant using CRISPR-Cas9 in both Col-0 WT and a 

genetically encoded YELLOW CHAMELEON 3.6 (YC3.6) indicator line. In both backgrounds, 

this resulted in a large deletion in the GLR2.7-2.9 genomic region (Fig. S6). Interestingly, the 

increase of [Ca2+]cyt triggered by flg22, elf18 and Pep1 was approximately 25 % reduced in 

glr2.7/2.8/2.9 relative to the YC3.6 parental line (Fig. 3A; Fig. S7A). In line with this reduced 

immune output, glr2.7/2.8/2.9 plants (in both WT Col-0 and YC3.6 backgrounds) were more 

susceptible to Pto infection by infiltration, to a similar degree as the immune-deficient bak1-5 

mutant (Fig. 3C) (44). Notably, consistent with the specific regulation of GLR2.7 and 2.9 by pattern 

perception, but not by abiotic stresses, glr2.7/2.8/2.9 plants were not impaired in salt-induced 

[Ca2+]cyt increase (Fig. 3B; Fig. S7B).  Altogether, these results implicate the GLR2.7/2.8/2.9 clade 

of GLRs in PTI. 

 

We recently reported that Ca2+-permeable channels from another family, OSCA1.3 and 1.7, 

contribute to pattern-induced stomatal immunity (45). In contrast, glr2.7/2.8/2.9 was not 

compromised in pattern-induced stomatal closure (Fig. S7C), nor was this mutant more susceptible 

to Pto WT or a coronatine-deficient mutant upon surface-inoculation by spraying (Fig. S7D,E). 

GLR2.7/2.8/2.9 are not strongly expressed prior to elicitation, and unlike OSCA1.3 and CNGC2/4 

– calcium-permeable channels previously shown to play roles in PTI – they do not show strong 

preference for/against stomatal expression (Fig. S8). Also, the previously reported role of 

CNGC2/4 is only apparent under specific external [Ca2+] conditions (46, 47), indicating that 

additional calcium-permeable channels must be involved in PTI during normal conditions.   These 

findings substantiate the emerging concept that multiple channels belonging to distinct 

Arabidopsis families (e.g. CNGCs, OSCAs, GLRs) contribute to the overall pattern-induced 

calcium response observed at the whole plant level. 

 

The CIR gene set includes several other genes associated with immunity (Table S6) (48–51). We 

have here shown the utility of this transcriptomic dataset in identifying signaling and regulatory 

components of general stress and immune responses in Arabidopsis. The future characterization 

of other CIR genes with yet uncharacterized functions or unknown roles in immunity may thus 
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reveal additional PTI players, and for understanding of how the plant transitions from the rapid 

general stress response to later immunity-specific responses. 
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Fig. 1 Rapid pattern-triggered transcriptional responses are largely common, with characteristic 

kinetics. (A) Arabidopsis seedlings were treated with a panel of patterns, and tissue harvested for 

RNA extraction at indicated times. (B) Genes up- or down-regulated (|log2(FC)|>1 and padj<0.05) 

are shown for each time point within each pattern treatment (total height of bars). Bars are 

subdivided by the number of patterns affecting each gene set at that time, with darker colors 

representing more patterns co-regulating. (C) UpSet diagram showing the size of gene sets induced 

by each pattern (left, single gene list from all times combined) and the top 15 intersections (bottom 

right) by size (top right). Bars for set sizes are colored by deviation from size predicted by random 

mixing. (D) Heat map of expression of the genes commonly induced by all tested patterns. Genes 

are hierarchically clustered according to their behavior across all pattern/time combinations, and 

cut into four clusters. (E) Visualization of average log2(FC) patterns of the four clusters identified 

in (D), showing different approximate patterns of expression (time points spaced evenly to 

visualize early times). Error bars represent standard error of the mean. 
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Fig. 2 Pattern-triggered transcriptional responses act in time-resolved waves, with the first wave 

constituting a general stress response important for immune activation.  (A) GO term and (B) cis-

element enrichment analysis of induced genes, categorized according the time point at which they 

first passed induction threshold, regardless of which pattern caused induction. The top three GO 

terms for each time point are indicated. (C) Distribution of up-regulated genes. Each gene induced 

in this study was plotted according to the time it is first induced (panels from top to bottom), the 

number of tested patterns which induce it (x axis) and the number of abiotic stresses in the 

AtGenExpress dataset which also induce it within the first three hours (y axis). The color of each 

dot indicates the maximum log2(FC) observed in this study. (D) Box-and-beeswarm plots of flg22-

induced resistance to Pto infection. Box plots center on the median, with box extending to the first 

and third quartile, and whiskers extending to the lesser value of the furthest point or 1.5x the inter-

quartile range. Data were obtained from three independent experiments (point shapes), n=4 per 

genotype/treatment combination in each experiment. Data were analyzed in R: Two-way ANOVA 

with experiment as a blocking factor, and p value reports the interaction between treatment and 

genotype. 
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Fig. 3 A glr2.7/2.8/2.9 triple mutant is compromised in pattern-induced Ca2+ influx and bacterial 

disease resistance. (A, B) Parent (darker shades) or glr2.7/2.8/2.9 (lighter shades) YC3.6 reporter 

lines were assayed for response to a variety of patterns and salt (NaCl) treatment; peak Ca2+ signal 

reported by YC3.6 within 25 min (patterns) or 1 min (salt) is shown. Each point represents one 

seedling and different shapes represent 3 independent experiments, n=10-20 for each 

experiment/line/treatment combination. (C) Parent and glr2.7/2.8/2.9 mutants in Col-0 and YC3.6 

background were assayed for bacterial susceptibility, alongside the hypersusceptible bak1-5 

mutant. Colony forming units (CFU) were counted two days post infiltration. Each point represents 

one infected plant and different shapes represent 3 independent experiments, n=5-7 for each 

experiment/line/treatment combination. Box plots center on the median, with box extending to the 

first and third quartile, and whiskers extending to the lesser value of the furthest point or 1.5x the 

inter-quartile range. Statistical tests were performed in R: ANOVA with experiment as a blocking 

factor, on square root of peak normalized Ca2+ response or log10(CFU). Post-hoc tests were 

performed using the emmeans package in R: In (A) and (B) glr2.7/2.8/2.9 was compared to parent 

under each treatment, and in (C) (left), each genotype was compared to Col-0 (dunnettx method) 

and (right) YC3.6 glr2.7/2.8/2.9 was compared to YC3.6. 
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Materials and Methods 
Arabidopsis growth conditions 

For in vitro culture Arabidopsis seeds were surface-sterilized, stratified 3-5 days at 4 °C, then plated on full-strength 

MS medium, 1 % sucrose 0.8 % agar. Plates were placed at 22 °C, 16 h/8 h light/dark. After four days, germinated 

seedlings were transferred to liquid culture. For RNA-seq, seedlings were placed, two-per-well, in 24-well plates with 

1 mL of MS media lacking agar, and plates were sealed with porous tape. For seedling Ca2+ measurements, seedlings 

were transferred, 30-50 per plate, to sterile 9 cm petri dishes containing ca. 25 mL MS media lacking agar, and plates 

were sealed with porous tape. 

For soil growth Arabidopsis seeds were lightly surface-sterilized, stratified 3-5 days, and planted on soil. Plants were 

grown for four-to-five weeks at 20 °C, 60 % humidity, 10 h/14 h light/dark before assays were performed. 

Lines used in this project include Col-0 used as WT control, fls2c (SAIL_691_C04) (52), efr-1 (SALK_044334) (7), 

pepr1-1/2-1 (SALK_059281/SALK_036564) (10), rlp23-1 (SALK_034225) (12), lyk4/5 

(WiscDsLox297300_01C/SALK_131911c, seeds obtained from Gary Stacey) (13), sd1-29 (lore, SAIL_857_E06, 

seeds obtained from Stefanie Ranf) (15), bak1-5 (BAK1C408Y) (44), camta3/dsc1/dsc2 

(SALK_001152/SAIL_49_C05/FLAG014A11, seeds obtained from Morten Petersen) (NB: while the FLAG 

collection was generated in the Ws-2 background, containing a mutated FLS2, the camta3/dsc1/dsc2 line contains a 

Col-0-version, functional FLS2 gene) (31), and YC3.6 (obtained from Myriam Charpentier). The glr2.7/2.8/2.9 lines 

generated in this study are described in Fig. S6. 

 

RNA-seq treatment 

Each plate contained an equal number of wells of Col-0 wild type and PRR mutant control, with the exception of a 

single plate for combined OG/mock treatment. After nine days growth in liquid MS medium, sealing tape was removed 

from plates, media removed from wells, and replaced with 0.6 mL liquid MS per well. The following day, when 

seedlings were 14 days post-stratification, 400 µL of 2.5x pattern solution was added to each well. Two wells, for a 

total of four seedlings, were harvested for each genotype/treatment/time combination. Final pattern concentrations 

were 1 µM flg22 (17, 52) (Scilight-Peptide), 1 µM elf18 (7) (Scilight-Peptide), 1 µM Pep1 (53) (Scilight-Peptide), 1 

µM nlp20 (12) (provided by Thorsten Nürnberger), 100 µg/mL OGs DP10/15 (3, 54) (elicityl GAT114), 1 µM CO8 

(18) (IsoSep 57/12-001), and 1 µM 3-OH-FA (14) (provided by Stefanie Ranf). 

 

Tissue harvest, library preparation, and sequencing 

Samples were collected and libraries prepared using a combination of published high-throughput protocols (55–58). 

Briefly, two wells per genotype/treatment/time combination were pooled at each of 0, 5, 10, 30, 90, or 180 min 

following treatment. Seedlings were blotted dry and flash-frozen in liquid nitrogen. Tissue was pulverized while frozen 

via two one-minute pulses in a BioRad TissueLyser, and divided in half for library preparation. Divided powder was 

further disrupted for one minute, prior to addition of extraction buffer, and disrupted in buffer for a further two one-

minute pulses. Samples were spun down and lysate collected and incubated with biotin-oligo-dT and streptavidin 

magnetic beads. The full set of RNA washes and elution was performed twice, with DNAse I treatment in-between, 

to minimize rRNA and gDNA contamination. cDNA synthesis was performed as described, with the exception that 
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only 2 µL of DNA Pol I was used. Serapure-cleaned dscDNA was quantified via SYBR-green based plate assay and 

normalized to 2 ng/µL for tagmentation (59, 60). Tagmentation was performed in 5 µL reactions containing 0.2 µL 

Tn-5 transposase, and the entire reaction used as template for PCR (57). PCR was performed using in-house primers 

to add 5’ and 3’ tags and the NEBnext 2x polymerase mix, amplifying for 10 cycles. Libraries were again Serapure 

cleaned, SYBR quantified, and normalized to 0.5 µM for pooling and sequencing. Pooled libraries were run on 2-3 

flowcells of a NextSeq500, and pooling adjusted after each run to maximize overall read density per sample.  

 

Read mapping and differential expression analysis 

Read data was analyzed using FastQC, trimmed (61), and mapped to the Arabidopsis TAIR10 genome via TopHat2 

(62, 63). Mapped reads were assigned to genes, and differential expression analysis performed using DESeq2 (64). 

Prior to differential expression analysis, a total of 17/336 libraries were removed from later analysis, primarily for 

poor sequencing leading to few mapped reads. For each sample, differential expression was determined relative to the 

same genotype-treatment combination at time 0. To account for time and mechanical stress, for WT samples, genes 

were removed if also differentially expressed in PRR mutant controls, with the exception of OG-treated samples, 

which were filtered based on differential gene expression in mock-treated WT. For data exploration (e.g. PCA, 

correlation, GO term and cis-element enrichment) a relatively loose cutoff of |log2(FC)|>1, padj<0.1 was used to obtain 

a broad landscape of DEGs. For analyses in which specific genes of interest would be analyzed (e.g. CIR gene set), a 

more stringent cutoff of |log2(FC)|>1, padj<0.05 was used. Data manipulation was done in R (65, 66), using functions 

from the tidyverse (67). 

 

Exploratory data analysis 

Principal component analysis was performed using the prcomp function in R and sample correlation was determined 

via the Pearson method, using the cor function in R. Visualization of genes induced by various combinations of 

patterns was done via user-modified adaptations of the UpSetR and SuperExactTest R packages (68, 69), and deviation 

was calculated as described (20). Expression of the core set of genes up- or down-regulated by pattern treatment was 

clustered using the hclust function, with extra functionality from the dendextend package in R (70). 

Gene induction specific to individual pattern treatments was determined using a modification of tissue-specific gene 

expression assignment (71, 72). Briefly, normalized pseudocount data were first filtered to genes significantly 

upregulated (p<0.1, log2(FC)>1) in at least one condition. Filtered pseudocounts were next averaged across all 

replicates, then summed across all time points for each pattern. For each gene and each pattern the fraction of total 

counts for that gene attributed to that pattern was calculated (specificity measure, SPM). Data were finally filtered to 

those genes with SPM>0.33 for at least one pattern (approximately 1/3 total reads in experiment attributable to one 

pattern). 

 

GO term and cis-element enrichment 
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GO term enrichment was performed using the library TopGO in R, using GO terms obtained from TAIR, searching 

for enrichment in each gene set relative to the complete set of genes detected in this experiment, and determining 

enriched GO terms using the weight01 method with the Fisher statistic (73). 

cis-element enrichment analysis was performed using AME, part of the MEME suite (74), using a published library 

of TF binding sites found via DAPseq (75). 

 

Comparison with AtGenExpress abiotic stress microarray data analysis 

As the AtGenExpress experiment was performed using the ATH1 microarray, we first restricted induced genes to 

those present on the array. Abiotic stress microarray data was obtained from 

http://jsp.weigelworld.org/AtGenExpress/resources/ in 2017 and analyzed using limma (NB: data are no longer hosted 

here, but CEL files can be downloaded through 

https://www.arabidopsis.org/portals/expression/microarray/ATGenExpress.jsp) (28, 76). We did not consider the 

oxidative stress treatment for filtering pattern-responsive genes, as most patterns induce production of reactive oxygen 

species. To facilitate comparisons with this study’s RNA-seq data, only time points from the first three hours were 

considered, and comparisons for differential expression were first made between each treatment and time 0, then 

between each treatment and mock at the same time, considering only genes that were differentially expressed 

[log2(FC)>1, padj<0.05] under both criteria.  

 

CIR genes were selected according to the following criteria: (i) significantly induced in at least one time by all seven 

patterns tested here (ii) not significantly induced at any time point by any of the selected stresses in the AtGenExpress 

Dataset (iii) Uniquely targeted by at least one probe in the ATH1 microarray (iv) not significantly induced in selected 

abiotic stress experiments (3 hr proteotoxic stress, 4 h darkness, 4 h flooding, 3 h 50, 150, or 200 mM NaCl) assayed 

using RNA-seq (36–38). This resulted in a set of 40 DEGs. Among these, one highly upregulated gene, AT3G32090, 

is a suspected pseudogene with strong homology to WRKY40 in one region. All of the reads assigned to AT3G32090 

mapped to only this region. As WRKY40 is both highly expressed and strongly upregulated by pattern treatment, we 

suspected these reads were mistakenly assigned to AT3G32090, and removed it from the CIR set. 

 

Measurement of intracellular Ca2+ concentration in seedlings 

After five days growth in liquid MS medium, sealing tape was removed from plates and seedlings rinsed in sterile 

water and transferred one-per-well to black 96-well plates containing 150 µL sterile water. Seedlings were gently 

pressed to ensure the majority of the seedling was submerged, and plates were incubated in the dark under bench 

conditions overnight. The following day, when seedlings were 11 days post-stratification, plates were imaged in a 

Tecan SPARK microplate reader at two conditions: excitation 440 nM, emission 480 nM (CFP) and excitation 440 

nM emission 530 nM (YFP). Pattern treatment was performed through addition of 38 µL of 5x solution injected after 

5 min visualization by the microplate reader. The focal plane for fluorescence measurements was set to a single point 

in the center of each well, and moved up 0.5 mm post-injection to accommodate increased volume in wells. Despite 

this adjustment, overall fluorescence intensity and thus ratio was frequently altered post-injection, as seedlings did not 
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uniformly fill well. Due to this change, and the generally slow pattern response, we normalized all subsequent 

fluorescence ratios to the first ratio measured post-injection (R0), as (R-R0)/R0. Wells were manually rejected if pre-

injection fluorescence was not stable or vastly different than R0. Salt (NaCl) treatment was performed similar to pattern 

treatment, with the following changes: to accommodate the faster response, injection and imaging was performed on 

a well-by-well basis rather than across a subsection of the plate. Due to the faster response, the first measurement post-

injection already reflects the beginning of plant response - R0 was thus defined as pretreatment fluorescence ratio, 

though this resulted in more noise in the final data. 

 

As some silencing was observed both in parent YC3.6 lines and YC3.6 glr2.7/2.8/2.9 lines,  only seedlings with visible 

fluorescence at 5 d were transferred to liquid culture, and following treatment, only seedlings (wells) with pre-

treatment fluorescence in both wavelengths greater than 3x that of a non-fluorescent Col-0 control were considered. 

Total seedlings imaged were as follows: YC3.6 mock: 56, YC3.6 flg22: 54, YC3.6 elf18: 52, YC3.6 Pep1: 55, YC3.6 

glr2.7/2.8/2.9 mock: 48, YC3.6 glr2.7/2.8/2.9 flg22: 43, YC3.6 glr2.7/2.8/2.9 elf18: 36, YC3.6 glr2.7/2.8/2.9 Pep1: 

43, YC3.6 mock (NaCl): 56, YC3.6 NaCl: 51, glr2.7/2.8/2.9 mock (NaCl): 38, YC3.6 glr2.7/2.8/2.9 NaCl: 29. 

 

Bacterial infection assays 

For all infection assays, Arabidopsis plants were treated when four- to five-week-old, and bacteria grown overnight 

in Kings B medium liquid culture, refreshed via a 1-2 h subculture in the morning, spun down and resuspended in 10 

mM MgCl2. For induced resistance (52), three leaves from each plant were infiltrated with either 1 µM flg22 or water 

in the morning. The following morning, selected leaves were re-infiltrated with Pseudomonas syringae pv. tomato 

DC3000 (Pto) expressing luciferase (77) at OD600=0.0002 or ~1x105 colony-forming units (CFU)/mL. Plants were 

covered and infection allowed to proceed for two days. For infiltration infection assays, infection was performed 

similarly with the following differences: WT Pto was used rather than the luciferase-expressing strain; trays were 

incubated uncovered; and there was no mock or pattern pretreatment. For spray infection, Pto was diluted to OD600=0.2 

or ~1x108 CFU/mL in MgCl2, Silwet L-77 added to 0.04 %, and plants sprayed to surface saturation (~4 mL per plant). 

For all infection assays, after approximately 48 h leaf discs were collected (infiltration: two from each infiltrated leaf; 

spray: 6 from 6 separate leaves), ground in 10 mM MgCl2, and serial dilutions from 1x10-1 to 1x10-5 plated to count 

CFU. 

Following infection, log10(CFU) follow an approximately normal distribution. ANOVA was performed using the glm 

and anova functions in R, and post-hoc tests via emmeans package (78). Sample numbers are as follows: for induced 

resistance n=12 plants for all genotype/treatment combinations. For infiltration infection total plants counted were 

Col-0: 17, Col-0 glr2.7/2.8/2.9: 19, bak1-5: 18, YC3.6: 12, YC3.6 glr2.7/2.8/2.9: 12. For spray infection n=18 for all 

genotype/treatment combinations. 

 

Stomatal aperture measurements 

For each experiment, three leaf discs were taken from each of 6 plants per line. The three leaf discs were floated one-

per-well in 100 µM stomatal opening buffer (10 mM MES-KOH pH 6.15, 50 mM KCl, 10 μM CaCl2, 0.01 % Tween-
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20) in white 96-well plates for 2 h in the growth chamber. Subsequently, one leaf disc from each plant was treated 

with 5 µM flg22, 10 µM ABA, or mock through addition of stock solution to stomatal opening buffer. Leaf discs were 

incubated 2-3 h further, then imaged on a Leica DMR microscope and photographed with the equipped Leica DFC320 

camera. Stomata length and width were annotated in ImageJ. The experiment was repeated twice. Total number of 

stomata counted per genotype/treatment combination are as follows: Col-0 mock: 581; Col-0 flg22: 529; Col-0 ABA: 

519; glr2.7/2.8/2.9 mock: 461; glr2.7/2.8/2.9 flg22: 503; glr2.7/2.8/2.9 ABA: 426; bak1-5 mock: 567; bak1-5 flg22: 

607; bak1-5 ABA: 719. 

Stomatal aperture (width/length) followed an approximately square normal distribution. ANOVA was performed on 

square-root transformed ratios using the glm and anova functions in R, and post-hoc tests via emmeans package (78).  

 

Data and code availability 

The RNA-seq datasets generated and analyzed in the current study have been deposited in the ArrayExpress database 

at EMBL-EBI (www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-9694. Markdowns documenting the 

steps in filtering, visualizing, and analyzing the data in all figures and tables are available in Data S1. Data S1 also 

contains raw data for Figures 2, 3, and S7. 

 

Tissue expression patterns of genes encoding calcium channels implicated in PTI 

Tissue-specific expression datasets containing aerial (rosette) tissue were selected in Genevestigator, comprising 

datasets from (79–82). 
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Fig. S1. Quality control and exploratory analysis of RNA-seq data. Expression changes in this study at (A) 30 min 

and (B) 3 h are plotted against previously published results for flg22, elf18/26, and chitooctaose (CO8). Linear 

correlation shown in red, with R2 (linear regression) shown on each plot. (C) PCA analysis of log2(FC) of differentially 

expressed genes, showing (left) minimal changes in receptor-mutant treated plants, mostly corresponding with later 

time points, and rays of response (right) corresponding with plants at 30, 90, or 180 min post-treatment. (D) Pearson 

correlation heatmap of DESeq2-calculated log2(FC) showing clustering largely by time point, with the strongest 

correlations at 30 min.  
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Fig. S2. There is little specificity in pattern-induced genes. Among induced genes, for each pattern a specificity 

measure (expression in response to pattern/total expression in experiment) was calculated, and genes with at least one 

SPM>0.33 (one pattern treatment responsible for approximately 1/3 total expression in study, n=412) were gathered. 

flg22 is the only pattern treatment with a large number of pattern-selective genes expressed (flg22: 332, elf18: 8, Pep1: 

33, nlp20:31, OGs: 8, CO8 and 3-OH-FA:0) 
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Fig. S3. Complete complement of set sizes among collapsed pattern-induced and pattern-

repressed gene sets. Each circular ‘track’ represents one pattern treatment; when filled the pattern 

in question alters the expression of the gene set shown at the perimeter. Gene set size is shown via 

bar height of bars surrounding pattern tracks, and bar color shows deviation: indicating whether 

the set size is larger or smaller than would be expected by chance. Large diagrams show the overall 

set complement of genes induced or repressed by patterns taking all time points into account, 

whereas smaller diagrams to the left and right are specific for the complement of genes induced or 

repressed at the indicated time point. No genes were significantly repressed at five minutes post-

treatment. Selected pattern subset of a priori interest are highlighted through open arrows on large 

combined plots; none has deviation far from 0. 
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Fig. S4. Pattern-responsive genes tend to be repressed by single patterns, though there does 

exist a core set of 93 genes repressed by all tested patterns with at least three patterns of expression. 

A single set of genes repressed [log2(FC)<-1, p<0.05] by each pattern treatment was found through 

combining the lists genes repressed at each time. (A) UpSet diagram showing the size of 

‘collapsed’ gene sets repressed by each pattern (left) and the top 15 intersections (bottom right) by 

size (top right), colored by deviation from set size predicted by random mixing. (B) Heat map of 

expression of the 93 genes repressed by all tested patterns. Genes are hierarchically clustered 

according to their behavior across all pattern/time combinations, and cut into three clusters. (C) 

Visualization of average log2(FC) patterns of the three clusters identified in (B), showing different 

patterns of expression. 
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Fig. S5. Pattern-triggered transcriptional repression acts in time-resolved waves. (A) GO term and (B) cis-element 

enrichment analysis of repressed genes, categorized according to the time point at which they first passed significance 

threshold, regardless of which pattern caused repression. The top three GO terms for each time point are indicated. 

(C) Distribution of repressed genes. Each gene repressed in this study was plotted according to the time it is first 

repressed (panels from top to bottom), the number of tested patterns which repress it (x axis) and the number of abiotic 

stresses in the AtGenExpress dataset which also repress it within the first 3 h (y axis). The color of each dot indicates 

the most negative log2(FC) observed in this study. 
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Fig. S6. CRISPR deletes the majority of the GLR2.7/2.8/2.9 genomic region in assayed lines. Schematic of the 

GLR2.7/2.8/2.9 genomic region, with deletions in (A) Col-0, (B) and (C) YC3.6 background. In each case, a ‘fusion 

protein’ may be transcribed, consisting of approximately 90 (92, 92, 89) amino acids of GLR2.7, fused to 

approximately 12 (12, 13, 12) nonsense amino acids from the GLR2.9 genomic region. The potential fusion protein 

does not encode any transmembrane domains. GLR exons are represented by colored boxes, introns by grey boxes, 

and intergenic regions by black lines. Neighboring genes shown in black. Arrows represent direction of transcription. 
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Fig. S7. Characterization of glr2.7/2.8/2.9 lines. (A, B) Increase in intracellular Ca2+ concentration in response to 

pattern treatment. Shown are mean corrected YFP/CFP ratio within (A) 25 min or (B) 1 min post-treatment (timepoint 

0). Data were collected every 30 s (A) or 5 s (B), and corresponding peak values are shown in Figure 3. (C) Stomatal 

aperture of WT, glr2.7/2.8/2.9, or flg22-hyporesponsive bak1-5 plants treated with water, 5 µM flg22, or 10 µM ABA. 

Each point represents one stoma, and plot represents stomata from a total of 12 plants assayed over 5 experiments 

(n=36-178 stomata per genotype/treatment/experiment). Statistical tests were performed in R, two-way ANOVA 

blocking by experiment. Post-hoc tests were performed using the emmeans package in R: within each genotype, 

stomatal aperture was compared with mock treatment with dunnettx multiple testing correction. In spray infection 

assays glr2.7/2.8/2.9 are not more susceptible to (D) WT Pto DC3000, or (E) Pto COR-, deficient in the stomata-

opening toxin coronatine. Bacteria were harvested from leaf discs two days post-inoculation; each point represents 

one plant, and shapes represent three independent experiments (n=6 plants per genotype/treatment/experiment). 

Statistics were performed in R: one-way ANOVA blocking by experiment followed by dunnettx multiple comparison 
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to Col-0 performed using the emmeans package. Box plots center on the median, with box extending to the first and 

third quartile, and whiskers extending to the lesser value of the furthest point or 1.5x the inter-quartile range. 
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Fig. S8. Leaf tissue expression patterns of genes encoding calcium-permeable channels 

implicated in PTI. Data collected from Genevestigator, and scaled by each experiment. 
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Table S6. List of core immunity response (CIR) genes 

 

 
 
 
Table S1. (separate file) 

Log2 fold change values for each gene calculated by DESeq for each condition relative to time 0.  
 

Table S2. (separate file) 
 P values for differential expression calculated by DESeq2 for each condition relative to time 0. 
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Table S3. (separate file) 
Genes upregulated commmonly by all tested patterns.  Additional information provided: Common name and 
functional description when available (TAIR10). Cluster: which cluster gene belongs to in this study's clustering 
analysis (Figure 1). Number of treatments among selected abiotic stress treatments performed via RNAseq 
(AbioRNAseqNumber) and in the AtGenExpress dataset (AtGenExpress Number) that also upregulate this gene. For 
AtGenExpress, data additionally provided if gene not present or not uniquely targeted on ATH1 array. base_counts: 
some low-expressed genes may gain a high log2(FC) from small variation in counts – this metric shows the average 
counts for this gene across all genotypes/treatments at time 0 to allow confidence in degree induction observed. 
 

Table S4. (separate file) 
Specificity measure (SPM) values for genes found to be significantly induced selectively by one of the tested 
patterns. 
 

Table S5. (separate file) 
Genes downregulated commonly by all tested patterns.  Additional information provided: Common name and 
functional description where available (TAIR10). Cluster: which cluster gene belongs to in this study's clustering 
analysis (Figure S4).Number of treatments among selected abiotic stress treatments performed via RNAseq 
(AbioRNAseqNumber) and in the AtGenExpress dataset (AtGenExpress Number) which also downregulate this gene. 
For AtGenExpress, data additionally provided if gene not present or not uniquely targeted on ATH1 array. 
 

Data S1. (separate file) 
Rmarkdown files documenting steps of data analysis and visualization (.pdf) 
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