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Abstract 

 Fundamental principles underlying computation in multi-scale brain networks illustrate how multiple brain areas and 

their coordinated activity give rise to complex cognitive functions. Whereas the population brain activity has been studied 

in the micro- to meso-scale in building the connections between the dynamical patterns and the behaviors, such studies 

were often done at a single length scale and lacked an explanatory theory that identifies the neuronal origin across multiple 

scales. Here we introduce the NeuroBondGraph Network, a dynamical system incorporating both biological-inspired 

components and deep learning techniques to capture cross-scale dynamics that can infer and map the neural data from 

multiple scales. We demonstrated our model is not only 3.5 times more accurate than the popular sphere head model but 

also extracts more synchronized phase and correlated low-dimensional latent dynamics. We also showed that we can 

extend our methods to robustly predict held-out data across 16 days. Accordingly, the NeuroBondGraph Network opens 

the door to revealing comprehensive understanding of the brain computation, where network mechanisms of multi-scale 

communications are critical.  

 

Introduction 

Billions of individual neurons coordinate activities by employing system-level dynamics to drive behaviors such as 

motor preparation1,2, motor adaptation3, motor timing4,5, decision-making6, and working memory7,8. Current techniques 

for capturing neural dynamics by extracting low-dimensional latent processes typically make simplified assumptions in 

which dynamics are linear9 or log-linear10, and work to date has largely focused on measurements from a single modality. 

While within-level, nonlinearly correlated neural dynamics encode rich information giving rise to behavior11, cross-level 

nonlinear communication, which uncovers a deeper understanding of system-level neural mechanisms12,13, is seldom 

explored. Since the brain exhibits computational structure across a variety of scales: from single neurons (micro-scale) to 

functional areas (meso-scale) to cortical networks (macro-scale), a tool that can uncover multi-scale dynamics is critically 

important for illuminating the mechanistic understanding of brain computation.  

Recent cross-level analyses include source localization and cross-level coupling (CLC)14. Source localization is to 

identify the brain areas or individual neurons generating the recorded electrical potentials15. However, the requirement of 

high-density recordings, unrealistic assumptions, and uncertainty on conductivity value16 limit the fidelity on experimental 

data. Although CLC method has shown the evidence of interactions, no information about how the activity communicates 

across levels was provided. Here we introduce a multi-scale dynamical model, termed the NeuroBondGraph Network 

(NBGNet)17, to capture the interactions between neurons or networks at disparate scales . Our NBGNet is adapted from a 

Bond Graph (BG), a modeling framework used to investigate how energy is transferred among different system 

components18, and has been adopted for system identification and fault diagnosis19. In the NBGNet, a recurrent neural 

network (RNN) is constructed based on a priori knowledge obtained from a BG-derive dynamic systems, enabling us to 
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approximate the nonlinear mapping to characterize the implicit relations of multi-scale brain activity. Compared to source 

localization, we bypass the issue of unrealistic assumptions which lead to inaccurate predictions. Unlike purely data-driven 

methods, the NBGNet is interpretable to evaluate both within- and cross-scale causal interactions.  

The NBGNet model can be used for any combination of neural activity at different scales (or even the same scale) 

with the appropriate selection of the BG. In this work, we characterize our method with two types of simultaneously 

recorded real data. Namely, we use here local field potentials (LFPs) and signals recorded from screw type electrodes 

implanted in the skull (screw electrocorticography or screw ECoG20,21), acquired from a rhesus macaque performing a 

center-out joystick task. Screw ECoG, rather than electroencephalography, is chosen due to its improved signal-to-noise 

ratio and stability. We demonstrate that the presented method performs more accurately in both the forward and inverse 

problem compared to other techniques. Low error (3.5-fold improvement) and strong similarity (2.2- and 1.6-fold increase) 

in both time- and phase-domain to ground-truth signals validate the NBGNet as an accurate solution. Furthermore, the 

NBGNet can capture and accurately reconstruct single-trial low-dimensional neural dynamics. Behavioral variables can also 

be predicted by NBGNet-inferred activity as accurately as using empirical measurements. Finally, we examine the stability 

of the performance of the model and reveal that the learned dynamical system maintains the predictive power over several 

weeks.    

 

Results 

Overview of NBGNet. To introduce the NBGNet (Fig. 1), we start with a generic dynamical system, where the evolution of 

latent variables and the output is described by the nonlinear functions of latent states and corresponding input. 

Nonlinearity is derived from the BG based on the translation between LFP and screw ECoG (Supplementary Fig. 1). Multi-

layer perceptron units are adopted to approximate the nonlinear functions, generating a sparse RNN, NBGNet, which 

maximizes the likelihood of the observed brain signals with its internal states (Supplementary Fig. 2).  

 The forward solution, forward-NBGNet, models the single-trial screw ECoG as a nonlinear recursive mapping from 

the LFP (Fig. 1a-b). The network’s units to approximate such a mapping depend on three elements: a trial-specific initial 

state, input signals, and the parameters defining the connections of the model. To mimic the real-time modeling and abide 

by causality constraints, the network only runs through the trial backward for estimation. The inverse model, inverse-

NBGNet, is then developed by inverting forward-NBGNet. The resulting network predicts LFP across time from the 

temporal sequence of screw ECoG (Fig. 1a). As inverse computation is an ill-posed problem which can lead to non-unique 

and unstable solution22, we expect a relatively poorer performance when compared with the forward model. However, 

NBGNet still provide accurate and reliable estimations. 

We trained the NBGNet on simultaneously recorded LFP data from the left hemisphere and screw ECoG data from 

both hemispheres. This data was recorded while a monkey performed a center-out joystick task (Fig. 1c-d; Supplementary 

Table 1-2). We chose 16 LFP channels and 7 screw ECoG channels from distinct areas to obtain a subset of anatomically 

spatially distributed signals. The monkey began each trial by holding a cursor at the center target. Then, one of eight outer 

targets was presented on the screen. After 333 ms, the monkey was instructed to move the cursor to the target for rewards. 

LFP data was recorded using a semichronic multielectrode array (GrayMatter Research, Bozeman, MT) and screw ECoG 

data was recorded using screw-type electrodes. The length of each trial is variable, but on average is 1.53 ± 1.22 seconds 

(mean ± s.d.; Fig. 1e).  

We next analytically validated NBGNet-inferred neural activities by calculating root mean squared errors (Fig. 1f-g); 

reproducing features seen in common neuroscientific analyses (cross-correlation; Fig. 2, phase synchrony; Fig. 3); 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.11.30.404244doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.404244
http://creativecommons.org/licenses/by-nc-nd/4.0/


reconstructing low-dimensional latent dynamics (Fig. 4); inferring details of behavior (Fig. 5); and predicting out-of-sample 

conditions (Fig. 6). For all results in this paper, we trained NBGNets without any information about task conditions or 

behavioral parameters (e.g., real kinematics or eye-tracker data).  

 

Validation of NBGNet predictions using a center-out joystick task. The representative dataset used in Fig. 1 consisted of 

150 individual reach trials (average 175 trials/session). Since the beta frequency band (12.5–30 Hz) is strongly implicated 

in motor behaviors23,24, (Supplementary Fig. 3), we examined performance with root mean squared error (RMSE) for the 

predicted broadband signals as well as specifically for the beta band activity extracted from the predictions (Fig. 1f). Long 

short-term memory based recurrent neural network (RNN) was utilized as baseline for quantitative comparison. NBGNet-

reconstructed screw ECoG had better match with the ground-truth screw ECoG (RMSE = 0.21 ± 0.09 for broadband; 0.13 

± 0.07 for beta band; mean ± s.d. in the unit of 10-4 V) than RNN’s predictions (RMSE = 0.28 ± 0.09 for broadband; 0.16 ± 

0.07 for beta band). Additionally, session-averaged RMSE (0.45 for NBGNet < 0.47 for RNN in broadband; 0.15 for NBGNet 

< 0.18 for RNN in beta band; Supplementary Fig. 4) indicated that forward-NBGNet successfully estimated the neural 

oscillations recorded from screw ECoG.  

We also tested whether inverse-NBGNet could recover LFP with screw ECoG recordings (Fig. 1g). Similarly, inverse-

NBGNet (RMSE = 0.29 ± 0.12 for broadband; 0.18 ± 0.10 for beta band) outperformed RNN (RMSE = 0.35 ± 0.13 for 

broadband; 0.22 ± 0.10 for beta band). Evidenced with the fact that session-averaged RMSE from NBGNet (0.56 for 

broadband; 0.21 for beta band) was less than that from RNN (0.57 for broadband; 0.25 for beta band), inverse-NBGNet 

was able to transform the lower-dimensional screw ECoG into the higher-dimensional LFP.  

 

NBGNet outputs correlate with ground truth signals. Similarity of oscillation dynamics is another evaluation of integrity 

of predicted signals using cross-correlations computed on a single-trial single-channel basis. From the representative 

session (Fig. 2a-b), model-predicted signals from all the channels, excluding channel 1 (S1, right hemisphere), were 

moderately to strongly correlated with the ground-truth signals with average correlation greater than 0.425,26. Strong 

correlation (correlation coefficient > 0.6) was found on 57% of channels. Interestingly, due to movement-induced activation, 

channels at anterior brain regions exhibited larger correlation than those at posterior brain regions. In the representative 

trial, the predicted screw ECoG matched well with the raw screw ECoG for channel 2 (Fig. 2c). The grand average also 

indicated that forward-NBGNet accurately reconstructed screw ECoG with consistently small error trace (Fig. 2d). We noted 

that in channel 7, the performance was relatively poor in the first 0.5 s when the subject was searching for the correct 

direction of cursor’s movement; however, the performance became better in the rest of time when the direction of 

movement aligned with the target direction.  

 We also studied the correlation between the inverse-NBGNet-inferred LFPs and the ground-truth LFPs. Channel 14 

(SMA) provided the highest correlation as 0.83 ± 0.10 (mean ± s.d.; Fig. 2e-f). Due to unexpectedly larger amplitude, 

channel 5 (PMd) exhibited no correlation (0.02 ± 0.31). However, the predicted signals on the rest of the channels, 

excluding channel 11 (M1), were at least moderately correlated with ground-truth activity. 44% of channels showed strong 

correlations. As more ventral brain region were further from the surface where screw ECoG was recorded, the channels in 

these regions (channel 11, 13, 15, and 16) showed smaller correlations. In contrast, accurate prediction at channel 14 was 

expected (Fig. 2g-h). Both single-trial- and grand average-based evaluations demonstrated small deviations between the 

predictions and the ground truths. Taken together, the correlation analysis confirmed the NBGNet’s ability to capture the 

beta-frequency dynamic features. 
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Phase agreement in beta band during movement. Phase-domain coherence is an important tool to determine the 

integrity of the functional connectivity in brain networks. Accordingly, we examined whether the predicted and the 

recorded signals were phase-synchronized. Phase-locking value (PLV) has been widely used to measure the inter-trial 

variability of phase difference, where 1 represents no change in phase difference and 0 reflects the opposite case27,28. To 

assess the intra-trial variability, we adapted PLV by averaging the phase difference across the time rather than the trials 

(Fig. 3a,e). The phase of phase-locking, which indicates the average phase difference, was taken into consideration as well. 

Instantaneous phase synchrony (IPS) was then used to measure the phase similarity at each time point. Here we utilized a 

phase synchrony index (PSI) metric which was determined by the fraction of the time when the IPS was greater than a 

threshold at which the phase difference was less than 45o (threshold = 0.62; Supplementary Fig. 5). If the phase difference 

seldom exceeds 45o, PSI is close to 1; it is close to zero otherwise. Forward-NBGNet-predicted signals were in sync with the 

ground truths (73% of average phase difference < 22.5°; average PLV = 0.62; average PSI = 0.60; Fig. 3b). A representative 

channel, channel 2, was demonstrated to generate phase-synchronized predictions (PSI = 0.74; Fig. 3c). Since PLV and PSI 

provided disparate aspects, we assessed the phase synchrony for each channel and each trial in the form of a scatter plot 

(Fig. 3d). Segmentation of the scatter plot enabled us to study the further details (Supplementary Fig. 6). 78% of 

predictions exhibited moderate or strong phase synchronization. We next evaluated the inverse-NBGNet’s ability to infer 

the synchronous LFPs. The predictions were in sync with the ground-truth LFPs (62% of average phase difference < 22.5°; 

average PLV = 0.56; average PSI = 0.55; Fig. 3f). Highly synchronized predictions at a representative channel, channel 14, 

were observed (PSI = 0.84; Fig. 3g). Furthermore, approximately half of the predictions had strong synchronization (Fig. 

3h). Our phase analysis comprehensively validated that the model predictions are phase-synchronized with the ground 

truth. 

 

NBGNet captures latent dynamics. Since low-dimensional latent dynamics have been widely used to illuminate the 

relationship between neural population activity and behavior29–33, we also tested whether NBGNet could capture latent 

dynamics. The window of interest starting from movement onset and ending 600 ms after movement onset was selected, 

and there is no issue of imbalance target directions (Fig. 4a). We computed the neural manifold and the latent dynamics 

within it using principal component analysis (PCA)34,35. The resulting three PCs, termed neural modes, captured the 

majority of the variance (Supplementary Fig. 7), and were used to define the axes of the neural manifold. Canonical 

correlation analysis (CCA)36–38 was performed to align the latent dynamics (Fig. 4b). Correlation analysis (Pearson’s r) was 

then utilized to quantify the similarity of these latent dynamics. Since canonical correlations were sorted from largest to 

smallest, we expected the same trend in the evaluation. 

 Representative single-trial and grand-average latent trajectories for ground-truth and reconstructed screw ECoG were 

quite similar for all the target directions (Fig. 4c,d). Prediction-derived latent dynamics exhibited strong and moderate 

correlations with the ground-truth-based counterparts for neural mode 1 (0.91) and mode 2 (0.50), respectively (Fig. 4e). 

Temporal correlation showed the instantaneous performance, allowing us to identify the time-dependency of similarity. 

We noticed a consistently strong correlation for mode 1 and a strong correlation during the first 250 ms for mode 2, where 

a drop occurred, followed by a bounce back to correlated level (Fig, 4f). Even though, neural mode 2 still exhibited high 

correlation across the time (41% of the time showed the correlation > 0.4). These observations held for inverse-NBGNet. 

Latent trajectories derived from inverse-NBGNet-inferred LFPs and the ground-truth LFPs were highly correlated (Fig. 4g). 

Similarly, grand-average latent traces for the first neural mode were almost the same for all the targets (Fig. 4h), and a 
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strong and moderate correlation was observed in neural mode 1 (0.89), and 2 (0.57; Fig. 4i). Interestingly, the 

instantaneous correlation was consistently strong over the time interval (100%, and 84% of the time > 0.4 for neural mode 

1, and 2; Fig. 4j). We noted that the stronger correlation was associated with the higher ratio of variance the neural mode 

explained. Thus, we demonstrated that the NBGNet could capture the latent dynamics.  

 

Performance of linear decoder with NBGNet estimations. To understand the information encoded within neural 

populations, decoding cortical activity is of particular interest37. We wondered how accurately linear decoders trained with 

the model-inferred neural activities would perform (Fig. 5a-b). We first extracted candidate features from the dataset and 

picked five of them using Fisher score39 (Fig. 5c-d). Linear support vector machine (SVM)40 classifiers were then trained 

with selected features (Fig. 5e) to predict the direction of cursor’s movement, where the classification accuracy was 

evaluated using 5-fold cross-validation.  

 Candidate features were arranged in descending order based on Fisher score averaging across all the channels (Fig. 

5d). SVMs were trained with seven conditions: (1) screw ECoG only, (2) reconstructed screw ECoG only, (3) LFP only, (4) 

reconstructed LFP only, (5) screw ECoG + LFP, (6) reconstructed screw ECoG + LFP, and (7) screw ECoG + reconstructed LFP. 

Five features were selected for classifiers 1 – 4; while ten features were obtained by having five features picked from 

individual datasets for classifier 5 – 7. Although the classification accuracy of NBGNet-inferred screw ECoG activity (13%) 

appears lower than that of ground-truth screw ECoG (19%), there was no significant difference (p > 0.05; Fig. 5f). Incredibly, 

the classification performance for the predicted LFPs (25%) was as good as the classifier using features from real LFPs (26%; 

p = 0.73), indicating that NBGNet’s inference maintained the discriminant power. Also, there was no significant difference 

when NBGNet's predictions were included for forward (26% for LFP; 25% for LFP + reconstructed screw ECoG) and inverse 

model (19% for both screw ECoG and screw ECoG + reconstructed LFP). As expected, the classifier trained with LFP and 

screw ECoG outperformed the other conditions. Surprisingly, we noted a 0.73-fold decrease in the accuracy of 

reconstructed LFP and screw ECoG as compared with reconstructed LFP only, resulting from the selection of suboptimal 

features. Most of the leading discriminant features were from reconstructed LFP when considered simultaneously (Fig. 

5d). Together, we demonstrated that the presented model still maintained the integrity of information represented by the 

neural activity and thus held great potential to improve decoding capability by incorporating appropriate data 

preprocessing, feature selection, and decoder. 

 

Stable performance across days. As experiments are often performed across multiple sessions, we tested the stability of 

NBGNet using the same metrics (Supplementary Fig. 4, 8-11). First, the average RMSE between the NBGNet inference and 

recorded signals for both forward and inverse model were consistent over weeks to a degree almost indistinguishable from 

that in Day 1 (Fig. 6a-b). As was the case for RMSE, with a few individual trial exceptions, the forward- and inverse-model 

beta correlation were stable as well (Fig. 6c-d). In one exceptional case we found an unexpected decrease in correlation of 

a specific channel (Day 2 for forward model; Day 16 for inverse model) due to the amplitude change of the measurements. 

Overall, the predicted neural activities were still highly correlated with the empirical recordings (coefficient = 0.55 and 0.50 

for forward and inverse model).  

 We then tested the stability in phase analysis based on the percentage of predictions located in each zone of scatter 

plot. Forward-NBGNet-inferred screw ECoG were highly phase-synchronized with the real recordings across different days 

(Fig. 6e). More predictions were always located in the strong synchrony zone than in the poor one (+39%, +21%, +23%, 

+12%, +23% for Day 1, 2, 4, 12, 16, respectively). Also, reconstructed LFPs were consistently in sync (Fig. 6f). Although 
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smaller portion of good synchrony was observed in Day 2 (-4%) and Day 12 (-10%), more synchronous predictions were 

inferred across sessions (+4%/session).  

 The NBGNet maintained the capability of reconstructing latent dynamics during the repeated movement generation 

for the full length of recordings from the monkey (Fig. 6g,h). The stability held for a range of manifold dimensionalities 

from 1 to 3. As we found in Day 1 (Fig. 3e,i), descending trend in the correlations of neural modes was observed for multiple 

days. The average temporal correlations also showed similar results for both forward and inverse model. We then tested 

whether NBGNet inferences could be used to predict behavior in different sessions. It was noted that the classifiers 

performed as well as that trained in different sessions (Fig. 6i). These results provided evidence that NBGNet-derived 

signals can be employed to predict behavioral variables with similar accuracy as compared with the ground-truth signals 

for multiple sessions. 

 

Comparison of NBGNet and well-known algorithms. We compared the NBGNet with two conventional alternative 

approaches, specifically a sphere head model22,41 and RNN (Supplementary Fig. 12-15). Assuming a multi-layered spherical 

head where each layer represents each brain tissue, the sphere head model provides analytical formulas describing the 

contribution from current sources to EEG potentials, which are further utilized to approximate the inverse computation. 

We also applied the machine learning technique, RNN, as a purely date-driven alternative. NBGNet outperformed the 

purely data-driven RNN and electrophysiology-based sphere head model for multiple days (Fig. 6j). As expected, the 

performance of analytical solution was the worst due to the non-high-density recordings and the unrealistic assumptions 

(e.g. isotropic conductivity of the medium). The RNN failed to provide accurate predictions due to the model complexity. 

In this demonstration, NBGNet gave a more accurate inference consistently over multiple days. 

 

Discussion 

The brain consists of a hierarchical system with multiple levels of organization42. To gain a better understanding of 

brain computations, interest in multi-scale interaction among the genetic, cellular, and macroscale levels has been growing 

recently, inspiring a shift from emphasizing neural communication in individual scales to exploring the potential 

associations between scales. However, how these scales are interlinked is still an open question. NBGNet addresses an 

unmet need to capture the implicit relations of multi-scale brain activity. In the present study we have shown that the 

neural activity at one scale can be inferred from one another and the performance remains stable over multiple days. The 

underlying dynamics embedded in NBGNet illustrate how the activity at one scale communicate with other scales, which 

is a key factor in uncovering the mechanistic understanding of brain computations and the mediation of the behaviors.  

To the best of our knowledge, this is the first demonstration of a BG applied to model the multi-scale neural activity. 

Assuming the brain computation as a nonlinear operator, we employ the deep learning technique to approximate the 

nonlinear mapping in the BG-derived dynamical systems which describe the translations between different scales. 

Although channel selection is based on the spatial relationships, NBGNet’s performance is not dependent upon the depth 

(Supplementary Fig. 16), but on the regions (Fig. 2). Forward-NBGNet captures the internal dynamics for performing a 

center-out task and thus accurately reconstructs the task-related neural activity in premotor, prefrontal cortex, and primary 

motor cortex. Similarly, inverse-NBGNet-inferred activity matches the ground truth at motor area other than the primary 

somatosensory cortex. As inverse model is developed by nonlinearizing the inversion of linear forward mapping rather 

than the direct inversion of nonlinear forward mapping, a slightly poorer performance is observed at more ventral brain 

region. Since the channel-to-channel communication is modeled individually, scaling up to more channels is expected to 
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mitigate the unexpected mismatch. Evidenced with the failure of capturing the noise from unstable recordings, dynamics 

embedded in the NBGNet are useful for disambiguating brain computations. 

The guiding factor in model evaluation is utilizing comprehensive metrics. This is especially important for 

neuroscientific research. RMSE (Fig. 1) and R-squared (Fig. 6) are used to indicate the absolute and relative measure of fit. 

Because correlation and coherence are the measures of similarity analyzed in time- and phase-domain, we also employ 

cross-correlation (Fig. 2) and phase synchrony (Fig. 3) for assessment. Capability of reconstructing the low-dimensional 

latent dynamics is essential as it holds a key to the understanding of neural mechanisms (Fig. 4). Additionally, we consider 

the decoding accuracy as an indicator for the applicability of brain-machine interface (Fig. 5). Finally, the predictive power 

without retraining the model over a long period has recently drawn much attention for the field of neural engineering (Fig. 

6). With these comprehensive metrics, we have validated the NBGNet as a reliable approach.   

The bias-variance tradeoff is a critical problem in statistics and machine learning, where the simple models have a 

lower variance yet a higher bias, and the complexity of the model can reduce the bias but increase the variance. It is thus 

expected that the NBGNet outperforms the analytical sphere head model and the RNN. With the assumptions of the signal 

sources and the conductivity of the brain tissues, the sphere head model provides a simple solution, but it leads to a large 

bias error. The data-driven RNN enables the approximation of nonlinear dynamics; however, a large variance, or the so-

called “overfitting,” can be observed. Combining both electrophysiological modeling and deep learning technique, NBGNet, 

with the complexity lying between sphere head model and RNN, can capture the patterns in the training data and adapt 

itself to unseen data, holding a great potential to resolving the bias-variance dilemma.  

NBGNet will be helpful in investigating the underlying dynamics in multi-scale brain networks. Modeling the neural 

activity at disparate scales yields the causal interactions among multiple levels, which is crucial in illuminating the 

mechanistic understanding of brain computation. Whereas current work focuses on cross-scale interaction, within-scale 

communication can be incorporated for comprehensive modeling. Additionally, NBGNet can potentially improve the 

applicability of brain-machine interfaces by inferring the brain activity with increased signal-to-noise ratio. Moreover, the 

inverse computation to reconstruct the activity at the uncovered brain regions makes LFP-derived whole-brain dynamics 

available. Taken together, our work represents an important step forward towards the mechanistic modeling of multi-scale 

neural activity, which may facilitate our understanding of neuropathological activity and the development of clinical 

devices and rehabilitative therapies to treat abnormal neural activity underlying dysfunctional behaviors.   
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Fig. 1 | NBGNet is a sparse recurrent neural network that utilizes nonlinear dynamics to model the translation between 

multimodal brain activities. a, Schematic overview of NBGNet architecture for forward and inverse modeling between LFP and 

screw ECoG. Details are provided in the main text. b, Spatial relationships between LFP and screw ECoG. c, LFP data was acquired 

from one hemisphere, and screw ECoG signals were recorded across both hemispheres. d, Monkey performed a center-out reaching 

task using a joystick. e, Schematic of protocol for the experiments. f,g, Histogram and cumulative distribution function (c.d.f.) of 

RMSE in broadband and beta band (12.5 – 30 Hz) for forward model (f) and inverse model (g; red dashed line: mean). 
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Fig. 2 | Cross-correlation analysis indicated the similarity between NBGNet inference and ground-truth recordings. a, Average 

correlation coefficient across all the trials (error bars, s.d.; n = 150). Screw ECoG electrodes layout labeled with the channel 

number. Blue shaded area represents the coverage of LFP channels. b, Heatmap showing correlation coefficient for each trial (x 

axis) and each targeted screw ECoG channel (y axis). The color key from blue to yellow to red indicates the coefficient from low 

(0.0) to high (1.0). c,d, Two screw ECoG channels (2: PMv, 7: S1) were selected for single trial-based comparison (c): ground truth 

(blue trace) versus model prediction (red trace) in the 4th trial, and grand average-based comparison (d): ground truth (blue trace; 

mean ± s.e.m.) versus network output (red trace; mean ± s.e.m.) and the corresponding error trace (black trace). e, Same as a for 

the inverse model, where LFP electrodes are within the coverage of the blue shaded area. f, Same as b for the inverse model, 

where y axis represents the targeted LFP channels. g,h, Same as c,d for representative comparison for the inverse model, where 

only one LFP channel (14: SMA) was chosen. 
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Fig. 3 | Strong phase synchrony between NBGNet estimations and the experimental recordings. a, Polar plots of the mean phase 

difference averaging across time in each trial for the forward model (n = 1,050). b, Angular and corresponding zoom-in histogram of 

the phase of phase-locking derived from (a). c, A screw ECoG channel (2: PMv) was selected for demonstrating that NBGNet made 

predictions in sync with the ground truth in the 4th trial. Instantaneous phase of the ground truth (blue trace) and the model 

inference (red trace) at each timepoint (upper) was employed to obtain the instantaneous phase synchrony (lower; black trace) 

across the time. Yellow area showed a strong synchronization utilized to compute the phase synchrony index (PSI). d, A scatter plot 

of phase analysis on each channel and each trial, respectively (n = 1,050), revealing the expected and hidden relations between PSI 

and phase-locking value (PLV). Histograms of both PLV and PSI are represented on the x and y axes, respectively. 0.5 was set as 

thresholds for both PSI and PLV (black dashed line) to identify strong, medium, and poor synchrony regions (Supplementary Fig. 6). 

e, Same as a for the inverse model (n = 2,400). f, Same as b for the inverse model, where the histogram was derived from e. g, Same 

as c, where the chosen LFP channel for demonstration was the same as Fig. 2g,h. h, Same as d for the inverse model (n = 2,400). 
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Fig. 4 | NBGNet captures and reconstructs the latent dynamics in the reaching-out task. a, Schematic of protocol indicates the 

time window used for analysis. Probability of each target direction is uniform. b, We predicted that the latent dynamics can be 

recovered. c, Representative latent trajectories derived from the ground-truth screw ECoG (left) and reconstructed screw ECoG 

(right). Each color represents each target direction in a. d, Projection of average ground-truth (blue trace) and reconstructed (red 

trace) latent trajectories for each target on the first mode. e, Bar plot showing the strong magnitude of the correlations between 

the ground-truth and reconstructed latent trajectories (error bars, s.e.m.; n = 68). f, Temporal correlation trajectories for each neural 

mode (green trace when above the threshold as 0.4; grey trace as below the threshold; mean ± s.e.m.). g, Same as c for the inverse 

model to reconstruct the latent trajectories derived from LFPs. h, Same as d for the projection of average ground-truth LFPs-derived 

(blue trace) and reconstructed LFPs-derived (red trace) latent trajectories. i, Same as e for the correlation between the latent 

trajectories obtained from recorded LFPs and estimated LFPs. j, Same as f for the inverse model (purple trace when above the 

threshold as 0.4; grey trace as below the threshold). 
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Fig. 5 | NBGNet inference can be used to predict the movement behavior. a, Schematic of NBGNet employed to reconstruct screw 

ECoG (forward) and LFPs (inverse). b, Individual reaches of a monkey during a center-out task, colored by target location. c, 

Schematic of feature selection process to select candidates for decoder development. d, Heatmap showing Fisher score for each 

feature (x axis) and each channel (y axis). e, The single-trial features were projected into the feature space, where the linear SVM 

classifier found the optimal hyperplanes to separate these data points. f, Bar plot showing the classification accuracy for each 

dataset (error bars, s.d.; n = 5). **p < 0.005, *p < 0.05 using paired T-test. 
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Fig. 6 | Stability of NBGNet’s predictions for multiple days. a,b, Histogram of RMSE (left) at Day 1 (blue) and 16 (purple) for the 

forward (a) and the inverse (b) model. Scatter plot of average RMSE (right) showing no significant difference (error bars, s.e.m.; n = 

7 and 16 for a and b). c,d, Beta correlation (left) at Day 1 (blue) and 16 (purple) for the forward (c) and the inverse (d) model. Scatter 

plot of average beta correlation, where black solid line is obtained by averaging over the channels and black dashed line left the 

poorest channel out (error bars, s.e.m.; n = 7 and 16 for c and d). e,f, Scatter plot of PSI versus PLI (left) at Day 1 (blue circle) and 16 

(purple triangle) for the forward (e) and the inverse (f) model. Stacked bars (right) demonstrate the percentage of predictions 

locating in each section. g,h, Temporal correlation averaging across days (upper), where colored segments represents stronger 

correlation as compared with the grey counterparts. Bar plot of average correlation (lower) exhibiting stable performance (error 

bars; s.e.m.; n = 68, 49, 128, 78, 135 at Day 1, 2, 4, 12, 16). i, Bar plots showing the classification accuracy of linear classifier to 

predict the target direction (error bars, s.d.; n = 5). Dashed line represents the average performance across days. j, Performance was 

quantified by measuring variance explained (R2) between the ground-truth and inferred signals. Dotted lines connect the mean R2 

value for each population size.   
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Methods 

The NBGNet model. The NeuroBondGraph Network. The NBGNet model is a sparse recurrent neural network (RNN) that 

captures the system dynamics functionality, especially causality. RNNs make use of sequential information, assuming the 

output being depended on the previous computations. Accordingly, RNNs have the memory to capture the information 

about what has been calculated so far. Evidenced with the fact that the recurrent connections exist in visual cortex and 

hippocampus43, RNN is crucial to capture the neural dynamics. Unlike a “black box” model, RNNs in NBGNet are sparsely 

connected, creating a “gray-box” recurrent neural model using a priori knowledge about the system from the Bond Graphs 

(BGs)18. BGs are regarded as powerful tools to model the physical system by investigating how energy is generated, 

transferred, transformed, and dissipated among the different system components. BGs allow us to obtain the full 

representation of the dynamics of the system, and then extract the nonlinear dynamic equation describing the system. 

Starting with modeling the signal translation between brain activity recorded from different modalities, we can obtain the 

underlying nonlinear dynamic equations and generate the corresponding NBGNet. In the end, the well-trained network 

served as the solution to inferring the neural activity from one another.  

 

Bond Graphs modeling. Bond graph is a graphical representation of a physical system that allows us to describe the system 

with a state-space representation. BG consists of the “bonds,” representing the power which is categorized into two parts: 

flow and effort, and the elements, including single-port, and multi-port components. Literally, single-port elements only 

have one port for the linkage. Such elements include (1) sources, denoted as Se or Sf, serving as the input effort or flow for 

the system, (2) sinks, denoted as the same as the sources, serving as the output effort or flow for the system, (3) inertia 

elements, denoted as I, are the ones that store energy, (4) resistance elements, denoted as R, are the elements that 

dissipate energy, and (5) compliance elements, denoted as C, are the elements that store potential energy. Furthermore, 

multi-port elements such as 0-junctions and 1-junctions are employed to split power across their ports. The properties of 

0-junctions are that all efforts are equal across the bonds and the sum of flow in equals to the sum of flow out. In contrast, 

1-junctions represent that all flows are equal across the bonds and the sum of effort in equals to the sum of effort out. 

The main concept of BG is to link each component in the graph with the “bonds” which represent the bi-directional 

exchange of energy. Each bond has two features, half-arrow and causality. Half-arrow is used to provide the sign convention 

for the work being done. Accordingly, sources will always have the arrow pointing away from the element, while the rest 

of the single-port elements will have the arrow pointing into the elements. Causality in BG denotes which side of the bond 

governs the instantaneous effort and flow. The causal stroke is assigned to one end of the bond to represent the side with 

causality defines the flow while the opposite end defines the effort. In general, since two passive components, I and C, 

exhibit time-dependence behavior, they have preferred causal orientation with C component defining the effort and I 

component defining the flow. Since BGs are domain neutral, where energy in different domains (e.g., linear mechanical, 

angular mechanical, electromagnetic, and hydraulic) can be transferred into each other with a constant, this dynamical 

modeling can incorporate physical systems in multiple domains.  

 

Bond Graphs forward modeling. The interactions between recording systems were modeled based on the physiology of 

brain tissue and its effect on the electrical signal flow. Screw ECoG signals were recorded within the skull while LFP signals 

were measured within the cortex. Therefore, the brain tissues between the recording location of screw ECoG and LFP are 

skull, dura mater, and cortex. Assuming that the LFP recordings are the electrical source, the screw ECoG is the 

measurement of the voltage, and brain tissues represented the effective impedance, we can model it as an electrical circuit. 
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The skull is the bony structure which contains sinus cavities and numerous foramina. From the anatomy, the skull consists 

of three layers: a spongy bone layer in the middle of two compact bone layers. The cavities in the spongy bone can be 

modeled as a capacitance that provides a potential inside them. The compact bone and the trabeculae of the spongy bone 

can be modeled as resistances. Various potential paths for electrical signals to travel are taken into account to construct a 

simplified electrical model to study the signal propagation. As dura mater is a thick membrane surrounding the brain, dura 

model is built with the effective resistance and capacitance in parallel. Although cortex is composed of folded grey matter, 

it is modeled as an effective resistance to simplify the complexity. Combing together, LFP-screw ECoG transmission 

electrical circuit can be established (Supplementary Fig. 1a). With the effective electrical circuit for electrical signal 

pathways, Bond Graph is then generated (Supplementary Fig. 1b), where the charges, q, are represented the states of the 

physical systems. Given the causality assignment, the system is 3rd order. The ordinary differential equations for the system 

are derived as follows: 

𝑞̇1 = 𝑞̇2 +
𝑞2

𝑅2𝐶2
+

1
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(
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−
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𝐶2
−

𝑞3

𝐶3
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1

𝑅5
(
𝑞2

𝐶2
−

𝑞3

𝐶3
) −

𝑞3
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1
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))                       (2) 

While the equations above represent the ideal condition where the resistance R and the capacitance C are linear. 

Considering the uncertainty and continuous changing of human’s brain tissue, nonlinearity is introduced in the equation: 

𝑞̇1 = 𝐹𝑅𝑇

−1 (𝑢 − 𝐹𝐶1

−1(𝑞1) − 𝐹𝐶2
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𝑦 = 𝐹𝑅𝑠𝑐𝑟𝑒𝑤𝐸𝐶𝑜𝐺
(𝐹𝑅𝑇

−1 (𝑢 − 𝐹𝐶1

−1(𝑞1) − 𝐹𝐶2

−1(𝑞2)))                           (4) 

where, 𝑅𝑇 represents 𝑅0 + 𝑅4 + 𝑅𝑠𝑐𝑟𝑒𝑤𝐸𝐶𝑜𝐺 , 𝑢 represents 𝑉𝐿𝐹𝑃, 𝑦 represents 𝑉𝑠𝑐𝑟𝑒𝑤𝐸𝐶𝑜𝐺 , and 𝐹(∙) is a nonlinear 

function to be determined. 

 

Bond Graphs inverse modeling. The multi-variable time varying Bond Graph forward model, equation (1-2), can be 

expressed as the state-space representation, 

𝑥̇ = 𝐀𝑥 + 𝐁𝑢                                        (5) 

𝑦 = 𝐂𝑥 + 𝐃𝑢                                        (6) 
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1
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The inversion algorithm for multi-variable system were obtained by Sain and Massey44, 
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𝑉𝐿𝐹𝑃 =
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 𝑉𝑠𝑐𝑟𝑒𝑤𝐸𝐶𝑜𝐺                          (12) 

As forward model, nonlinearity is introduced in the equation as well, 
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𝑢 = 𝐹𝐶1

−1(𝑞1) + 𝐹𝐶2

−1(𝑞2) + 𝐹𝑅𝑇
(𝐹𝑅𝑠𝑐𝑟𝑒𝑤𝐸𝐶𝑜𝐺

−1 (𝑦))                         (14) 

where, 𝑅𝑇 represents 𝑅0 + 𝑅4 + 𝑅𝑠𝑐𝑟𝑒𝑤𝐸𝐶𝑜𝐺 , 𝑢 represents 𝑉𝐿𝐹𝑃, 𝑦 represents 𝑉𝑠𝑐𝑟𝑒𝑤𝐸𝐶𝑜𝐺 , and 𝐹(∙) is a nonlinear 

function to be determined. 

 

NeuroBondGraphs Network modeling. To approximate the unknown nonlinear relationship, artificial neural network 

technique is introduced to incorporate the knowledge obtained from the pattern recognition capabilities of neural network 

and the physical information about the system via BG. Each nonlinear function is approximated through a multi-layer 

perceptron (MLP) unit. The architecture of NBGNet is a sparse recurrent MLP network which can identify the nonlinear 

dynamics recursively.  

 

The full NBGNet inference model. The full NBGNet, both forward and inverse models, are run in the following way. First, a 

data trial is chosen. Then, for each time step from 1 to 𝑇, the network is updated and eventually predicts the output 

according to 

𝐕𝑠𝑐𝑟𝑒𝑤𝐸𝐶𝑜𝐺,𝑡 , 𝐪𝑡+1
𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = NBG𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝐪𝑡

𝑓𝑜𝑟𝑤𝑎𝑟𝑑 , 𝐕𝐿𝐹𝑃,𝑡)                    (15) 

 

𝐕𝐿𝐹𝑃,𝑡 , 𝐪𝑡+1
𝑖𝑛𝑣𝑒𝑟𝑠𝑒 = NBG𝑖𝑛𝑣𝑒𝑟𝑠𝑒(𝐪𝑡

𝑖𝑛𝑣𝑒𝑟𝑠𝑒 , 𝐕𝑠𝑐𝑟𝑒𝑤𝐸𝐶𝑜𝐺,𝑡)                      (16) 
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After training, the full model can be run, starting with any single trial or a set of trials corresponding to the particular 

experimental conditions, to obtain the associated dynamic states, and inferred target signals for that trial or condition.  

 

The loss function. To optimize our model, we would like to minimize the mean-squared-error (MSE) of the data, which 

measures the average of the squares of the errors. Given the ground-truth measurement 𝐘𝑔𝑡 and the model prediction 

𝐘𝑝𝑟𝑒 , the MSE is calculated as follows, 

MSE =
1

𝑇
∑ [𝐘𝑔𝑡(𝑡) − 𝐘𝑝𝑟𝑒(𝑡)]

2𝑇−1
𝑡=0                                 (17) 

where, 𝑇 is the number of time points in the given trial. The loss function will be minimized by backpropagating the error 

and update the parameters of the model iteratively. 

 

Hyperparameters and further details of NBGNet implementation. The major hyperparameters for forward and inverse 

model is the number of hidden nodes in the MLP unit for nonlinear mapping estimation and the time step. For both 

forward and inverse model, 7 nodes were utilized in MLP units, and the time step of NBGNet was equal to the data bin 

size. To help avoid over-fitting, we selected different trials of data for model training when NBGNet has been updated for 

twenty times. Furthermore, NBGNet is sparsely connected rather than fully connected, which reduces the complexity of 

the model.  

NBGNets were randomly initialized by Glorot uniform initializer and optimized using adaptive moment estimation (Adam) 

optimizer with a starting learning rate of 1 x 10-3. The framework was implemented with TensorFlow version 1.15.0 and 

Python version 3.7.4 in the Microsoft Windows 10 operating system. The training was performed on a consumer-built 

desktop equipped with 4 GPUs (Gigabyte RTX 2080 Ti graphics cards, NVIDIA) and a Core i9-9820X CPU @ 3.3 GHz (Intel). 

To monitor overfitting, a portion of the data is set aside as the validation set, and these data are not used to update the 

weights of NBGNet. Instead, they are used to evaluate the predictive performance on held-out data. Here we used a ratio 

of 9:1 between training and validation data.  

 

Behavioral tasks. The macaque monkey was trained in a center-out task. Briefly, the subject was trained to use a joystick 

to move a cursor on a computer screen from a center target to a peripheral target. The joystick was located in front of the 

primate chair and the subject was free to use either hand to control the joystick during the experiment. In the task, the 

subject was trained to fold the cursor at the center target for 320 ms. Then the subject was presented with one of the 

eight outer targets, equally spaced in a circle and selected randomly with uniform probability. The subject moved the 

cursor to the peripheral target and held the cursor inside the target for 320 ms. A trial was considered to be successful if 

the subject completed the 320 ms hold-center followed by holding at the peripheral target for 320 ms. The reward was 

scheduled after a successful trial, where a custom-programmed Arduino triggered the reward system to deliver a small 

amount of juice to the subject.  

 

Scale-dependent analysis. To evaluate how close the model predictions are to the ground-truth signals, root mean square 

error (RMSE) is commonly used to indicate the absolute fit of the model. RMSE is defined as the square root of the mean 

of the square of the error, 

RMSE = √
1

𝑇
∑ [𝐘𝑔𝑡(𝑡) − 𝐘𝑝𝑟𝑒(𝑡)]

2𝑇
𝑡=1                                 (18) 
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where the 𝐘𝑔𝑡 represents ground-truth measurement, 𝐘𝑝𝑟𝑒  represents the model prediction, and 𝑇 is the number of 

time points in the given trial. 

 

Similarity analysis. Similarity of two time series signals also conveys an important message whether two time series signals 

exhibit similar shape of oscillation. Here we use Pearson correlation coefficient to measure how highly correlated two time 

series signals are.  

ρ(𝐘𝑔𝑡 , 𝐘𝑝𝑟𝑒) =
∑𝐘𝑔𝑡𝐘𝑝𝑟𝑒−

∑ 𝐘𝑔𝑡 ∑ 𝐘𝑝𝑟𝑒

𝑇

√(∑𝐘𝑔𝑡
2 −

(∑ 𝐘𝑔𝑡)
2

𝑇
)(∑𝐘𝑝𝑟𝑒

2 −
(∑ 𝐘𝑝𝑟𝑒)

2

𝑇
)

                             (19) 

where the 𝐘𝑔𝑡 represents ground-truth measurement, 𝐘𝑝𝑟𝑒  represents the model prediction, and 𝑇 is the number of 

time points in the given trial. 

 

Phase analysis. On top of the time-domain, phase-domain reveals other characteristics that are not visible in time-domain. 

Especially in neural engineering field, the synchronization of the neural activity is one of the properties that can only be 

quantified in phase domain. Given a pair of signals, 𝐬1(𝑡) and 𝐬2(𝑡), which have been band-pass filtered to a frequency 

range of interest, Hilbert transform, 𝐇𝐓[∙] , will be applied to obtain the corresponding analytical signals, 𝐳1(𝑡)  and 

𝐳2(𝑡), 

𝐳𝑖(𝑡) = 𝐬𝑖(𝑡) + 𝑗 𝐇𝐓[𝐬𝑖(𝑡)] = 𝐀𝑖(𝑡)𝑒
𝑗𝛟𝑖(𝑡)                             (20) 

𝐇𝐓[𝐬𝑖(𝑡𝑘)] = 𝐬𝑖(𝑡𝑘) ∗
1

2𝜋
[∫ 𝑗 ∙ 𝑒𝑗𝑤𝑘𝑑𝑤

0

−𝜋
− ∫ 𝑗 ∙ 𝑒𝑗𝑤𝑘𝑑𝑤

𝜋

0
]                      (21) 

where 𝑘 = 1 to 𝑇, 𝐀𝑖(𝑡) represents the instantaneous amplitude, and 𝛟𝑖(𝑡) represents the instantaneous phase. In 

order to obtain a comprehensive view, we utilized two metrics: phase-locking value and phase synchrony index. Phase 

locking value27, 𝑃𝐿𝑉, or so-called mean phase coherence28, is defined as, 

𝑃𝐿𝑉 = |
1

𝑇
∑ 𝑒𝑗(∆𝛟(𝑡))𝑇−1

𝑖=0 |                                    (22) 

It is utilized to measure the intra-trial variability of the phase difference between two signals. In addition, the phase of 

phase-locking can be extracted to evaluate the mean phase different across time.  

On top of 𝑃𝐿𝑉, we are also interested in the instantaneous performance, and thus we introduce phase synchrony index. 

First, provided with the instantaneous phase of two time series signals, 𝛟1(𝑡)  and 𝛟2(𝑡) , the instantaneous phase 

synchrony, 𝐼𝑃𝑆, which measures the phase similarity at each timepoint, is calculated by 

𝐼𝑃𝑆(𝑡) = 1 − sin (
|𝛟1(𝑡)−𝛟2(𝑡)|

2
)                                 (23) 

where the phase is in the unit of degree. We define 45o as the threshold of the phase difference. When the phase difference 

is less than 45o, 𝐼𝑃𝑆 is greater than 0.62. We then calculate the ratio of the time with the 𝐼𝑃𝑆 greater than 0.62, termed 

phase synchrony index, 𝑃𝑆𝐼 (Supplementary Fig. 5), 

𝑃𝑆𝐼 =
𝑡𝐼𝑃𝑆>0.62

𝑇
                                       (24) 

To determine the level of the phase synchrony, we categorize the two-dimensional scatter plot of 𝑃𝑆𝐼 and 𝑃𝐿𝑉 into four 

sections with both thresholds as 0.5: Zone 1 (low 𝑃𝑆𝐼 and low 𝑃𝐿𝑉) indicates poor synchronization, Zone 2 (low 𝑃𝑆𝐼 
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and high 𝑃𝐿𝑉) indicates medium synchronization, Zone 3 (high 𝑃𝑆𝐼 and low 𝑃𝐿𝑉) indicates medium synchronization, 

and Zone 4 (high 𝑃𝑆𝐼 and high 𝑃𝐿𝑉) indicates perfect synchronization (Supplementary Fig. 6). 

 

Neural latent dynamic analysis. To characterize the latent dynamics associated with the recorded or reconstructed neural 

activity in each trial, we analyzed the filtered signals, which were obtained by applying a bandpass filter at 12.5 Hz and 30 

Hz, in the window starting at movement onset and ending 600 ms after movement onset. Such a window was selected 

was due to the interest in movement execution during the trial. For each trial, we obtained the data matrix D of dimension 

n by T, where n is the number of recorded channels, T is the number of time points in the given trial. Then we computed 

the low-dimensional manifold by applying principal component analysis (PCA) to D. The resulting PCs are the linear 

combination of measurements of all the channels. We would then rank these PCs based on the amount of neural variance 

explained by each PC explains. We keep only three leading PCs to represent the low-dimensional manifold, where these 

three leading PCs, or called neural modes, explain most of the variance in the data matrix (Supplementary Fig. 7).  

Assuming the latent dynamics captured by the neural recordings and the reconstructed latent dynamics inferred from 

NBGNet’s predictions are the projections on the different manifolds from the true latent dynamics45, we expect to identify 

the embedding space that true latent dynamics is located by using canonical correlation analysis (CCA). In CCA, given a pair 

of two latent trajectories, 𝐏𝐴  and 𝐏𝐵 , linear transformations for each trajectory are identified to make the linearly 

transformed latent trajectories, 𝐏̃𝐴  and 𝐏̃𝐵 , maximally correlated. First, QR decomposition is applied to both latent 

trajectories, 

𝐏𝐴
𝑇 = 𝐐𝐴𝐑𝐴                                        (25) 

𝐏𝐵
𝑇 = 𝐐𝐵𝐑𝐵                                         (26) 

Then the singular value decomposition is performed on the inner product of 𝐐𝐴 and 𝐐𝐵. 

𝐐𝐴
𝑇𝐐𝐵 = 𝐔𝐒𝐕𝑇                                      (27) 

The transformation matrix, 𝐓𝐴 and 𝐓𝐵, is obtained by, 

𝐓𝐴 = 𝐑𝐴
−1𝐔                                        (28) 

𝐓𝐵 = 𝐑𝐵
−1𝐕                                        (29) 

Accordingly, the transformed latent trajectories are given by 

𝐏̃𝐴
𝑇 = 𝐏𝐴

𝑇𝐓𝐴                                        (30) 

𝐏̃𝐵
𝑇 = 𝐏𝐵

𝑇𝐓𝐵                                        (31) 

The correlation between the transformed latent trajectories, termed canonical correlation (CC), is obtained by the Pearson 

correlation coefficient. As CC is sorted from the largest to the smallest in CCA, we expect to observe a descending order 

from neural mode 1 to mode 3.    

 

Features selection for decoding the direction of the movement. We introduced several features per channel as candidates 

for the decoder and selected the leading number of features for further analysis. For each channel, we obtained total 34 

features, including root mean square (RMS), mean frequency (MF), waveform length (WL), and the power at certain 

frequency ranged from 10 – 40 Hz (step size as 1 Hz).  

𝑅𝑀𝑆 = √
1

𝑇
∑ 𝐘(𝑡)2𝑇−1

𝑡=0                                      (32) 

𝑀𝐹 =
∑ 𝑓𝑡𝑝𝑡

𝑇−1
𝑡=0

∑ 𝑝𝑡
𝑇−1
𝑡=0

                                        (33) 
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𝑊𝐿 = ∑ |𝐘(𝑡) − 𝐘(𝑡 − 1)|𝑇−1
𝑡=1                                   (34) 

where 𝐘(𝑡)  represents the neural signals, 𝑇  is the number of time points in the given trial, 𝑓𝑡   and 𝑝𝑡  are the 

frequencies of the power spectrum and the corresponding amplitude.   

To determine the features to be selected, we calculate the Fisher score for each candidate and select to the leading features. 

The Fisher score, 𝐹(𝑥𝑖), for the 𝑖-th feature, 𝑥𝑖 , is computed by 

𝐹(𝑥𝑖) =
∑ 𝑛𝑗(𝜇𝑗

𝑖−𝜇𝑖)
2

𝑐
𝑗=1

∑ 𝑛𝑗(𝜎𝑗
𝑖)

2
𝑐
𝑗=1

                                     (35) 

where 𝜇𝑗
𝑖  and 𝜎𝑗

𝑖 are the mean and standard deviation of the 𝑗-th class corresponding to the 𝑖-th feature, 𝜇𝑖  denotes 

the mean of the whole data set corresponding to the 𝑖-th feature, 𝑛𝑗  represents the size of the 𝑗-th class, and 𝑐 is the 

total number of classes. After computing the Fisher score for each feature, we selected the top-five ranked features to 

predict the subject’s behavior. The features selected for analysis are summarized in Supplementary Table 3.  

 

Predicting target direction from LFP and screw ECoG. To test whether the reconstructed activity from NBGNet maintain 

movement-related information, we built linear decoders to predict the direction of the movement based on the neural 

activity. Our hypothesis was that our NBGNet inference should provide as accurate predictions as the neural recordings. 

To test this hypothesis, we compared the predictive accuracy of seven types of decoders: (1) a decoder trained and tested 

based on screw ECoG; (2) a decoder trained and tested based on reconstructed screw ECoG inferred by forward-NBGNet; 

(3) a decoder trained and tested based on LFP; (4) a decoder trained and tested based on reconstructed LFP inferred by 

inverse-NBGNet; (5) a decoder trained and tested based on screw ECoG and LFP; (6) a decoder trained and tested based 

on reconstructed screw ECoG and LFP; and (7) a decoder trained and tested based on reconstructed LFP and screw ECoG. 

All decoders were linear support vector machine that used the selected features (Supplementary Table 3) as inputs to 

predict the direction of cursor’s movement. They were trained and tested on the same day, using five-fold cross-validation 

procedure to protect against overfitting. Chance-level performance was obtained by shuffling the dataset. As expected, all 

the predictive accuracy was higher than the chance-level, which was around 12.5 %.  

 

Comparison methods. To evaluate performance of NBGNet as compared to other existing algorithms, we implemented 

two approaches from different perspectives: electrophysiology-based sphere head model and data-driven recurrent neural 

network.  

Sphere head model. Sphere head model is widely used to either compute the contribution from the current dipoles to the 

electrical potentials recorded at scalp electroencephalography (EEG) or estimate the current dipole sources based on the 

scalp potentials. Assume the head can be modeled as a four-layered sphere where each layer represents each tissue: brain, 

cerebrospinal fluid, skull, and scalp, respectively. Using the quasi-static approximation of Maxwell’s equations and the 

volume-conductor theory, the electrical potential, 𝚽(𝐫, 𝑡), can be calculated by the following Poisson equation46: 

∇ ∙ 𝜎(𝐫)∇𝚽(𝐫, 𝑡) = −𝐶(𝐫, 𝑡)                                 (36) 

where 𝜎(𝐫) represents the position-dependent conductivity of the medium, and 𝐶(𝐫, 𝑡) is the density of the current 

sources. Assuming the conductivity to be isotropic, the solution provided by sphere head model to equation (36) is 

𝚽𝑠+1(𝐫𝑠 , 𝑡) = 𝚽𝑠(𝐫𝑠 , 𝑡)                                  (37) 

𝜎𝑠+1
𝜕𝚽𝑠+1(𝐫𝑠,𝑡)

𝜕𝑟
= 𝜎𝑠

𝜕𝚽𝑠(𝐫𝑠,𝑡)

𝜕𝑟
                                (38) 
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𝜕𝚽4(𝐫4,𝑡)

𝜕𝑟
= 0                                      (39) 

where each layer is labeled by 𝑠 = 1 to 4. Here we assume the dipole is radial with the magnitude 𝑝(𝑡) at location 𝑟𝑧, 

the analytical solution to equation (37 – 39) is given by, 

 𝚽1(𝑟, 𝜃, 𝑡) =
𝑝(𝑡)

4𝜋𝜎1𝑟𝑧
∑ [𝐴𝑛

1 (
𝑟

𝑟1
)
𝑛

+ (
𝑟𝑧

𝑟
)
𝑛+1

] 𝑛𝑃𝑛(cos(𝜃))∞
𝑛=1          𝑟𝑧 < 𝑟 ≤ 𝑟1          (40) 

𝚽𝑠(𝑟, 𝜃, 𝑡) =
𝑝(𝑡)

4𝜋𝜎1𝑟𝑧
∑ [𝐴𝑛

𝑠 (
𝑟

𝑟𝑠
)
𝑛

+ 𝐵𝑛
𝑠 (

𝑟𝑠

𝑟
)
𝑛+1

] 𝑛𝑃𝑛(cos(𝜃))∞
𝑛=1          𝑟𝑠−1 ≤ 𝑟 ≤ 𝑟𝑠        (41) 

where 𝚽𝑠(𝑟, 𝜃, 𝑡)  is the extracellular potential measured at radius 𝑟  and the angle 𝜃  between measurement and 

dipole location vectors in the shell 𝑠, 𝑟𝑠 represents the radius of sphere 𝑠, 𝐴𝑛
𝑠  and 𝐵𝑛

𝑠 are the coefficients depending 

on the radius and conductivities of each medium, where are defined in47, and 𝑃𝑛(cos(𝜃)) represents the 𝑛-th Legendre 

Polynomial. As the solution is implemented into the case where we have 𝑛𝑑  current dipoles and 𝑛𝑟  recording units, a 

linear transformation matrix F of dimension nr by nd can be obtained and utilized to convert the dipole moment vectors 𝐗 

into the electrical potential 𝐘, given by 𝐘 = 𝐹𝐗. This is so-called forward mapping. When we performed inverse mapping 

to estimate 𝐗  from 𝐘 , we need to solve such an underdetermined system with pseudo-inverse by minimizing the 

following equation, 

‖𝐗‖2 + 𝜆(𝐘 − 𝐹𝐗)                                     (42) 

The solution to minimizing the equation (42) is given by, 

𝐗 = 𝐹𝑇(𝐹𝐹𝑇)−1𝐘                                     (43) 

Here we segment the brain into 3600 segments (𝑛𝑑 = 3600), where each segment includes a potential current dipole 

source. Since our data for comparison does not include dipole sources, we adapt the algorithms into two step computation 

for both forward and inverse model. In forward model, we performed inverse mapping from LFP toward estimated dipole 

sources followed by a forward mapping from the estimated dipole sources toward screw ECoG recordings. Similarly, in 

inverse model, we performed inverse mapping from screw ECoG toward estimated dipole sources followed by a forward 

mapping from the estimated dipole sources toward LFP recordings. The parameters utilized are summarized in 

Supplementary Table 4. 

 

Recurrent neural network (RNN). RNN is a commonly-used deep learning method to model a nonlinear dynamical system 

which includes three characteristics: nonlinearity, recurrent connection, and hidden dynamic states. In order to handle the 

long-term dependency embedded in the neural activity, Long Short-Term Memory (LSTM)48 is often implemented, where 

in each time point, model can determine the information to be forgotten, to be stored, or new information to be added. 

Two hidden layers with 64 and 16 nodes were connected to the output of LSTM unit, followed by the output layer. To make 

a fair comparison, the training details, including training iteration, the split ratio of training and validation data, and the 

choice of optimizer, were set to be the same as NBGNet.  
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