
1 
 

A comparison of blood and brain-1 

derived ageing and inflammation-2 

related DNA methylation signatures 3 

and their association with microglial 4 

burdens 5 

 6 

Anna J. Stevenson1,2, Daniel L. McCartney1, Gemma L. Shireby3, Robert F. Hillary1, Declan King2,4, 7 

Makis Tzioras2,4, Nicola Wrobel5, Sarah McCafferty5, Lee Murphy5, Barry W. McColl2,4, Paul 8 

Redmond6, Adele M. Taylor6, Sarah E. Harris6,7, Tom C. Russ6,8,9, Eilis J Hannon3, Andrew M. 9 

McIntosh9, Jonathan Mill3, Colin Smith10, Ian J. Deary6,7, Simon R. Cox6,7, Riccardo E. Marioni1,6 *, Tara 10 

L. Spires-Jones2,4* 11 

1 Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine,   12 

University of Edinburgh, Edinburgh, EH4 2XU, UK 13 
2 Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9JZ, UK 14 
3 University of Exeter Medical School, University of Exeter, Exeter, EX2 4TE, UK 15 
4 UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK 16 
5 Edinburgh Clinical Research Facility, Western General Hospital, Edinburgh, EH4 2XU, UK 17 
6 Lothian Birth Cohorts, University of Edinburgh, Edinburgh, EH8 9JZ, UK 18 
7 Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK 19 
8 Alzheimer Scotland Dementia Research Centre, 7 George Square, University of Edinburgh, 20 

Edinburgh, EH8 9JZ, UK 21 
9 Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK 22 
10 Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor’s Building, 49 Little France 23 
Crescent, Edinburgh EH16 4SB, UK 24 

 25 

*Corresponding author 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.11.30.404228doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.404228
http://creativecommons.org/licenses/by/4.0/


2 
 

 34 

Abstract 35 

 36 

Inflammation and ageing-related DNA methylation patterns in the blood have been linked to a 37 

variety of morbidities, including cognitive decline and neurodegenerative disease. However, it is 38 

unclear how these blood-based patterns relate to patterns within the brain, and how each 39 

associates with central cellular profiles. In this study, we profiled DNA methylation in both the blood 40 

and in five post-mortem brain regions (BA17, BA20/21, BA24, BA46 and hippocampus) in 14 41 

individuals from the Lothian Birth Cohort 1936. Microglial burdens were additionally quantified in 42 

the same brain regions. DNA methylation signatures of five epigenetic ageing biomarkers 43 

(‘epigenetic clocks’), and two inflammatory biomarkers (DNA methylation proxies for C-reactive 44 

protein and interleukin-6) were compared across tissues and regions. Divergent correlations 45 

between the inflammation and ageing signatures in the blood and brain were identified, depending 46 

on region assessed. Four out of the five assessed epigenetic age acceleration measures were found 47 

to be highest in the hippocampus (β range=0.83-1.14, p≤0.02). The inflammation-related DNA 48 

methylation signatures showed no clear variation across brain regions. Reactive microglial burdens 49 

were found to be highest in the hippocampus (β=1.32, p=5x10-4); however, the only association 50 

identified between the blood- and brain-based methylation signatures and microglia was a 51 

significant positive association with acceleration of one epigenetic clock (termed DNAm PhenoAge) 52 

averaged over all five brain regions (β=0.40, p=0.002). This work highlights a potential vulnerability 53 

of the hippocampus to epigenetic ageing and provides preliminary evidence of a relationship 54 

between DNA methylation signatures in the brain and differences in microglial burdens.  55 

 56 

 57 
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1. Introduction 66 

 67 

Ageing is characterised by a progressive deterioration of physiological integrity and is a key risk 68 

factor for a multitude of diseases. A pervasive feature of ageing is a persistent, or chronic, systemic 69 

inflammation (1). This process is characterised by a subtle elevation of inflammatory mediators in 70 

the periphery, in the absence of evident precipitants or disease states. Chronic inflammation has 71 

been identified as a common feature in the preponderance of neurodegenerative diseases and is 72 

increasingly recognised as a potential mediator of cognitive impairment in older age (2). There is, 73 

however, still a paucity of understanding of the biological mechanisms involved in chronic 74 

inflammation and how peripheral and central inflammatory mechanisms relate.  75 

Recently, the link between inflammation and the epigenetic mechanism of DNA methylation (DNAm) 76 

has begun to be addressed (3, 4). DNAm is typically characterised by the addition of a methyl group 77 

to a cytosine, in the context of a cytosine-guanine (CpG) dinucleotide. It has been implicated in the 78 

regulation of gene expression and can itself be influenced by both genetic and environmental factors 79 

(5, 6). Genome-wide DNAm patterns in the blood have been leveraged to index lifestyle traits, such 80 

as smoking (7, 8), and have been used to investigate diverse physical and mental health-related 81 

phenotypes, including cognitive functioning (9). In addition to this, by exploiting the manifest 82 

alterations in DNAm patterns with ageing, several DNAm-based markers of age have been 83 

developed, which attempt to provide surrogate measures of biological ageing (10-13). These 84 

‘epigenetic clocks’ have been used to provide a measure of biological age acceleration, or 85 

deceleration, by establishing the difference between an individual’s chronological and epigenetic 86 

age. Positive age acceleration quantified in the blood has been associated with an increased risk of 87 

mortality and a variety of age-related morbidities, including with a lower cognitive ability (14-16). In 88 

addition to this, recently, we found that blood-based DNAm proxies for two inflammatory mediators 89 

– C-reactive protein (CRP) and interleukin-6 (IL-6) – were inversely associated with cognitive ability in 90 

older adults with larger effect sizes compared to the biomarkers themselves (17, 18).  91 

While these findings suggest that an accelerated biological age, and raised DNAm inflammation 92 

patterns associate with poorer cognitive functioning, it is important to note that these studies 93 

analysed blood tissue. While the blood represents a practical, accessible source by which to 94 

investigate such outcomes, DNAm is known to confer both cell-type and tissue-specific patterns (19). 95 

For analyses of brain-based traits such as cognitive ability, brain samples offer the optimal disease-96 

relevant tissue; however, given the obvious limitations of access to such tissue, much of the research 97 

assessing the association between differential DNAm and disorders of the central nervous system 98 

has been conducted in peripheral whole blood (20, 21). While this approach can provide informative 99 
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peripheral markers of central aberration or disease, it is important to investigate the relevant target 100 

tissue to characterise both how peripheral and central patterns equate, and how each relates to 101 

cellular differences within the brain. Microglia are the primary tissue-resident immune cells of the 102 

central nervous system and have critical roles in homeostasis and neuroinflammation. Aged 103 

microglia have been shown to be more responsive to pro-inflammatory stimuli compared to naïve 104 

microglia, and evidence suggests the cells are particularly sensitive to both acute and chronic 105 

systemic inflammation detected via peripheral-central signalling pathways (22, 23). Microglia have 106 

additionally been implicated in age-related neurological dysfunction; however, as yet, it is unclear 107 

how inflammation and age-related DNAm patterns in both the periphery and the brain itself relate 108 

to microglial burdens.  109 

In this study, we utilise data from 14 participants of the Lothian Birth Cohort 1936. These individuals 110 

have blood-based DNAm data available at up to 4 time-points between the ages of 70-79 years and 111 

additionally donated post-mortem brain tissue to the study. In the brain, we profiled DNAm and 112 

quantified microglial burdens in five regions (primary visual cortex [BA17], inferior temporal gyrus 113 

[BA20/21], anterior cingulate cortex [BA24], dorsolateral prefrontal cortex [BA46], and 114 

hippocampus). DNAm CRP and IL-6 profiles, along with five different DNAm age acceleration 115 

measures, were characterised in the blood and in each brain region to investigate the relationship 116 

between peripheral and central age- and inflammation-related methylation patterns and how these 117 

relate to inflammatory processes in the brain. Given the small sample size of this study, the results 118 

presented here represent preliminary patterns; however, this data, and the methodology employed, 119 

provides a framework upon which future, larger scale, work can be based.  120 

 121 

2.  Methods 122 

 123 

2.1 The Lothian Birth Cohort 1936 124 

 125 

The Lothian Birth Cohort 1936 (LBC1936) is a longitudinal study of ageing. Full details on the study 126 

protocol and data collection have been described previously (24, 25). Briefly, the cohort comprises 127 

1,091 individuals born in 1936 most of whom completed a study of general intelligence – the 128 

Scottish Mental Survey – in 1947 when they were aged around 11 years. Participants who were 129 

living in Edinburgh and the surrounding area were re-contacted around 60 years later with 1,091 130 

individuals consenting to join the LBC1936 study. At Wave 1 of the study participants were around 131 

70 years old (mean age: 69.6N±N0.8 years) and they have since completed up to four additional 132 
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assessments, triennially. At each assessment, participants have been widely phenotyped with 133 

detailed physical, cognitive, epigenetic, health and lifestyle data collected. A tissue bank for post-134 

mortem brain tissue donation was established at Wave 3 of LBC1936 in collaboration with the 135 

Medical Research Council-funded University of Edinburgh Brain Banks. To date, ∼15% of the original 136 

LBC1936 sample have given consent for post-mortem tissue collection. At the time of this study, 137 

samples from 14 individuals were available. 138 

2.2 Ethics 139 

 140 

Ethical permission for LBC1936 was obtained from the Multi-Centre Research Ethics Committee for 141 

Scotland (MREC/01/0/56), the Lothian Research Ethics Committee (Wave 1: LREC/2003/2/29) and 142 

the Scotland A Research Ethics Committee (Waves 2, 3 and 4: 07/MRE00/58). 143 

Use of human tissue for post-mortem studies was reviewed and approved by the Edinburgh Brain 144 

Bank ethics committee and the medical research ethics committee (the Academic and Clinical 145 

Central Office for Research and Development, a joint office of the University of Edinburgh and NHS 146 

Lothian, approval number 15-HV-016). The Edinburgh Brain Bank is a Medical Research Council 147 

funded facility with research ethics committee (REC) approval (16/ES/0084). 148 

 149 

2.3 DNA methylation preparation 150 

 151 

2.3.1 Blood 152 
 153 

DNAm from whole blood was quantified at 485,512 CpG sites using the Illumina Human Methylation 154 

450k BeadChips at the Edinburgh Clinical Research Facility. Full details of the quality control steps 155 

have been described previously (26, 27). Briefly, raw intensity data were background-corrected and 156 

normalised using internal controls. Samples with inadequate bisulphite conversion, hybridisation, 157 

staining signal or nucleotide extension were removed upon manual inspection. Further, probes with 158 

a low detection rate (p>0.01 in >5% of samples), samples with a low call rate (<450,000 probes 159 

detected at p<0.01), samples exhibiting a poor match between genotype and SNP control probes, 160 

and samples with a mismatch between methylation-predicted, and recorded, sex were additionally 161 

excluded. This left a total of 450,276 autosomal probes. In analyses comparing blood and brain 162 

DNAm signatures, the last blood measurement before death was used and models were adjusted for 163 

the interval between the blood draw and death (see Supplementary Table 1; mean interval: 2.5 164 

years, SD: 1.5). 165 
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2.3.2 Brain 166 

 167 

Brains were removed at post-mortem and cut into coronal slices. Regions of interest dissected, as 168 

detailed previously (28). Tissue samples from cortical regions BA17, BA20-21, BA24, BA46 and 169 

hippocampus, were collected and snap frozen. From these sections ~25mg of tissue was processed 170 

for DNA extraction. DNA extraction was performed using a DNeasy kit (Qiagen) and DNAm was 171 

profiled using Illumina MethylationEPIC BeadChips at the Edinburgh Clinical Research Facility. 172 

Samples were processed randomly. Quality control steps were performed as follows: the 173 

wateRmelon pfilter() function (29) was used to remove samples in which >1% of probes had a 174 

detection p-value of >0.05, probes with a beadcount of <3 in >5% of samples, and probes in which 175 

>1% of samples had a detection p-value of >0.05. Probes mapping to polymorphic targets, cross-176 

hybridising probes and probes on the X and Y chromosomes were additionally removed. The 177 

performance of 15 normalisation functions was assessed, following the protocol described by Pidsley 178 

et al. (29). The top-ranking method was danet which equalises background from type 1 and type 2 179 

probes, performs quantile normalisation of methylated and un-methylated intensities 180 

simultaneously, and then calculates normalised methylation β-values. The normalised dataset 181 

comprised 69 samples (14 individuals, 5 regions, 1 missing hippocampal sample) and 807,163 182 

probes. 183 

2.4 Derivation of DNA methylation signatures 184 

 185 

2.4.1 Epigenetic age acceleration 186 
 187 

Methylation-based epigenetic age acceleration estimates were obtained from the online Horvath 188 

DNAm age calculator (https://dnamage.genetics.ucla.edu/)(11). Normalised DNAm data was 189 

uploaded to the calculator using the ‘Advanced Analysis’ option. This output provides four different 190 

age acceleration measures: intrinsic epigenetic age acceleration (IEAA) (11); extrinsic epigenetic age 191 

acceleration (EEAA) (12); DNAm PhenoAge acceleration (AgeAccelPheno)(10); and DNAm GrimAge 192 

acceleration (AgeAccelGrim)(13). IEAA is defined as the residuals resulting from the regression of 193 

estimated epigenetic age based on the Horvath epigenetic clock on chronological age, fitting 194 

estimated proportions of immune cells. IEAA is designed to capture cell-intrinsic epigenetic ageing, 195 

independent of age-related changes in blood cellular composition. EEAA is estimated firstly by 196 

calculating a weighted average of Hannum’s methylation age with three cell types — naïve cytotoxic 197 

T cells, exhausted cytotoxic T cells and plasmablasts. EEAA is defined as the residuals resulting from 198 

the univariate regression of this weighted estimate on chronological age and correlates with age-199 
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related changes in the blood cellular composition. Though these measures are most appropriate for 200 

use in the blood as they account for blood cell proportions, the correlation between these and the 201 

unadjusted measures are both >0.97, suggesting they are very similar. Rather than aiming to predict 202 

chronological age, DNAm PhenoAge was designed to capture an individual’s ‘phenotypic age’ – a 203 

composite set of clinical measures associated with mortality. Regressing DNAm PhenoAge onto 204 

chronological age provides the acceleration measure: AgeAccelPheno. Similarly, DNAm GrimAge was 205 

designed to predict mortality based on a linear combination of age, sex, and DNAm-based surrogates 206 

for smoking and seven plasma proteins. AgeAccelGrim provides the measure of epigenetic age 207 

acceleration from this clock. In addition to the epigenetic age acceleration measures, the online 208 

calculator provides an estimate of the proportion of neurons in each sample, derived using the cell 209 

epigenotype specific (CETS) algorithm (30). 210 

Recently, a novel epigenetic clock (DNAmClockCortical) was developed to optimally capture brain-211 

specific epigenetic ageing (31). This clock was trained on 9 human cortex methylation datasets of 212 

tissue from individuals unaffected by Alzheimer’s disease (total n=1,397, age range=1-104 years). 213 

The model selected 347 DNAm sites and the clock was then tested in an external cohort, 214 

outperforming other epigenetic clocks for age prediction within the brain. The sum of DNAm levels 215 

at these sites weighted by their regression coefficients provided the cortical DNAmClockCortical age 216 

estimate. The residuals resulting from regressing DNAmClockCortical age on chronological age provided 217 

the age acceleration measure for this epigenetic clock (AgeAccelCortical).  218 

2.4.2 Inflammation signatures 219 

 220 

DNAm scores for the acute-phase inflammatory mediator C-reactive protein (CRP) and the pro-221 

inflammatory cytokine interleukin-6 (IL-6) were derived as described previously (17, 18, 32). The 222 

DNAm CRP score was obtained using data from a large epigenome-wide association study (EWAS) of 223 

CRP (3). This EWAS identified 7 CpG sites with strong evidence of a functional association with 224 

circulating CRP. One of these CpGs (cg06126421) was not available on the EPIC array, therefore the 225 

sum of DNAm levels at the remaining 6 CpG sites weighted by their regression coefficients from the 226 

EWAS provided the DNAm CRP score (32) (Supplementary Table 2). The IL-6 score was derived from 227 

an elastic net penalised regression model using the Wave 1 LBC1936 blood methylation and Olink® 228 

IL-6 data (Olink® inflammation panel, Olink® Bioscience, Uppsala, Sweden) (17). This approach 229 

identified 12 CpG sites that optimally predicted circulating IL-6. In the current study, the elastic net 230 

regression was re-run omitting individuals providing post-mortem brain samples (n=863). This model 231 

returned a set of 13 CpG sites (inclusive of the 12 CpGs from the original model). The DNAm IL-6 232 
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score in both blood and brain were thus derived from the sum of DNAm levels at these 13 CpG sites 233 

weighted by their regression coefficients (Supplementary Table 3).  234 

 235 

2.5 Immunohistochemistry, thresholding and burden quantification 236 

 237 

Fixed tissue sections (4μm) from cortical regions BA17, BA20-21, BA24, BA46 and hippocampus were 238 

processed for immunohistochemistry. Staining was carried out as described previously (33). Briefly, 239 

microglial lysosomes were stained using CD68 (mouse anti-human monoclonal primary antibody, 240 

Dako M0876, 1:100, citric acid in pressure cooker pre-treatment). Immunohistochemistry was 241 

performed using standard protocols, enhanced with the Novolink Polymer detection system and 242 

visualised using 3,3’-diaminobenzidine (DAB) with 0.05% hydrogen peroxide as chromogen. Tissue 243 

was counterstained with haematoxylin for 30 seconds to visualise cell nuclei.  244 

Stains were visualised using a ZEISS Imager.Z2 stereology microscope using MBF Biosciences Stereo 245 

Investigator software. All 6 layers of cortical grey matter were included in analysis. Cortical grey 246 

matter was outlined at 1.5X objective magnification and tile scans were acquired at 5X for 247 

quantification. Glia were quantified using in-built software that captures immuno-positive objects 248 

using an automated thresholding algorithm based on colour and size. Objects smaller than 10μm2 249 

were not considered true staining and were thus excluded in the burden analysis. The threshold and 250 

exposure remained consistent throughout all analysis. Neurolucida Explorer was used to quantify 251 

the total area of the region of interest and that of the outlined objects. A percentage burden was 252 

then calculated by dividing the stained area by the total tissue area.  253 

2.6 Statistical analyses 254 

 255 

Spearman correlations were calculated between the inflammation, and epigenetic age acceleration, 256 

measures in the blood and each brain region using the last available blood-based measure prior to 257 

death. Linear mixed effects models were used to investigate the regional heterogeneity in the 258 

epigenetic age acceleration variables and the DNAm inflammation scores in the brain. BA17 was set 259 

as the reference as this region is typically not affected until the latter stages of neurodegenerative 260 

diseases that impact cognitive functioning, such as Alzheimer’s disease. Models were adjusted for 261 

age at death, post-mortem interval, sex, and proportion of neurons, with participant ID fitted as a 262 

random effect on the intercept. Linear mixed effects models were additionally used to assess the 263 

association between the DNAm signatures in both the blood and the brain and CD68+ microglial 264 

burdens. Here, an interaction term between the brain region and DNAm score was included to test if 265 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.11.30.404228doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.404228
http://creativecommons.org/licenses/by/4.0/


9 
 

any effects were region dependent. The same covariates and random effect as above were included. 266 

Models assessing blood-based signatures were additionally adjusted for the interval between their 267 

measurement and death. In each regression analysis, continuous variables were scaled to have a 268 

mean of zero and unit variance. We considered a statistical significance threshold of p<0.05. We 269 

additionally discuss how results change at a more conservative Bonferroni-corrected level of 270 

significance (p<0.05/41 = 0.001).  271 

3. Results 272 

 273 

3.1 Cohort demographics  274 

 275 

Post-mortem details for each individual included in the study are presented in Supplementary Table 276 

1. Summary statistics for each of the variables included in analyses is presented in Table 1. Age at 277 

death ranged from 77.6 to 82.9 years (mean=80.3, SD=1.56). Five of the 14 (36%) individuals were 278 

female.  279 

3.2 DNAm inflammation signatures 280 

 281 

The Spearman correlation between the last blood DNAm CRP score and the mean brain DNAm CRP 282 

score was 0.06. This blood-brain correlation varied by region, ranging from -0.52 in BA17 to 0.46 in 283 

BA46 (Supplementary Figure 1).  284 

A boxplot of the DNAm CRP score in the five brain regions is presented in Figure 1. No significant 285 

differences were identified in the analysis by region (Supplementary Table 4), indicating none of the 286 

assessed regions had a significantly different DNAm CRP score compared to BA17. 287 

The correlation between the last blood DNAm IL-6 score and the mean brain DNAm IL-6 score was 288 

0.04, ranging from -0.12 in the hippocampus to 0.27 in BA46 (Supplementary Figure 2).  289 

A boxplot of the DNAm IL-6 score in the five brain regions is presented in Figure 1. In the analysis by 290 

region, the DNAm IL-6 score was found to be significantly lower in BA24 (β=-0.86, SE=0.35, p=0.017), 291 

BA46 (β=-0.82, SE=0.30, p=0.009) and the hippocampus (β=-1.002, SE=0.32, p=0.003) compared to 292 

BA17 (Supplementary Table 4).  293 

3.3 DNAm age acceleration 294 

 295 

The correlations between the last blood DNAm age acceleration and the mean age acceleration in 296 

the brain were -0.04 for IEAA, 0.48 for EEAA, 0.39 for AgeAccelGrim, and 0.30 AgeAccelPheno. 297 
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Correlation plots between the last blood DNAm age acceleration measure and the DNAm age 298 

acceleration in the brain split by region are presented in Supplementary Figures 3-6. The coefficients 299 

for AgeAccelGrim, AgeAccelPheno and EEAA were all positive, ranging from 0.09 between AgeAccelPheno 300 

in the blood and in BA46, to 0.78 between the last blood EEAA and EEAA in BA17. IEAA showed a 301 

negative correlation between the last blood measurement and the measure in BA20/21 (r=-0.27), 302 

BA24 (r=-0.14) and BA46 (r=-0.25) but a positive correlation in the hippocampus (r=0.30) and BA17 303 

(r=0.49). For EEAA, some of the positive correlations appear largely driven by an individual with a 304 

high last blood measure (38.2) which corresponded with high measures in each of the brain regions 305 

(Supplementary Figure 4). This individual additionally had consistently high last blood measures in 306 

each of the other epigenetic age acceleration measures assessed (range: 6.6-25.4). 307 

Boxplots of the five different epigenetic age acceleration measures in each of the five brain regions 308 

are presented in Figure 2. The hippocampus displayed the highest DNAm age acceleration compared 309 

to BA17 for each of the assessed measures except for AgeAccelGrim which was highest in BA24 310 

(Supplementary Table 5; AgeAccelCortical: β=0.901, SE=0.19, p=2.6x10-5; AgeAccelPheno: β=1.14, 311 

SE=0.27, p=1x10-4; IEAA: β=0.83, SE= 0.34, p=0.02; EEAA: β=0.99, SE=0.24, p=1x10-4). The result for 312 

EEAA remained similar when the individual with consistently high measures across all regions was 313 

removed (β=1.22, SE=0.30, p=1.4x10-4).  314 

3.4 Microglial burdens 315 

 316 

A boxplot of the CD68+ microglial burdens in each of the five brain regions and a representative 317 

imaging of the staining is presented in Figure 3. The microglial burden was found to be significantly 318 

higher in the hippocampus compared to BA17 (β=1.32, SE=0.4, p=5x10-4), with the plot suggesting 319 

large variance in this region compared to the others.  320 

The associations between both the DNAm age acceleration variables and the DNAm inflammation 321 

signatures with microglial burdens are presented in Supplementary Table 6. Here, a higher mean 322 

AgeAccelPheno  in the brain associated with an increased microglial burden (β=0.40, SE=0.14, p=0.002). 323 

No other significant associations were identified (all p≥0.1) and there were no significant 324 

interactions found between any of the methylation scores and brain region.  325 

4. Discussion 326 

 327 

In this study, we took advantage of blood and post-mortem brain tissue available in 14 individuals in 328 

LBC1936 to investigate the relationship between peripheral and central inflammation- and age-329 

related DNAm signatures and how they relate to neuroinflammatory processes. Due to the small 330 
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sample size the results of this work are preliminary; however some potentially interesting patterns 331 

were identified. We found heterogeneous correlations between both the age acceleration, and 332 

inflammation-related, methylation signatures in the blood and the brain depending on the region 333 

assessed. Of the inflammatory signatures, the DNAm CRP score did not show significant variation 334 

across the brain regions, while the DNAm IL-6 score was found to be slightly lower in BA24, BA46 335 

and hippocampus than in BA17. Other than for AgeAccelGrim, epigenetic age acceleration was found 336 

to be significantly higher in the hippocampus than in BA17. Reactive microglial burdens, identified 337 

through CD68 immunostaining, were additionally found to be higher in the hippocampus, consistent 338 

with previous findings in a smaller sample of the LBC1936 cohort (33). However, the only association 339 

identified between the DNAm signatures (age acceleration or inflammation proxies) and microglial 340 

load was a positive association with the mean brain-based DNAm AgeAccelPheno.  341 

It is recognised that DNAm patterns at individual CpG sites in the blood and the brain are often 342 

disparate (34). We found that DNAm scores for CRP and IL-6 comprising multiple CpG sites displayed 343 

heterogeneous, region-specific correlations when comparing the blood- and brain-derived 344 

signatures. This suggests that blood DNAm patterns may proxy methylation in some areas of the 345 

brain better than others. Additionally, it cautions against the use of a single sample of post-mortem 346 

brain tissue as representative of the brain in aggregate, as it appears there is additional 347 

heterogeneity in methylation patterns even within the same tissue source. The DNAm age 348 

acceleration measures additionally displayed discrepant blood-brain correlations dependant on 349 

region. However, all the assessed measures showed positive blood-brain correlations in each region, 350 

to a greater or lesser degree, excepting IEAA. IEAA is based on the Horvath clock which is regarded 351 

as a pan-tissue model (11), whereas the other three peripheral measures were derived solely on 352 

blood DNAm data. Estimates from the Horvath clock have previously been found to be consistent 353 

across tissue types, making it surprising that IEAA showed the most inconsistent blood-brain 354 

correlation. A recent study has, however, suggested that the age prediction ability of the Horvath 355 

clock begins to deteriorate in older age (>60 years), possibly due to saturation of methylation levels 356 

at some loci (35). This may have impacted our results given both blood and brain tissue were 357 

gathered from 70 years onwards. The blood-brain correlations identified here suggest significant 358 

heterogeneity between the tissues, contingent on region; however, it should be noted that the 359 

mean interval between methylation assessed in the blood and in the brain was 2.5 years which 360 

reflects a period where methylation alterations are possible (36). 361 

In the regional analyses of DNAm signatures in the brain, no real differences emerged in the 362 

assessment of the DNAm CRP score. On the other hand the DNAm IL-6 score seemed to be lower in 363 

BA24, BA46 and the hippocampus compared to BA17, possibly suggesting a disparity in the DNAm 364 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.11.30.404228doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.404228
http://creativecommons.org/licenses/by/4.0/


12 
 

inflammation signatures across the brain. CRP itself does not typically cross the blood-brain barrier 365 

(BBB) although its pro-inflammatory effects may lead to an increased paracellular permeability of 366 

the BBB (37). Additionally, when using post-mortem blood tissue there is a possibility of blood 367 

contamination due to the lack of perfusion at post-mortem. Conversely, IL-6 can cross the BBB 368 

through the brain’s cirumventricular organs and is additionally expressed in the brain itself. 369 

However, the DNAm signatures of CRP and IL-6 were both created in blood and have not yet been 370 

validated in brain tissue. Work to assess other blood-calibrated predictors within in brain tissue is 371 

currently ongoing. It seems likely that brain tissue may exhibit different alterations in methylation in 372 

response to inflammation that were not captured by the two DNAm inflammatory marker proxies 373 

utilised here. In contrast to the inflammatory results, a higher DNAm age acceleration in the 374 

hippocampus was found for each of the assessed measures apart from AgeAccelGrim. This was true 375 

both for the cortex-specific clock as well as for the measures developed in the blood (AgeAccelPheno 376 

and EEAA) or in multiple tissues (IEAA). This consistency implies that the hippocampus may 377 

represent a region more susceptible to biological ageing than other areas of the neocortex. Age-378 

related decline in hippocampal volume is well established (38) and it is one of the earliest, and most 379 

profoundly, affected regions in Alzheimer’s disease, suffering insidious synapse loss and neuronal 380 

cell death culminating in a substantial atrophy as the disease progresses (39). While none of the 381 

individuals included in this study had a diagnosis of Alzheimer’s disease prior to their death, the 382 

hippocampus can suffer substantial deterioration before clinical dementia becomes evident. The 383 

accelerated epigenetic ageing noted here is perhaps capturing the vulnerability of this region. 384 

Equivalent to this finding, we identified a higher percentage burden of CD68+ microglia in the 385 

hippocampus compared to BA17. CD68 is a marker of phagocytic activity and is typically used to 386 

classify reactive microglia. Microglia are important in the maintenance of integrity and function 387 

within the central nervous system; however, aged microglia have been shown to be more responsive 388 

to pro-inflammatory stimuli compared to the naïve cell-type. This altered phenotype can lead to 389 

exaggerated neuro-inflammation in response to peripheral or central immune challenges which can 390 

precipitate neuro-toxicity, and thus, degeneration (40, 41). The only association identified between 391 

the DNAm signatures and microglial load was a positive association with the mean brain 392 

AgeAccelPheno; however we did not find any significant interaction between the DNAm signatures and 393 

region. The DNAm PhenoAge clock was trained on a set of nine haematological and biochemical 394 

measures that were found to optimally predict an individual’s ‘phenotypic age’ including four 395 

immune cell profiles (lymphocyte percent, mean cell volume, red cell distribution width and white 396 

blood cell count) alongside CRP and albumin (10). Despite being developed on blood DNAm data, the 397 

predominantly inflammatory and immune composition of this clock may mean that AgeAccelPheno  is 398 
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better able to capture process associated with inflammation even outwith the blood. In this regard, 399 

it may have outperformed the DNAm CRP and IL-6 score due to the inclusion of a composite set of 400 

phenotypes, which may more accurately index systemic inflammation compared to a single 401 

inflammatory surrogate.  402 

This study provides a rarely-available assessment of data from blood, alongside post-mortem brain 403 

tissue methylation profiles and histology from the same individuals. Alongside this, profiling DNAm 404 

in multiple regions of the brain allowed us to investigate the heterogeneity of methylation patterns 405 

within the same tissue type. This study is limited by the small number of individuals for which data 406 

was available, leading to a lack of statistical power and the potential for both type 1 and type 2 407 

errors. We considered p<0.05 as the threshold for statistical significance in the analyses. However, 408 

the following associations fail to pass a strict Bonferroni-corrected threshold (p≤0.001): the 409 

differences of the DNAm IL-6 score across the brain regions, the IEAA measure being highest in the 410 

hippocampus compared to BA17, and the association of DNAm AgeAccelPheno with the CD68+ 411 

microglia burden. This, again, highlights that the results presented here should be taken as 412 

preliminary patterns until analyses can be repeated in larger sample sizes. In regards to the 413 

microglial burdening, we used only one antibody (CD68) which limited definitive identification of 414 

labelled cells as parenchymal microglia. CD68 stains the lysosomes of ostensibly reactive microglia; 415 

however, the antibody can additionally stain infiltrating macrophages. Capturing both the microglia 416 

and macrophage burden still provides a relevant read-out of the cellular inflammatory status; 417 

however, further characterisation of the microglial phenotype, including generating a reactive:total 418 

ratio would be desirable to glean a better understanding of their specific relationship to DNAm 419 

signatures. Further to this, the burden metric used to quantify microglia could reflect differences in 420 

sizes of the cells as well as in total numbers. An additional aspect to bear in mind when utilising post-421 

mortem tissue in methylation studies is the stability of global DNAm following death and the 422 

biological implications of this (42, 43). We attempted to account for the potential impact of this by 423 

adjusting analyses for post-mortem intervals; however as post-mortem changes in DNAm are not yet 424 

well characterised it cannot be ruled out that this confounded results. Finally, post-mortem studies 425 

will always be retrospective in nature, rendering it impossible to discern causal or consequential 426 

events. 427 

In summary, using a well-characterised cohort of 14 individuals, we identified divergent correlations 428 

between the blood and brain in DNAm inflammation-related and age acceleration measures 429 

depending on region assessed. The hippocampus was found to display the highest DNAm age 430 

acceleration in four out of five assessed measures, potentially reflecting its inherent susceptibility to 431 

biological ageing and pathological processes compared to other cortical regions. The hippocampus 432 
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additionally showed the highest burden of reactive microglia. Whilst an accelerated DNAm 433 

PhenoAge associated with an elevated microglial load across the brain, no region-specific 434 

associations were identified. Our results provide some initial indications of the blood-brain 435 

relationships in DNAm patterns and how these relate to central processes; however further work is 436 

needed to verify these results in larger sample sizes and to investigate how these patterns associate 437 

with cognitive function and neurodegenerative disease.  438 
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Table 1. Summary of the variables assessed in the 14 Lothian Birth Cohort 1936 participants.  575 

The brain variables refer to the mean across all five regions.  576 

DNAm=DNA methylation; CRP= C-reactive protein; IL-6= interleukin-6; IEAA=intrinsic epigenetic age 577 

acceleration; EEAA= extrinsic epigenetic age acceleration; CD68=Cluster of Differentiation 68. 578 

 579 

Variable Mean SD 

Sex (% female) 35.71 - 

Age at death (years) 80.33 1.56 

Age at last blood draw 77.88 1.67 

Brain 

DNAm CRP score -0.014 6.1x10-4 

DNAm IL-6 score -0.66 0.11 

AgeAccelCortical -0.52 6.12 

AgeAccelGrim -0.31 2.32 

AgeAccelPheno 0.053 5.71 

IEAA -0.049 3.97 

EEAA -0.55 3.38 

CD68 burden (%) 0.34 0.38 

Blood 

DNAm CRP score -0.014 1.2x10-3 

DNAm IL-6 score -0.75 0.18 

AgeAccelGrim 6.68 6.53 

AgeAccelPheno 3.23 8.48 

IEAA 1.23 5.62 

EEAA 2.99 11.20 

   

   

 580 
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Figure 1. The DNAm CRP and IL-6 score in each of the five regions of the brain.  587 

BA=Brodmann area; HC=hippocampus; DNAm=DNA methylation; CRP=C-reactive protein; IL-588 
6=interleukin-6. 589 
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Figure 2. DNAm age acceleration measures across the five brain regions. The dashed grey lines 600 

represent where the mean difference is zero.  601 

IEAA=intrinsic epigenetic age acceleration; EEAA=extrinsic epigenetic age acceleration; 602 

BA=Brodmann area; HC=hippocampus. 603 

 604 
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Figure 3. CD68
+

 microglial burdens over the five brain regions and representative staining.   608 

BA=Brodmann area; HC=hippocampus. Scale bar=150µm. 609 

 610 
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