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Abstract

During normal neuronal activity, ionic concentration gradients across a neuron’s membrane are often

assumed to be stable. Prolonged spiking activity, however, can reduce transmembrane gradients and

affect voltage dynamics. Based on mathematical modeling, we here investigate the impact of

neuronal activity on ionic concentrations and, consequently, the dynamics of action potential

generation. We find that intense spiking activity on the order of a second suffices to induce changes

in ionic reversal potentials and to consistently induce a switch from a regular to an intermittent

firing mode. This transition is caused by a qualitative alteration in the system’s voltage dynamics,

mathematically corresponding to a co-dimension-two bifurcation from a saddle-node on invariant

cycle (SNIC) to a homoclinic orbit bifurcation (HOM). Our electrophysiological recordings in mouse

cortical pyramidal neurons confirm the changes in action potential dynamics predicted by the models:

(i) activity-dependent increases in intracellular sodium concentration directly reduce action potential

amplitudes, an effect that previously had been attributed soley to sodium channel inactivation; (ii)

extracellular potassium accumulation switches action potential generation from tonic firing to

intermittently interrupted output. Individual neurons thus may respond very differently to the same

input stimuli, depending on their recent patterns of activity or the current brain-state.
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Author summary

Ionic concentrations in the brain are not constant. We show that during intense neuronal activity,

they can change on the order of seconds and even switch neuronal spiking patterns under identical

stimulation from a regular firing mode to an intermittently interrupted one. Triggered by an

accumulation of extracellular potassium, such a transition is caused by a specific, qualitative change

in of the neuronal voltage dynamics – a so-called bifurcation – which affects crucial features of

action-potential generation and bears consequences for how information is encoded and how neurons

behave together in the network. Also changes in intracellular sodium can induce measurable effects,

like a shrinkage of spike amplitude that occurs independently of the fast amplitude-effects attributed

to sodium channel inactivation. Taken together, our results demonstrate that a neuron can respond

very differently to the same stimulus, depending on its previous activity or the current brain state.

The finding is particularly relevant when other regulatory mechanisms of ionic homeostasis are

challenged, for example, during pathological states of glial impairment or oxygen deprivation.

Categorization of cortical neurons as intrinsically bursting or regular spiking may be biased by the

ionic concentrations at the time of the observation, highlighting the non-static nature of neuronal

dynamics.

Introduction 1

Ever since the introduction of Hodgkin-Huxley’s famous neuron model for the squid giant axon, the 2

governing equations have been a useful tool to understand the mechanisms of spike generation. The 3

original model assumed fixed ionic concentrations inside and outside the cell, establishing constant 4

driving forces for ionic flux otherwise modulated only by the channels’ gating kinetics [1]. In the 5

brain, however, ionic concentrations are not constant, and the ionic composition of the extracellular 6

space varies with behavioral states [2, 3] and as a function of neuronal activity [4, 5]. 7

The concentrations of sodium [Na+] and potassium [K+] ions – the two ionic species essential for 8

sodium action potentials – are known to vary in response to neuronal activity in vitro and in vivo at 9

relatively slow timescales (on the order of seconds). Intracellular sodium concentration has been 10

found to increase with activity in mammalian pyramidal neurons responding to physiologically 11

relevant stimuli (on the order of 3-10 seconds) [5]. For example, in cat neocortex, the concentration 12

of extracellular potassium can oscillate in correlation with local field potentials (LFPs) during slow 13
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wave (∼1 Hz) sleep [3] or when presenting oscillating graded stimuli to the cat’s retina on the order 14

of seconds [4]. Nevertheless, how stimulus-induced changes in ionic concentration gradients impact 15

ongoing neuronal activity is currently not well understood. 16

In this study, we use conductance-based models to predict and experimentally test how changes 17

in transmembrane ionic concentration gradients that arise during periods of increased neuronal 18

activity impact action-potential generation. We find that prolonged stimulation (∼10 seconds) can 19

generate ionic concentration changes substantial enough to modify action potential generation in 20

neurons. Intracellular sodium accumulation, in particular, alters action-potential amplitude on slow 21

timescales matching the ionic changes – an effect previously primarily attributed to the inactivation 22

of sodium channels [6–8]. 23

Extracellular potassium accumulation, in turn, can qualitatively switch the spike-generating 24

mechanism, thus changing fundamental properties of firing patterns, encoding, and network 25

behaviour. Mathematically, the transition corresponds to a so-called co-dimension-two bifurcation, at 26

which the spike generating mechanism changes qualitatively from a regular saddle-node on invariant 27

cycle (SNIC), when extracellular potassium concentrations are low, to a homoclinic orbit bifurcation 28

(HOM), when extracellular potassium concentrations become high. The switch in the firing regime 29

most notably results in a transition from regular spiking to a burst-like, intermittently interrupted 30

firing mode in the HOM regime, caused by a so-called bistability of the dynamical system. In the 31

HOM regime, the options of a fixed, resting-like voltage state and regular firing co-exist for the same 32

input levels, resulting in stimulus- and noise-induced switches between both states. 33

Prolonged electrical activity can, therefore, have significant effects on spiking patterns and 34

neuronal dynamics. We uncover these properties by, first, dissecting both potassium ion and sodium 35

ion contributions to spike generation and, second, testing predictions in in vitro electrophysiological 36

recordings. 37

Results 38

Model response to prolonged stimuli 39

In order to analyze how neurons respond to prolonged stimulation, we examined the temporal 40

evolution of activity-dependent changes in transmembrane ionic gradients and assessed their impact 41

on ongoing neuronal activity. To this end, we implemented a single-neuron, conductance-based 42
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model including dynamic ion concentrations (detailed in Methods). Ionic gradients determine the 43

equilibrium (Nernst) potentials that, in turn, influence the driving forces of spike-generating ionic 44

currents. Accumulation of ions over time, consequently, modifies the Nernst potentials as well as the 45

spike generating currents and, therefore, also spike generation. A regulation of concentration 46

gradients ([Na+] and [K+]) is mediated by the Na-K-ATPase pump: an electrogenic 47

active-transporter whose activity intensifies when [Na+]i accumulates. Due to its electrogenic nature 48

(changing the net charges across the membrane), activity of the Na-K-ATPase pump affects the 49

membrane potential. 50

Noise-free analysis 51

First, we investigated the response of the model to a step input current - a typical protocol in 52

patch-clamp experiments. Stimulation of the model for almost 10 seconds (Fig. 1A) led to an 53

accumulation of intracellular sodium, [Na+]i, as well as an increase in extracellular potassium, [K+]o 54

(Fig. 1B). The concentration changes resulted from the prolonged spiking activity and were indeed 55

substantial enough to alter features of the generated action potentials during the duration of the 56

stimulation protocol. Three major changes that have often been reported in experiments were 57

observed in the model: (a) the emergence of a slow after-hyperpolarization (AHP), (b) adaptation 58

(i.e., a reduction) of spike frequency, and (c) reduction of spike amplitudes (Fig. 1A). 59

a) The slow AHP became visible when the stimulus was set back to baseline and neuronal spiking 60

stopped (Fig. 1A). The slow AHP resulted from the hyperpolarising Na-K-ATPase pump current: 61

Na-K-ATPase pump activity was enhanced with the action-potential-driven rise in intracellular 62

sodium concentration, because [Na+]i accumulation, increases the pump activity. When the 63

stimulation ended, the neuron stopped firing and the membrane potential hyperpolarized with 64

respect to the original resting membrane potential (due to the transient change in the Na-K-ATPase 65

pump current). As ongoing Na-K-ATPase activity progressively lowered the intracellular sodium 66

concentration back to baseline levels, the hyperpolarization slowly diminished (Fig. 1A). 67

b) Spike frequency adaptation, evident in Fig. 1A, also resulted from the activity-dependent 68

increase in Na-K-ATPase current, which effectively reduced the net excitatory drive of the neuron. 69

The model does not contain adaptation currents besides the Na-K-ATPase pump (e.g., M-currents). 70

Note that the pump current used in the model is only sensitive to Na+, which idealizes the pump α3 71

isoform of the Na-K-ATPase. The pump α3 isoform is negligibly sensitive to K+ and V, but highly 72

sensitive to changes in intracellular sodium concentration over the ranges simulated in this 73
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Fig 1. Response of the model to a step current of 2µA/cm2 input as shown in the top.
A. Voltage trace (V) with reversal potentials for sodium (Orange) and potassium (Blue).B. Firing
rate (Fr) of neuron model. C. Intracellular sodium (Orange) and extracellular potassium (Blue)
concentration (C) dynamics. D. Spike amplitude and reversal potential for sodium (Orange) for the
trace shown in A. E. First and last spike (peaks aligned).
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study [9, 10]. The impact of the pump current on spike-frequency adaptation was, however, 74

preserved in models of other pump isoforms. 75

c) In our model, reductions in spike amplitude were directly related to intracellular sodium 76

accumulation, see Fig. 1C. Activity-dependent reduction of action potential amplitude has previously 77

been attributed primarily to Na+-channel inactivation during prolonged stimulation [6, 11]. Our 78

simulations, however, demonstrate that the time course of amplitude reduction mirrors the drop in 79

sodium reversal potential (see Fig. 1A), which is related to the time course of sodium accumulation 80

(see Fig. 1B). The Na+-channel inactivation was more than an order of magnitude faster than the 81

timescale of spike-amplitude reduction; the slow spike amplitude decay was modulated by 82

intracellular sodium. A dynamical system’s perspective of this finding and an experimental 83

confirmation are presented in the next sections. 84

Analysis in the presence of noise 85

The results so far reflect idealized model responses in the absence of noise. To include the 86

stochasticity of synaptic inputs that is typical for many neurons in the central nervous system, we 87

next added coloured noise with stationary statistics to the input current - a useful exercise that 88

reveals an interesting property in the response that was masked in the noise-free case discussed 89

above. 90

Stimulating the model again with a step current yet in the presence of an additional colored noise 91

component (Fig. 2), the model neuron’s response during the first second was comparable to the 92

noise-free case presented before: [Na+]i and [K+]o accumulated (resulting in changes in the reversal 93

potentials ENa and EK); spike frequency adaptation, and spike-amplitude reduction were observed 94

(compare to Fig. 1A). Surprisingly, after the first second of stimulation, the response exhibited a 95

sudden transition from regular spiking to an intermittently-interrupted, burst-like firing mode. Note 96

that the stimulus statistics are in a wide-sense stationary such that there was no qualitative change 97

in the stimulus during the simulation duration. This means that the qualitative switch in the firing 98

pattern must arise from a bifurcation in the neuron’s dynamics. The switch in firing pattern 99

occurred 1.2 seconds after stimulus onset, a time scale that largely exceeds the time scale associated 100

with the dynamics of spike-generating conductances (which are about two orders of magnitude 101

faster). Yet this time scale matches the time scale of changes in ionic concentrations, suggesting that 102

the switch is causally related to the ion accumulation. Ion accumulation influences spike generation 103

by changing ionic reversal potentials and engaging the electrogenic Na-K-ATPase. 104
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Fig 2. Response of the model to a step current with colored noise filtered at 500Hz
(mean input is 1µA/cm2 and standard deviation 1.05µA/cm2, shown above). A.: Voltage
trace (membrane potential) of the model responding to a noisy step current (Top of panel). B. Zoom
of the voltage trace from panel A. at the beginning and towards the end of stimulation showing the
evolution of the reversal potentials for sodium (orange) and potassium (blue), as in Fig. 1. C.: Phase
portraits of the steady state of the fast spike generating sub-system, when imposing the average
reversal potentials of panel B. as parameters. Vertical axes show the voltage and the horizontal axes
show the potassium current gating-variable (nK) . Empty dots are the unstable nodes, filled dots
the stable nodes, and the orbits are stable limit cycles. D. Evolution of the maximum voltage of the
system attractors. Empty dots represent the unstable nodes, filled dots the stable nodes, and the
black line denotes the maximum voltage of the stable limit cycles (action potential peak).
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Separating the fast and the slow dynamics 105

To disentangle the origin of the transition, in a next step, the fast spike-generating dynamics was 106

separated from the slow ionic concentration dynamics using a slow-fast analysis. To this end, we 107

systematically analyzed the fast system with fixed ionic concentrations (i.e., constant values of the 108

slow concentration variables). The latter, however, were chosen from ”snapshots” of the values that 109

the concentrations had exhibited in the full system (where concentrations were varying). This 110

approach allowed us to systematically determine how ionic changes shaped the ongoing properties of 111

the fast sub-system. Time scale separation is valid because ionic concentration changes were much 112

slower (∼ seconds) than the spike generating currents (∼ milliseconds) (see the methods section). 113

Analysis of the slow-fast system revealed that the qualitatively different spiking response was 114

triggered by a switch in the dynamics of action-potential generation. Mathematically, the model 115

started out in a setting where spiking is initiated via a saddle-node on invariant circle bifurcation 116

(SNIC) [12]. This type of dynamics is characterized by the existence of a unique stable attractor for 117

each input level, i.e. only one, well-defined state that the system converges to. For low inputs this is 118

a fixpoint, i.e. the resting state, while for high inputs it is a limit cyle attractor, i.e. the regular 119

spiking state. In models with fixed intra- and extracellular ionic concentrations, this type of 120

dynamics would persist as long as cellular properties remain constant, i.e. across the whole 121

stimulation period. Alterations in the level of ionic concentrations (and hence their transmembrane 122

gradients in terms of reversal potentials), however, can qualitatively switch the dynamics to a 123

different spike-generating bifurcation. A switch in the spike generating bifurcation, can be perceived 124

in some qualitative characteristic features of spike trains. Such a transition can, for example, be 125

reflected in an increased or decreased number of attractors. Indeed, when monitoring the number of 126

stable attractors of the corresponding fast system at each point in time, their number changes 127

exactly at the ionic concentrations reached at 1.2 seconds. Here, an additional stable fixed point (i.e. 128

a stable voltage) appears in parallel to the spiking mode for the same size of input current; the 129

system becomes bistable. Which of the two attractors (regular spiking or a fixed voltage) the system 130

converges to, depends on the initial conditions and/or noise in the system. In Fig. 1, initial 131

conditions are such that the neuron keeps up regular spiking because concentration changes are not 132

substantial enough to reach the switch in spiking dynamics (the emergence of an additional fixpoint 133

attractor). When ionic concentration changes are substantial enough the reach the swiching point, in 134

the presence of noise (like in Fig. 2), however, the system permanently receives perturbations and, 135
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therefore, when entering the bistable dynamics (at ∼1.2 sec) only temporarily settles onto one of the 136

two attractors before being kicked into the other one. This dynamical state results in a long-lasting, 137

stochastic back-and-forth between periods of spiking and silence (Fig. 2). The transition from single 138

attractor to bistability ∼1.2 seconds after stimulation onset is confirmed in the corresponding phase 139

portraits of the fast system (Fig. 2C.). 140

Bistable vs. uni-stable states lead to qualitatively very different responses. The natural question 141

that follows is: what generates the bistability? Mathematically, the bistability is caused by the 142

emergence of a separatrix attached to a saddle point, i.e. a trajectory in phase space that separates 143

the so-called basins of attraction of the two attractors. Depending on which side of the separatrix 144

the system is located at a given point in time, it will converge towards the respective attractor 145

(unless noise or an input fluctuation kick the system across the separatrix to the other side). 146

Dynamics in this region are strongly affected by the reversal potential for potassium (see Fig. 2 C.). 147

Therefore, we next systematically explored the effects of extracellular potassium on the fast system. 148

Consequences of Extracellular potassium accumulation 149

Dynamical systems analysis 150

We analyzed the dynamics of the fast system (i.e., the neuron model with fixed ionic concentrations) 151

for different values of extracellular potassium. Fig. 3 shows the resulting two-parameter bifurcation 152

diagram, which depicts the dynamical state as a function of extracellular potassium concentration 153

and size of the applied input current (for details see the methods section). Four different dynamical 154

regimes can be found: a silent subthreshold state, a regularly spiking state, a bistable state, and a 155

silent state of depolarization block (when the model is depolarized so strongly that spiking cannot 156

occur any more). 157

Let’s look at the diagram in more detail, starting at lower extracellular potassium values (i.e., 158

the bottom of the diagram). Depending on the input strength, the system here either remains 159

subthreshold or exhibits regular firing. The transition to spiking corresponds to a SNIC bifurcation 160

(See Fig.S ). When elevating the levels of extracellular potassium (to ∼12 mM), the situation 161

changes. Here, an additional (bistable) region appears between the subthreshold and the regular 162

spiking areas. The transition is marked by a codimension-two bifurcation called a saddle-node loop 163

(SNL) [13]. The width of the bistable region increases for higher values of extracellular potassium 164

concentration (dashed lines in Fig. 3). The firing threshold corresponds to the left border of the 165
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bistable region. The transition to spiking now corresponds to a HOM bifurcation. In the bistable 166

zone, in the presence of noise intermittently-interrupted firing can be observed. Moreover, at 167

elevated extracellular potassium values, the depolarization block (as the name suggests, usually 168

occurring at very large depolarization levels) can be observed at progressively lower input currents. 169

At very high extracellular potassium values, it directly borders the bistable zone. 170

The full system (with variable concentrations and pump activity), as analyzed in Fig. 2, ”lives” in 171

the bottom part of the bifurcation diagram (Fig. 3) at the onset of the stimulation, as here the 172

values of extracellular potassium are moderate. Over time, extracellular potassium accumulates and 173

the switching point to HOM dynamics is passed. Here, the bistable range is entered and the 174

burst-like, intermittently interrupted firing mode can be observed in Fig. 2 due to the presence of 175

noise. The diagram shows that extracellular potassium is the bifurcating parameter that leads to the 176

qualitative switches in spiking. 177

Experimental manipulation of extracellular potassium 178

To experimentally test whether elevated levels of extracellular potassium can induce HOM dynamics 179

of action potential generation, a verification of the model-predicted intermittently-interrupted 180

burst-like firing mode suggests itself. In vitro, activity-driven accumulation of extracellular 181

potassium is difficult to reproduce due to the continuously perfused bathing solution that constrains 182

extracellular ion concentrations. We, therefore, recorded current-induced activity in mouse cortical 183

pyramidal neurons exposed to different fixed concentrations of extracellular potassium. Action 184

potentials were induced by constant-current stimulation in baseline conditions (3 mM extracellular 185

potassium), and after increasing the concentration of extracellular potassium to 10 or 12 mM (see 186

methods section). Neurons were stimulated with somatic current injection sufficient to maintain the 187

membrane potential close to spiking threshold (see first panel of Fig. 4), which, in terms of 188

dynamical system analysis, is close to limit cycle onset and, for HOM dynamics, also to the bistable 189

region, see Fig. 3. 190

Our experimental results support the model prediction portrayed in Fig. 3, in which an increase 191

in extracellular potassium concentration switches the spike generating mechanism. When 192

extracelluar potassium is low (3 mM), the neuron shows very rhythmic (regular) action potential 193

generation over time (see Fig. 4 left panel). In contrast, when extracellular potassium is increased to 194

10 or 12 mM, action potential generation in the same neuron becomes irregular (see Fig. 4 right 195

panel). In 7 out of 8 neurons tested, we observed an increase in spiking irregularity when potassium 196
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levels were increased from 3 mM to 12 mM (see supplementary material Fig. S. and S.). In 3 out of 197

10 neurons tested, we observed an increase in spiking irregularity when potassium levels were 198

increased from 3 mM to 10 mM (see supplementary material Fig. S), confirming a crucial prediction 199

of the model. We hypothesize that not all neurons exhibited the same qualitative behavior because 200

the distance to the switching point depends on other parameters as well [13] and hence is likely to be 201

variable across cells [14]. It remains to be determined whether the activity of a single neuron 202

generates the [K+]o accumulation that induces the SNL bifurcation. Presumably such transitions 203

would be more likely when there are multiple neurons activated simultaneously, which would 204

generate a larger [K+] flux to the extracellular space. 205

Consequences of intracellular sodium accumulation 206

The dynamical system analysis described above provides a mechanistic explanation for the emergence 207

of intermittently-interrupted firing. However, the only concentration we varied for the analysis was 208

that of potassium ions. Yet long periods of spiking accumulate both extracellular potassium and 209

intracellular sodium ions. In the following section, we therefore describe physiological features that 210

are altered by sodium accumulation. The space of sodium concentrations is explored to determine 211

whether the results from the dynamical system analysis performed to understand the consequences 212

of extracellular potassium accumulation, hold up under conditions of parallel sodium accumulation. 213

Sodium accumulation shapes two main properties of spike generation: spike amplitude and 214

spiking threshold, which are determinant features for information transmission and encoding, 215

respectively. 216

Intracellular-sodium-dependent spike amplitude reduction 217

As outlined above, action potential amplitude is reduced as intracellular sodium accumulates during 218

spiking (Fig. 1 and Fig. 2), reducing ENa and hence the driving force. This effect is also reflected in 219

the phase portraits (Fig. 2C.). The height of the stable limit cycle is squeezed during stimulation, 220

correlating with the ENa reduction (Fig. 1A.). We tested this model prediction in mouse cortical 221

neurons in vitro during extended periods of current-induced spiking. 222

Extended activation of rodent cortical neurons led to a slow spike amplitude reduction (Fig. 5 223

and Fig. S). Rodent cortical neurons were activated for 40 seconds using short (2 ms) depolarizing 224

current pulses (3 nA) generated at 40 Hz. These neurons exhibited a slow and progressive reduction 225
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Fig 5. Example trace: Evolution of spike peak in time. A Membrane potential of a rodent
cortical neuron, subjected to prolonged stimulation, and brief hyperpolarizing pulses with different
duration. B Zoom into the membrane potential peak is shown. C First and last spike aligned at
5ms for comparison.

in spike amplitude that was best fit by a double exponential decay with an average fast time 226

constant (τfast) of 480 ms and an average slow time constant (τslow) of 17.7 s (n=50) (see 227

Supplementary material Fig. S. and Table S. for details). The observed slow spike amplitude decay 228

fits the prediction of the model, given that sodium accumulation occurs on the order of seconds, and 229

the faster time scale coincides with the previously reported effects of sodium inactivation [15]. 230

More than one process contributes to spike amplitude decay: a fast process (sodium channel 231

inactivation) and a slow process (sodium accumulation). In order to disentangle the contribution of 232

the two, we used somatic current injection to drive rodent cortical neurons with periodic brief (100 233

to 1000 ms) hyperpolarizing currents (Fig. 5) that were long enough to reset (deinactivate) sodium 234

channels, but too short for the Na-K-ATPase to clear activity-dependent increases in intracellular 235

sodium. We observed a progressive reduction in action potential amplitudes that was not rescued by 236

hyperpolarizations as long as one second. Further, the slow time constant of spike amplitude decay 237

was found to coincide with that measured in the previous protocol, τslow = 15.7s (Fig. and Tab. S,). 238

These observations suggest that the slow component of amplitude decay cannot result from sodium 239

channel inactivation, and instead is likely driven by intracellular sodium accumulation and the 240
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Fig 6. Extracellular potassium and intracellular sodium dependent bistable area. Same
bifurcation diagram portrayed in Fig. 3 for different intracellular sodium concentrations [Na+]i.
[Na+]i controls the input current required to transition from resting to spiking regimes. [Na+]i
accumulation shifts the bistable region to higher current values.

resulting decrease in ENa. 241

Intracellular sodium accumulation shifts the spiking threshold in the model 242

Given that an accumulation of intracellular sodium ([Na+]i) is likely to affect spike generation, we 243

next systematically evaluated the dynamical regimes identified in the bifurcation diagram at 244

different, fixed [Na+]i concentrations (Fig. 6). 245

We find an identical bifurcation structure and splitting into different dynamical regimes for a 246

wide range of [Na+]i levels, with the exception of a shift towards higher input currents with larger 247

[Na+]i (Fig. 6). In other words, as [Na+]i accumulates, the spiking threshold is shifted to higher 248

inputs. This shift can be attributed to the dependence of the Na-K pump on [Na+]i; accumulation 249

of [Na+]i thus strengthens the hyperpolarizing pump current, counteracting the input current and 250

reducing the net excitatory drive. Consequently, also the bistable region is shifted along the current 251

axis. Neither a significant change in the area of the bistable region, nor in the location of the 252

transition point towards bistability (i.e., the SNL bifurcation) on the [K+]o axis are observed. 253

November 5, 2020 15/31

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.11.30.403782doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.403782
http://creativecommons.org/licenses/by/4.0/


Consequences of simultaneous [Na+]i and [K+]o changes 254

The effect of ionic concentrations on neuronal voltage dynamics unfolds via changes in the respective 255

reversal potentials, ENa and EK . Fixing the input current, we can summarize how the spiking 256

regime depends on the concentrations ([Na+]i and [K+]o) in a plot that depicts the spiking regime 257

(reached in the steady-state of the fast subsystem) as a function of the two corresponding reversal 258

potentials (Fig. 7). The regime was determined via the phase plane of each system (Fig. 3B.,C.,D.) 259

and can be classified as bistable, regularly spiking, or stable-resting (i.e., either subthreshold or in 260

depolarization block). To relate the reduced fast subsystem with the complete system including slow 261

concentration dynamics, three example trajectories of the complete system at different initial 262

conditions in the space of reversal potentials are shown on top of the steady states of the fast 263

subsystem. Each trajectory represents the evolution of ionic concentrations during 10 seconds of 264

stimulation with a fixed current in the presence of noise (as in Fig. 2). The corresponding voltage 265

traces are presented for comparison (Fig. 7B.,C.,D.). Traces that started at a higher firing rate 266

(and, consequently, were accompanied by larger changes of ionic concentrations) moved farther than 267

the ones that started out at a lower rate. 268

Which spiking regime a model neuron enters during stimulation, can be read off the 269

corresponding trajectory in the complete system. The trajectory depends on the initial ionic 270

concentrations at stimulation onset. A neuron starting with a very low EK yet high ENa tends to 271

move from regular spiking either to a resting state or to a lower firing rate within the regularly 272

spiking regime (yellow trajectory in Fig. 7, similar to the example trace in Fig. 7D.). Biophysically, 273

spike-frequency adaptation results from the activity of the electrogenic pump, which generates a 274

progressively larger hyperpolarizing current as levels of intracellular sodium increase. Trajectories 275

initialized at low EK do not reach the bistable region. They tend to a quiescent mode, remaining 276

close to the border to regular firing. If the initial EK is more elevated, however, a neuron that starts 277

in the regularly spiking regime can reach the bistable region (orange trajectory in Fig. 7, similar to 278

the example trace in Fig. 2). Very high initial extracellular potassium concentrations promote 279

depolarization block, but, depending on initial conditions, the bistable regime may also be 280

encountered as an intermediate state (magenta trajectory in Fig. 7). 281

The three example trajectories displayed in Fig. 7, illustrate that a neurons with identical ion 282

channels and stimulation can generate extremely different responses depending on the extracellular 283

environment. Recent spiking activity of neurons alters their response, even when stimulation is 284
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Fig 7. Consequences of simultaneous [Na+]i and [K+]o changes A.: Characteristic response
of the reduced model (receiving a constant input current stimulus of 1µA/cm2) along the reversal
potential plane. The characteristic response can be split in three categories; stable-resting state
(lower left corner, subthreshold regime; upper part of the figure: depolarization block. Both
represented in purple), spiking state (green), and bistable (yellow). Three example trajectories of the
complete system (Including the slow concentration dynamics) simulated during 10 seconds (with an
irregular input of mean of 1µA/cm2 and standard deviation of 1µA/cm2). The initial conditions
represented by a circle, and the state of the system 10000 ms later with a triangle. B.: Membrane
potential trace of the trajectory with initial conditions EK = −55.1mV and ENa = 66.7mV
displayed in A. Left panel shows the first 400ms of simulation (marked with a circle), and the right
panel shows the last 400ms out of the 10 seconds simulation (marked with a triangle). C.:
Membrane potential trace of the trajectory with initial conditions EK = −63.9mV and
ENa = 75.7mV displayed in A. B.: Membrane potential trace of the trajectory with initial
conditions EK = −74.2mV and ENa = 69.3mV displayed in A.
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unchanged; the rate of change of ionic concentrations strongly depends on neuronal firing rate. 285

Consequently, neurons receiving strong and prolonged stimulation are more likely to experience 286

dynamical regime changes due to ionic accumulation than neurons with weaker stimulation. 287

Discussion 288

In this study, we show that activity-dependent changes in ionic gradients during prolonged neuronal 289

activation can indeed qualitatively change the underlying neuronal dynamics. This fact is reflected 290

most pronouncedly in a change in spiking pattern from regular to an intermittently interrupted 291

mode, which appears when extracellular potassium accumulates. Intracellular sodium accumulation, 292

in contrast, mediates a long-lasting spike-frequency adaptation via engagement of the sodium 293

potassium pump, and lowers spike amplitude by its effect on the reversal potential ENa. 294

We claim that for highly active neurons, an assumption of stationarity of neuronal dynamics is 295

not precise; neurons are intrinsically affected by their recent electrical activity, beyond any other 296

changes that may arise from network feedback. Extended spiking activity results in modifications of 297

the intracellular and extracellular concentrations of sodium and potassium, respectively, and triggers 298

homeostatic mechanisms that regulate ionic gradients at time scales much slower than action 299

potential genesis and bears consequences for neural computation. 300

Switching to the HOM firing regime: We demonstrate that neuron models that start out 301

with SNIC dynamics (i.e., the classical type I dynamics that has been thought to underlie the firing 302

of most cells with a smooth onset of firing at threshold) can flip to HOM dynamics only seconds 303

after the onset of the spike-inducing stimulation. This transition most obviously manifests in the 304

spiking pattern, which turns from a regular firing mode to an intermittently interrupted one. Our 305

bifurcation analysis shows that an accumulation of extracellular potassium drives this change, 306

instantiating a bistability of the membrane potential. 307

This finding is consistent with previous work in neuronal models with static ionic concentrations 308

at different levels of extracellular potassium [16,17]. In the presence of a fluctuating input (be it 309

noise or signal), the bistability renders neurons susceptible to switches between the two stable states, 310

giving rise to an irregular, intermittently interrupted firing pattern of short firing phases and pauses 311

of different durations. Long periods of silence, which can be prominent in this mode, can resemble 312

the ones observed during deterministic bursting reported by [18–22]. In contrast to these 313

deterministic bursters, however, the burst-like firing we describe here is driven by the input 314
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fluctuations and the bistable state. Thus, neurons in an environment with high extracellular 315

potassium concentration, promoting HOM dynamics, may be more sensitive to input variability. 316

The SNIC and the HOM regimes yield very different neuronal encoding properties. For instance, 317

the relationship between the input current and the neuronal firing rate (i.e., the gain) depends on 318

the dynamical regime. The gain function of a neuron in the SNIC regime is continuous, the firing 319

rate of such neuron is a continuous function of the input current. The gain function of a neuron in 320

the HOM regime is discontinuous when irregular input is injected, meaning that the firing rate 321

doesn’t smoothly increase as a function of the input current but it transitions from no spikes to high 322

frequency spiking abruptly. The phase response curve (PRC), which captures the temporal 323

sensitivity to inputs, also differs between the two regimes. In the SNIC regime, neurons display 324

symmetric PRCs. As PRC symmetry predicts the synchronization of the neurons in the 325

network [13,23,24], the switch in firing regime and the underlying bifurcation must also impact the 326

propensity of the neuron to synchronize with other cells in its local network and beyond. Encoding 327

capabilities (such as the profile of frequencies transmitted) are likely to be affected, as they also 328

depend on the PRC characteristics. 329

Interestingly, intracellular sodium accumulation only quantitatively modulates the qualitative 330

change in spiking regime, underlining the importance of potassium accumulation in this process. The 331

effect of extracellular potassium on neuronal activity has been widely studied [25–27]. Experimental 332

observations have found extracellular potassium dependent bursting [27] and its influence on other 333

dynamical features [16, 17, 28]. While a bistability has been previously observed ”in passing” [16,17], 334

we report a systematic effect and provide mechanistic explanations for the activity-driven changes. 335

Interpreting these results, we speculate that activity-dependent extracellular potassium 336

accumulation can contribute to, or even induce, epileptiform activity [20]. Both the bursting nature 337

of HOM dynamics [29,30], as well as their comparatively high susceptability to synchronization in 338

inhibitory networks because of the HOM-characteristic PRC [13], favour synchronized, 339

hyperexcitable states. In vivo, Singer and Lux observed that extracellular potassium accumulates in 340

the visual cortex when a rapidly changing visual stimulus is presented to the cat’s retina [4]. 341

Remarkably, similar visual stimuli elicit reflex seizures in 4–7% of human epilepsy patients [31]. 342

Reflex seizures could be promoted by extracellular potassium accumulation occurring throughout the 343

visual cortical region that is activated by visual stimulation. 344

Indeed, the observed drastic consequences of potassium accumulation might occur more 345

frequently in vivo than in vitro. In vitro, extracellular potassium concentrations are clamped. The 346
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tissue is perfused with a solution that has a fixed [K+]o (consequently [K+]o) concentration, 347

analogue to an infinite buffer. In vivo, however, extracellular potassium concentration undergoes 348

stimulus-induced changes. In the cat visual cortex, for instance, extracellular potassium accumulates 349

when a graded stimulus is presented to the cat’s retina [4]. Regarding the universality of the 350

dynamical changes described here, we expect these to generalize beyond the specific model choice of 351

this study. Specifically, the bistability of conductance based models arises from a slow-down of 352

hyperpolarization, which pushes the limit cycle trajectory to approach the saddle node through a 353

very attractive path (i.e., a strong manifold). This feature can be expected in any neuron model that 354

starts out with SNIC dynamics and ubiquitously favours a switch to HOM dynamics [13,32]. The 355

exact reversal potential at which the bistability is induced, could be shifted by other parameters. 356

Thus,the exact switching point between the two dynamical regimes can vary between neurons, as 357

their properties are diverse [14,33]. Therefore, we expect that the exact location of the switching 358

point (i.e., the potassium concentration at which the switch is to be expected) depends on cellular 359

characteristics, both in neuron models as well as in experiments. Along these lines, milder 360

extracellular potassium accumulations could suffice to induce the transition in cells with a lower 361

critical value, singling out cells with a higher likelihood to switch their dynamics. 362

Attenuation of the spike amplitude: Next to the very promiment change in spiking regime, 363

accumulation of ions are also reflected in the shape of action-potentials, namely their peak 364

amplitude. Such an attenuation is a regular feature observed in electrophysiological recordings. It 365

has, however, been previously attributed to an inactivation of sodium channels [6, 15]. Our data now 366

suggest that the activity-induced changes in reversal potentials contribute substantially to the 367

attenuation, especially during long periods of activity, as they far outlast the effects inactivation. 368

Our deinactivation experiments with hyperpolarizing current steps support this hypothesis and 369

confirm that the larger and slower component of spike amplitude reduction persist even when 370

sodium channel inactivation is largely diminished. Moreover, the timescales of ENa and amplitudes 371

attennuation are matched. 372

Concentration-change induced spike-frequency adaptation: Spike-frequency adaptation 373

resulted from an activity-dependent increase in the hyperpolarizing sodium pump current (again 374

mediated by sodium accumulation). This observation was previously reported for leech 375

mechanoreceptor neurons [34] as well as for rodent cortical neurons [5]. The later study [5] 376

demonstrated not only that the pump current produces a slow afterhyperpolarization (AHP) as a 377

consequence of neural activity, but that its time-course mirrors the time-course of intracellular 378
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sodium decay. Results from our model are consistent with this finding. 379

Interestingly, for both spike amplitude attenuation and spike frequency adaptation, 380

ion-channel-mediated equivalent effects on short timescales are well known. The dynamics of 381

concentrations seem to smoothly extend these effects in time. 382

Limitations: We note that our model does not consider extracellular uptake of potassium by 383

glial cells. The latter maintain the ionic homeostasis of the extracellular environment and serve as 384

extracellular potassium buffers [35]. Experimental work Dallerac et al. [36] has shown that glial 385

buffering of extracellular potassium saturates at high values when changes are relatively fast. Yet 386

the presence of glial cells in vivo is likely to slow the timescale of potassium accumulation. The 387

effects described here can be expected to arise most prominently in pathological conditions, be it 388

glial dysfunction or energy-deprivation that impairs the pumps and thus facilitates accumulation of 389

both extracellular potassium and intracellular sodium. 390

We also note that the experiments in this study were performed in the absence of synaptic 391

blockers. This keeps the pharmacological cocktail ”neater”, but it also raises the possibility that 392

changes in synaptic input may contribute to the irregularity displayed in the single-cell 393

measurements. Specifically, two opposing effects may come into play: (i) Extracellular potassium 394

accumulation shifts EK to more depolarized potentials; this in turn may foster the passive inflow of 395

chloride, moving also ECl to a more depolarized state. These effects reduce GABA-A and GABA-B 396

efficacy and reduce synaptic inhibition, by depolarizing the IPSP equilibrium potential [37]. (ii) Also 397

extracellular potassium dependent inhibition of glutamate transporters may contribute [38], 398

decreasing excitatory synaptic transmission. Having said so, an increase in extracellular potassium 399

also increases the firing rate of neurons in the whole network and it is not probable that the synaptic 400

efficacy reduction could counterbalance the increase in the network input. Network interactions may 401

have many nonlinear effects, and it is not trivial to draw conclusions on causality. 402

Conclusion 403

Our analysis shows that a consideration of the slow ionic concentration dynamics inherent to in vivo 404

brain activity unravels the nonstationary nature of neurons as computational units. Cortical neurons 405

are typically grouped as either intrinsically bursting, regular spiking, or fast spiking [39]. Here, we 406

reveal a more dynamic situation: by accumulation of ions during prolonged activity, regularly 407

spiking neurons may transition to an intermittently firing mode, or even resemble intrinsically 408
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bursting neurons, via activity-induced switches in the underlying bifurcation structure of its 409

dynamics. Neuronal firing patterns are dynamical even in the absence of network changes and 410

strongly depend on the concentrations in the extracellular and intracellular medium. In particular, 411

HOM-type dynamics are likely to be induced in situations of impaired ionic homeostasis, such as 412

glial pathologies or reduced energetic supplies, affecting neural encoding and potentially the network 413

state. 414

Materials and methods 415

With the purpose of understanding the effect of different ionic concentrations on the neuron’s 416

response, we used two approaches: simulations of a single-neuron mathematical model with dynamic 417

concentrations, and patch-clamp of rodent cortical neurons while perfusing the medium to control 418

the extracellular ionic concentrations. 419

Computational model 420

Our goal is to understand the effects of ionic concentration dynamics on the excitability of neurons. 421

Two ingredients are needed: an excitable system (capable of generating spikes) for which we use the 422

Traub-Miles formulation [40] (See equations (1),(2),(3),(4)), and a description for the ionic 423

concentration changes that occur due to ionic currents. The action potential dynamics at a 424

membrane is governed by a current balance equation involving the following ionic currents, 425

Cm
dV

dt
= Iapp − INa − IK − IL − Ipump. (1)

INa = gNam
3
NahNa(V − ENa) (2)

426

IK = gKn
4
K(V − EK) (3)

427

IL = gL(V − EL) (4)

Ipump =

 0 [Na+]i ≤ [Na]s

Imaxp

1+exp(kNa([Na+]i−[Na]s))
[Na+]i > [Na]s

(5)

The pump model in Eq. (5) constitutes a homeostatic mechanism that counteracts the movement 428
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of ions due to chemical gradients during neuronal spiking activity. Specifically, the sodium 429

potassium pump (Na-K-ATPase) pumps 3 sodium ions out of the cell, while 2 potassium ions enter 430

the cell every pump cycle. The pump is represented by sigmoidal function of the intracellular Na+ 431

concentration in Eq. (5) [19, 41]. Imaxp is the maximum pump rate, kNa is the sodium sensitivity of 432

the pump, and [Na]s is the sodium concentration at which the pump current is most sensitive to 433

concentration changes. We ignore the pump’s dependence on potassium and on voltage. This is an 434

analog of Na-K-ATPase (isoform 3), which reacts very strongly to intracellular sodium changes, and 435

is rather insensitive to potassium in the range we study ([K+]o 4-20 mM) [9]. 436

The concentration dynamics is influenced by the transmembrane currents due to ion channels 437

and the pump as follows. 438

d[Na+]i
dt

=
ρ

F
(−3Ipump − INa) (6)

d[K+]i
dt

=
ρ

F
(2Ipump − IK − IL) (7)

d[K+]o
dt

= −d[K+]i
dt

Voli
Vole

(8)

EK =
RT

F
ln(

[K+]o
[K+]i

) (9)

All expressions and parameters used in the simulations can be found in Tables S. , S., and S.. 439

Simulations where performed in python and code is available here. 440

Time scale separation 441

Simulating the model dynamics with an ODE solver is very time consuming (This was done for 442

voltage traces in Fig. 1, 2, and 7). Therefore, in order to characterize the system’s response to a 443

broad set of initial conditions using shorter simulation times, we used time scale separation for the 444

analysis. This technique is particularly useful for our set of equations because the system contains 445

variables changing in very slow and very fast time scales. 446

Ionic concentration dynamics change with a time scale in the order of seconds, while spike 447

generating currents are changing in the order of milliseconds. Thus, we can split the system into two 448

subsystems. The fast subsystem (Equations 2,3,4,5 ,9,1) receives ionic concentrations 449
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([Na+]i, [K
+]i, [K

+]o,) as fixed parameters. For each parameter combination the steady states are 450

portrayed in phase portraits (See Fig. 2 bottom panel). A parameter combination that yields a phase 451

portrait containing only one stable node is characterized as resting state, one containing only a 452

stable limit cycle is characterized as regular firing, and one with a stable node and a stable limit 453

cycle is characterized as bistable (See Fig. 7 A.). 454

Bifurcation analysis 455

The numerical bifurcation software AUTO [42] was used to find the limit cycle onset (spike onset), 456

the disappearance of the steady state, and the hopf bifurcation (depolarization block). The analysis 457

was repeated for different ionic concentrations (See in Fig. 3 and 6). 458

Experimental protocol 459

Physiological experiments were approved by the Institutional Animal Care and Use Committee of 460

Dartmouth College. Female and male adult (3- to 4-month-old) C57BL/6J mice were bred in 461

facilities accredited by the Association for Assessment and Accreditation of Laboratory Animal Care 462

and maintained on a 12h-12h light-dark cycle with continuous free access to food and water. 463

On the day of experiments, mice were anesthetized with vaporized isoflurane and decapitated, 464

with brains rapidly removed into an artificial cerebral spinal fluid (aCSF) composed of (in mM): 125 465

NaCl, 25 NaHCO3, 3 KCl, 1.25 NaH2PO4, 0.5 CaCl2, 6 MgCl2 and 25 glucose (saturated with 95% 466

O2-5% CO2). Coronal brain slices (250 m thick) of the frontal cortex were cut using a Leica VT 467

1200 slicer and stored in a holding chamber filled with aCSF containing 2 mM CaCl2 and 1 mM 468

MgCl2. Slices were maintained in the holding chamber for 45 minutes at 35◦ C, and then at room 469

temperature (∼ 25◦C) until use in experiments. 470

Slices were transferred to a recording chamber on a fixed-stage microscope (Olympus), and 471

continuously perfused (7̃ ml/min) with oxygenated aCSF heated to 35-36 ◦C. Layer 5 pyramidal 472

neurons in the prelimbic cortex were visually targeted using a 60X water-immersion objective, and 473

whole-cell recordings made with patch pipettes (5-7 M) filled with a solution containing the following 474

(in mM): 135 potassium gluconate, 2 NaCl, 2 MgCl2, 10 HEPES, 3 Na2ATP and 0.3 Na2GTP, pH 475

7.2 with KOH. Data were acquired using a BVC-700 amplifier (Dagan Corporation) connected to a 476

HEKA 8+8 digitizer driven by AxoGraph software (AxoGraph Scientific; RRID: SCR - 014284). 477

Membrane potentials were sampled at 50 to 100 kHz and filtered at 5 or 10 kHz. Voltage 478
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measurements were corrected for a +12 mV liquid junction potential. Concentrations of KCl (3, 10, 479

or 12 mM) and NaCl (125, 118, or 116 mM, respectively) were adjusted as indicated to test the 480

impact of extracellular potassium concentration on action potential dynamics. 481

Data analysis 482

Data analysis was done in python. 483

Spiking irregularity Spiking irregularity is measured as 484

CV =
σ

µ
, (10)

where σ is the standard deviation of the interspike interval (ISI), and µ is the mean. 485

Time scale of spike amplitude decay 486

The fast and the slow components of the spike amplitude decay were calculated by fitting the 487

time dependent spike-voltage-peak to a double exponential function, 488

Dfast exp[ −t
τfast

] +Dslow exp[ −t
τslow

] +Dss.(11)

The distribution of the parameters that yield the best fit across all traces measured are shown in 489

Fig. , Table. and Table. . 490

Supporting information 491

S1 Fig. Transition from rest to spiking (limit cycle onset bifurcations) for different 492

extracellular potassium concentrations. From bottom to top; SNIC (saddle-node on invariant 493

circle): Purple, SNL (Saddle-node-loop): Blue; HOM (saddle homoclinic orbit): Green. In the SNIC 494

regime the stable node collides with an unstable node, giving rise to a saddle node. The limit cycle 495

orbit passes through the saddle node, the trajectory leaves the saddle node along the semi-stable 496

manifold. After one period trajectory approaches the saddle node along the same semi-stable 497

manifold. At the SNL point, trajectories leave the saddle node along the semi-stable manifold as in 498

the SNIC case, but after one period those trajectories approach the saddle node along the strongly 499

stable manifold. Notice that the SNL orbit is smaller than the SNIC orbit, and has a shorter period. 500

In the HOM regime a stable node and a limit cycle coexist. External perturbations shift the state of 501
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the system from the stable node to the attraction domain of the limit cycle attractor. 502

S2 Fig. Spike amplitude slow decay. Depolarizing pulses applied at a 40Hz rate. 503

Spike amplitude decay τslow = 13.6(seg), and τfast = 410(ms). Notice that the amplitude of 504

the last spike doesn’t recover its amplitude after the hyper-polarizing pulse. 505

S3 Fig. Distribution of time scales of the double exponential decay (equation 11) of 506

the spike amplitude. Two protocols were used to measure the time scales of spike amplitude 507

decay, an example of the ”40 Hz Depolarizations” is shown in Fig. , and an example of the 508

”Hyperpolarization” is shown in Fig. 5. Notice that the distribution of τslow is independent of the 509

protocol used. 510

S4 Fig. Spiking variability calculated as the coefficient of variation (CV = σ
µ) for all 511

cells sampled, when stimulating with white noise added to the baseline input. An 512

increase from 3mM to 12mM in extracellular potassium increased the spiking variability of 5 out of 6 513

cells measured. 514

S5 Fig. Spiking variability calculated as the coefficient of variation (CV = σ
µ) for all 515

cells sampled, when stimulating with baseline input. An increase from 3mM to 12mM in 516

extracellular potassium increased the spiking variability of 2 out of 2 cells measured. The main 517

source of stimuli irregularity was the network activity. 518

S6 Fig. Spiking variability calculated as the coefficient of variation (CV = σ
µ) for all 519

cells sampled. An increase from 3mM to 10mM in extracellular potassium increased the spiking 520

variability of 3 out of 10 cells measured. The main source of stimuli irregularity was the network 521

activity. 522

S1 Table. Summary of the distribution of the best fit of the parameters for each of 523

the 50 traces. Depolarizing pulses applied at a 40Hz rate 524

S2 Table. Summary of the distribution of the best fit of the parameters for each of 525

the 73 traces. Hyperpolarizing pulses. 526

S3 Table. Gating dynamics used for the Traub-Miles model. 527
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S4 Table. Expressions used for the Traub-Miles model. 528

S5 Table. Parameters used for the Traub-Miles model. 529
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