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Abstract 7 

Association and prediction studies of the brain target the biological consequences of aging and their 8 

impact on brain function. Such studies are conducted using different smoothing levels and parcellations 9 

at the preprocessing stage, on which their results are dependent. However, the impact of these 10 

parameters on the relationship between association values and prediction accuracy is not established. 11 

In this study, we used cortical thickness and its relationship with age to investigate how different 12 

smoothing and parcellation levels affect the detection of age-related brain correlates as well as brain 13 

age prediction accuracy. Our main measures were resel numbers - resolution elements - and age-related 14 

variance explained. Using these common measures enabled us to directly compare parcellation and 15 

smoothing effects in both association and prediction studies. In our sample of N=608 participants with 16 

age range 18-88, we evaluated age-related cortical thickness changes as well as brain age prediction. 17 

We found a negative relationship between prediction performance and correlation values for both 18 

parameters. Our results also quantify the relationship between delta age estimates obtained based on 19 

different processing parameters. Furthermore, with the direct comparison of the two approaches, we 20 

highlight the importance of correct choice of smoothing and parcellation parameters in each task, and 21 

how they can affect the results of the analysis in opposite directions. 22 

1 Introduction 23 

From a biological standpoint, aging is defined by the structural and functional alterations in living 24 

organisms (López-Otín et al., 2013). Traditionally, brain imaging studies have used neuroimaging data 25 

to find associations between age and tissue alterations across brain areas, using chronological age as 26 

the ground truth (Booth et al., 2013; Curiati et al., 2009; Hu et al., 2014; Lemaître et al., 2005; 27 

Takahashi et al., 2011; Ziegler et al., 2012). However, biological age might vary between individuals 28 

with identical chronological age as well as across different tissues within the same person (Horvath, 29 

2013). To non-invasively measure the biological age of the brain, neuroimaging data is used to predict 30 

age. The difference between predicted age and chronological age is then defined as “delta” or brain 31 

age gap estimate i.e. “BrainAGE” to compare the subjects’ chronological age with the predicted brain 32 

age in a given reference population (James H. Cole & Franke, 2017; Franke et al., 2012; Franke & 33 

Gaser, 2019a; Smith et al., 2019a).  34 

Both age related brain alterations and delta age have been studied and used extensively in the 35 

neuroimaging literature. Age association studies translate and generalize easily across different 36 
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datasets. These association studies are applied across brain regions and can distinguish the differential 37 

effect of age on different brain areas (Storsve et al., 2014). Furthermore, they directly relate to 38 

biological measures and mechanistic changes in the brain (Khundrakpam et al., 2015). More recently, 39 

it has been recognized that association studies are prone to overfitting and more studies focus on 40 

prediction as the main goal of the study (Bzdok et al., 2020; Yarkoni & Westfall, 2017). Brain age 41 

studies (i.e. age prediction studies based on neuroimaging data) rely on modeling and prediction 42 

accuracy. This goal is generally achieved by using a feature set that can capture the variability between 43 

and within subjects. On the other hand, prediction tasks face a trade-off between a more accurate whole 44 

brain model with no regional specificity versus a model with lower accuracy and increased spatial 45 

resolution (James H. Cole & Franke, 2017; Franke & Gaser, 2019a). This limitation also results in a 46 

more indirect relationship between delta age and other phenotypes without a direct mechanistic and 47 

biological model. Nonetheless, the difference between brain age and chronological age is associated 48 

with cognitive decline (Gaser et al., 2013), predisposition to neuropsychiatric and neurodegenerative 49 

disorders (Kaufmann et al., 2019), and mortality (J. H. Cole et al., 2018). While evidence supports the 50 

application of delta age as a valuable measure to study aging in health and disease, it has been criticized 51 

due to its reliance on prediction accuracy (i.e. more accurate models result in lower delta values) (James 52 

H. Cole & Franke, 2017).  53 

The results of both association studies and delta estimation studies are impacted by processing steps 54 

such as data normalization, spatial resolution, and parcellation level (i.e. size of the parcels) of the 55 

analysis. Most association studies use smoothing to (i) normalize the distributions of cortical thickness 56 

across subjects, (ii) minimize registration and anatomical misalignment across subjects, (iii) reduce 57 

measurement noise, and (iv) increase statistical power (Lerch et al., 2006; Lerch & Evans, 2005; 58 

Worsley et al., 1999; Zhao et al., 2013). These advantages are gained at the cost of losing individual 59 

variability and spatial resolution. In fact, smoothing has been studied and optimized for best 60 

performance in association studies, using simulation as well as in real datasets. The smoothing level 61 

has been proposed as a dimension within the parameter space in the association analysis that needs to 62 

be searched for the given statistical contrast (Lerch & Evans, 2005; Zhao et al., 2013).  63 

Brain age prediction studies have been conducted with various levels of data smoothing. Moreover, 64 

these studies rely on various dimension reduction techniques, brain parcellations, or a combination of 65 

the two approaches for feature extraction (Franke & Gaser, 2019b; Smith et al., 2019b). The optimal 66 

parcellation for a given task is an open research topic and it can vary between studies (Eickhoff et al., 67 

2018; Gorgolewski et al., 2016; Salehi et al., 2020). While some studies have predicted brain age with 68 

multiple parcellation resolutions (Khundrakpam et al., 2015; J. D. Lewis et al., 2019), others have used 69 

a predetermined number of parcels. However, the effect of smoothing and parcellation in brain age 70 

prediction is not studied systematically. Furthermore, these changes in prediction accuracy also affect 71 

the delta estimate (i.e. the variable of interest), and it is not clear whether the delta estimates are robust 72 

or sensitive toward these initial choices.  73 

In this study, we used cortical thickness as the brain measure of interest and examined the effect of 74 

smoothing and parcellation level on both brain associations with age and brain age prediction. Using 75 

different levels of parcellation and smoothing, we projected brain measures onto a lower dimension 76 

data representation space and investigated how this mapping affects the derived associations and 77 

predictions. We further examined the relationship between the two approaches. Finally, we examined 78 

how delta age estimates alter based on different smoothing and parcellation levels. 79 

2 Methods 80 
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2.1 Data 81 

Data used in this study included subjects with T1-weighted MRI data available from the second stage 82 

of the Cambridge Centre for Ageing and Neuroscience (CamCAN, https://www.cam-83 

can.org/index.php?content=dataset) dataset, described in more detail in (Shafto et al., 2014; Taylor et 84 

al., 2017). Subjects were screened for neurological and psychiatric conditions and those with such 85 

underlying disorders were excluded from the study. 86 

2.2 MRI acquisition 87 

T1-weighted MRIs were acquired on a 3T Siemens TIM Trio, with a 32 channel head-coil using a 3D 88 

magnetization-prepared rapid gradient echo (MPRAGE) sequence (TR=2250ms, TE=2.99ms, 89 

TI=900ms; FA=9 deg; FOV=256x240x192mm; 1mm isotropic; GRAPPA=2; TA=4mins 32s). For 90 

detailed acquisition parameters see:  91 

https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/pdfs/CAMCAN700_MR_params.pdf. 92 

2.3 MRI processing 93 

We used CIVET 2.1.1 (http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET, release December 94 

2019), a fully automated structural image analysis pipeline developed at the Montreal Neurological 95 

Institute, to perform surface extraction and cortical thickness estimation. Briefly, each subject’s T1-96 

weighted MRI is corrected for nonuniformity artifacts using the N3 algorithm (N3 distance = 125 mm) 97 

(Sled et al., 1998) and linearly registered to stereotaxic MNI152 space (voxel resolution = 0.5 mm) 98 

(Collins et al., 1994). The brain is extracted and undergoes tissue classification into three classes: white 99 

matter (WM) tissue, grey matter (GM) tissue, and cerebrospinal fluid (CSF) (Tohka et al., 2004; 100 

Zijdenbos et al., 2002). White and grey matter surfaces are extracted using the marching cube algorithm 101 

and constrained Laplacian-based automated segmentation with proximities (CLASP) algorithms, 102 

respectively (Kabani et al., 2001; Kim et al., 2005; MacDonald et al., 2000). Using the extracted 103 

surfaces, cortical thickness is measured as the distance between the white and grey cortical surfaces 104 

using the Laplace’s equation (Jones et al., 2000). For blurring, a surface-based diffusion smoothing 105 

kernel (not to be confused with volumetric kernels) is used, which generalizes Gaussian kernel 106 

smoothing and applies it to the curved cortical surfaces (Chung et al., 2002). We applied 6 different 107 

smoothing levels with FWHM = 0, 5, 10, 20, 30, and 40 mm. Cortical thickness was measured across 108 

the cortical surface for 81924 vertices (40962 vertices per hemisphere). The results underwent visual 109 

inspection, specifically subjects with major errors in extracted pial and gray–white surfaces were 110 

excluded. 111 

2.4 Cortical parcellations 112 

We used the Schaefer functional MRI parcellations (Schaefer et al., 2018), a data-driven atlas based 113 

on the widely used seven large-scale functional network parcellations by (Thomas Yeo et al., 2011). 114 

We used Schaefer parcellation with 100, 200, 400, and 1000 regions (referred to as parcellation levels). 115 

All atlases were registered to the MNI cortical surface template and used in the MNI space (L. B. Lewis 116 

et al., 2019). Cortical thickness measurements with different smoothing levels were averaged across 117 

these parcellations. These parcellation based measures of cortical thickness were used alongside 118 

vertex-wise measurements to examine the interaction between the effect of brain parcellation averaging 119 

and smoothing on statistical associations as well as brain age prediction accuracies.  120 

2.5 Cortical resels and effective smoothing 121 
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In order to compare the findings between smoothing levels and different parcellations, first all obtained 122 

cortical thickness were projected to the brain surface. We used the number of resels (i.e. resolution 123 

elements) as the measure of interest, since it takes the statistical dependence of the brain map into 124 

consideration and is independent of the analysis resolution (at least from a theoretical standpoint) 125 

(Lerch et al., 2006; Worsley, 1996; Worsley et al., 1992, 1999). Using the statistical maps between 126 

aging and cortical thickness, we estimated the number of resels for each smoothing and parcellation 127 

level and used it to quantify the similarity between these conditions. Resels are the number of resolution 128 

elements approximated for a given search space (i.e. D(S2), S2= brain surface) and a given smoothness 129 

level FWHM. While the effective FWHM measure varies across brain areas, we defined the overall 130 

effective smoothness of the brain map as the square root of the surface search space divided by the 131 

number of resels estimated across brain areas (Hayasaka et al., 2004). For the purpose of the current 132 

study, the main statistical maps considered are the linear associations between cortical thickness and 133 

the chronological age of the participants. All analysis were performed using SurfStat toolbox 134 

https://www.math.mcgill.ca/keith/surfstat/. 135 

2.6 Statistical methods 136 

To examine the effect of the smoothing and parcellations, mean (𝜇) and standard deviation (𝜎) of 137 

cortical thickness for each vertex/parcel was calculated across the population. The coefficient of 138 

variation (CV), 𝐶𝑉 = 𝜎 𝜇⁄  , was used as the main measure of variability. The CV was averaged across 139 

the 7 main cytoarchitectural brain regions (von Economo, CF; Koskinas, 1927) in order to examine the 140 

effect of parcellation and smoothing across major cytoarchitectural regions and identify any differential 141 

impact on a given brain region. Finally, to measure the association between chronological age and 142 

cortical thickness across lifespan, correlation coefficient (𝑟) for each vertex/region was calculated. 143 

Variance explained (𝑟2) was used to visualize the results. 144 

2.7 Brain age prediction 145 

We used principal component analysis (PCA), a singular value decomposition based data factorization 146 

method, as the dimensionality reduction approach for our predictive variables (i.e. cortical thickness 147 

data) (Smith et al., 2019b). This approach allowed us to use the same number of features across 148 

parcellation levels and smoothing kernels and therefore made it possible to compare model 149 

performance across these conditions. Our analysis for each condition included 1 to 100 first principal 150 

components as features to study different levels of dimensionality reduction. 100 is used as the 151 

maximum possible number of independent components for the lowest number of parcels (i.e. Schaefer 152 

100). To predict brain age, we used linear regression as the main prediction model, and to ensure 153 

generalizability and avoid overfitting, we used 10-fold cross validation. Finally, to increase robustness, 154 

results averaged over 100 repetitions are reported.  Root-mean-squared error (RMSE) was used as the 155 

natural cost function for linear regression models. Mean absolute error (MAE) and correlation between 156 

chronological age and predicted age (two other common error metrics in the age prediction literature 157 

(Franke & Gaser, 2019b)) are also reported in the supplementary materials. 158 

2.8 The relationship between Brain age prediction and age related brain association 159 

To compare brain age association and age prediction, we used the variance explained between 160 

dependent and independent variables as the main measure of interest for each model. This common 161 

measure enabled us to quantify the two analyses in relation to each other. Furthermore, we examined 162 

how the number of resels affects whole brain associations with age as well as brain age prediction. To 163 

translate the age prediction error into variance explained, we used the predictive features in a linear 164 

model, calculating the variance explained for age using adjusted 𝑅2. Finally, the overfitting bias 165 
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between the variance explained (i.e. adjusted 𝑅2) using this linear model and the cross validated 166 

prediction (i.e. 𝑟2 between predicted age and chronological age) is reported. 167 

2.9 Delta age 168 

The main goal of brain age prediction studies is to calculate the deviation from chronological age based 169 

on the population norm, also known as delta age. Here, we examined the effect of smoothing and 170 

parcellation on delta age estimation:  171 

𝒀 = 𝑿𝜷𝟏 − 𝜹𝟏  
             
→    𝜹𝟏 = 𝑿𝜷𝟏 − 𝒀  172 

where Y denotes chronological age, X denotes the neuroimaging features, and 𝜹𝟏 denotes the 173 

difference between predicted and chronological age. 𝜹𝟏 is a measure of brain state/health compared to 174 

the population with similar chronological age, and is used to study the predisposition to different brain 175 

disorders as well as individual cognitive abilities in neuroimaging literature.  176 

𝜹𝟏 being residual of the predictive model is by definition: (1) orthogonal to the predictive measures 𝑋, 177 

and in the case of linear models (2) correlated with the output 𝑌(i.e. chronological age) (Le et al., 2018; 178 

Liang et al., 2019; Smith et al., 2019b). The first feature is unfavorable, since we are interested in brain 179 

related discrepancy between chronological and predicted age. The lack of association between 𝜹𝟏 and 180 

brain features predicting age undermines the interpretability of 𝜹𝟏 in relation to brain measures. The 181 

second property is also an adverse feature, since it makes it difficult to distinguish the effect of the 182 

chronological age from the additional biological delta age (due to their collinearity). Therefore, in the 183 

current study, we followed the recommendation of smith and colleagues (Smith et al., 2019b) and used 184 

𝜹𝟐 , the orthogonalized residuals against chronological age: 185 

𝜹𝟐 = 𝜹𝟏 − 𝒀𝜷𝟐 186 

𝜹𝟐 is then used as the main measure of interest for association across conditions. The results for 𝜹𝟏 is 187 

provided in the supplementary materials. Note that 𝜹𝟐 is also consistently calculated using the same 188 

10-fold cross validation with 100 repeats as 𝜹𝟏.  All statistical and prediction analyses were performed 189 

using MATLAB 2018a. 190 

3 Results 191 

3.1 Cortical thickness aging, resels and practical smoothness 192 

The parcellations have a considerable impact on the number of resels and function as region-based 193 

smoothing kernels applied across the brain (Figure 1-A). This change in the number of resels affects 194 

the statistical power and the association as well as prediction results. Across parcellation levels from 195 

100 to 1000, the effect of the smaller smoothing kernels with FWHM 0-10 mm is negligible, while 196 

applying larger kernels reduces the number of resels dramatically. This equivalency plot also suggests 197 

that at the vertex level, the smoothing kernels act as a non-specific parcellation (from an anatomical 198 

perspective) across the brain. 199 

3.2 Cortical thickness variability 200 

While keeping the mean cortical thickness measure intact, smoothing resulted in underestimation of 201 

the cortical thickness in the gyri areas and overestimation in the sulci regions. The results are similar 202 

for parcellations in the case of uniformly sized parcels and balanced inclusion of gyri and sulci in each 203 
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parcel (both criteria are met in Schaefer parcellations). Cortical thickness variability (i.e. CV) reduces 204 

significantly both as a result of using greater smoothing and larger parcels (Figure 2-A). 205 

The association cortices have the lowest CV across resolutions and parcellations. Both smoothing and 206 

parcellation result in the highest decrease in CV in limbic and insular cortices, while primary sensory 207 

and motor areas show the lowest change (Figure 2-B). The results are shown for 0 mm smoothing 208 

across parcellations. The greatest change occurs with increasing the FWHM value from 10 to 20 mm, 209 

as well as decreasing the number of parcels from 400 to 200. The results for different smoothing kernels 210 

at vertex level were also similar (Supplementary Figure 1). 211 

3.3 statistical association between cortical thickness and aging 212 

Figure 3-A. shows the association between age and cortical thickness (using variance explained 𝑟2), 213 

calculated for each voxel/parcel for all conditions, after Bonferroni correction to account for the 214 

multiple comparisons at each level. The correlation increases with greater smoothing and larger 215 

parcels. Changing smoothing kernel size results in the highest variability in the correlation distribution 216 

across the brain at vertex level resolution (Figure 3-B, top panel), whereas smoothing doesn’t change 217 

the results within Schaefer 100 parcellations (Figure 3-B, bottom panel). The same pattern is evident 218 

between parcellation levels with 0 mm smoothing showing the highest variability, and 40 mm 219 

smoothing with lowest variability across parcellations. These findings are further explained with 220 

reference to the number of resels and effective smoothing in section 3.5. Finally, while present across 221 

all brain areas, the variability between correlation maps is the highest within association cortices, 222 

primary motor, and insular cortex. 223 

3.4 brain age prediction based on cortical thickness 224 

For age prediction, vertex-level data outperformed all parcellation-based data using the same (or a 225 

smaller) number of principal components as predictive features. The accuracy was also higher for lower 226 

smoothing kernel size. However, this effect was more pronounced for FWHMs greater than 10mm, 227 

and the results for FWHM values of 0, 5, and 10 mm showed a very similar performance in the vertex-228 

level analysis. A similar pattern was present within each parcellation level. The best performing models 229 

(i.e. 0 and 5 mm smoothed vertex-wise), reach their minimum error using the first 20-30 principal 230 

components as features in the prediction model (i.e. a sample to feature ratio of 28-18). The pattern 231 

was similar for MAE and correlation between predicted age and chronological age (Supplementary 232 

Figure 2 and 3). 233 

3.5 The relationship between prediction and association 234 

As expected, there was a negative relationship between the overall correlation between age and cortical 235 

thickness across brain regions (measured by median 𝑟2) and the number of resels within each condition 236 

(Figure 5-A). Interestingly, we found a positive association between the number of resels and the 237 

overall ability of cortical thickness features to explain the variance of chronological age (as measured 238 

by adjusted 𝑅2 of the linear model) shown in Figure 5-B. These results suggest that the higher number 239 

of resels results in lower correlation values, but since resels are independent based on their relationship 240 

with age, they can explain different modes of chronological age within the population (hence the higher 241 

adjusted 𝑅2), whereas, in conditions with lower resel numbers (i.e. higher smoothing and larger 242 

parcels) the correlation values are higher but homogenous across the brain and therefore explain a 243 

lower proportion of the age variance.  244 
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Finally, there was a strong linear relationship between (i) the overall variance explained (adjusted 𝑅2) 245 

using a linear model with age as dependent variable and PCs as independent variable and (ii) the 246 

predictive performance of the linear regression model, with a bias due to overfitting in the linear model 247 

(Figure 5-C). Figure 5-D shows the overfitting bias of the adjusted 𝑅2 compared to the cross-validated 248 

prediction, as a function of the number of features in the model. Taken together, these results explain 249 

the opposing directions between correlation results and prediction accuracy across parcellation and 250 

smoothing conditions. 251 

3.6 The effect of smoothing and parcellation on the estimation of brain age delta 252 

In this section, we present 𝛿2 age prediction accuracy results with 10-fold cross validation. The 253 

prediction accuracy based on the modified 𝛿2 is presented in Figure 6. One of the main assumptions in 254 

age prediction studies is that delta age measured in different studies using different processing 255 

parameters are similar and can be interpreted as the same measure. We have examined the relationship 256 

between the optimal 𝛿2 across different parcellations and smoothing kernels (Figure 7). These results 257 

demonstrate the degree of sensitivity of 𝛿2 as a function of our choice for parcellation and smoothing 258 

kernel. While there is high correlation for large smoothing kernels (20-40 mm) as well as lower number 259 

of parcels, these conditions have the lowest prediction accuracies. The correlations between these 260 

conditions and higher accuracy conditions (i.e. vertex-wise and 1000 parcels with 0-10 mm smoothing) 261 

are lower (𝑟~0.55). See the results for 𝛿1 in the Supplementary Figure 4. 262 

4 Discussion 263 

In this article, we compared the effect of different smoothing and parcellation on associations between 264 

cortical thickness and chronological age as well as brain age prediction accuracy. We showed that the 265 

optimal choice for association analysis might indeed undermine age prediction accuracy, and vice 266 

versa. We further investigated this relationship and demonstrated the underlying differences that lead 267 

to this trade-off between the two analyses. Finally, we examined the effect of smoothing and 268 

parcellation on delta age estimation and showed that the initial smoothing and parcellation choices can 269 

change the delta estimation which in turn will affect any downstream analysis.  270 

We used brain association with age and brain age prediction as our target analyses, since age is used 271 

as the main variable of interest or at least a confounding variable in most neuroimaging studies. We 272 

used cortical thickness as the main measure of interest. Due to the wide availability of T1-weighted 273 

MRI in research and clinical settings, cortical thickness is a suitable measure which has been widely 274 

used to study brain anatomy in general (Toga, 2015), and more specifically, brain aging and predicting 275 

brain age (Groves et al., 2012; Kandel et al., 2013; Liem et al., 2017; Wang & Pham, 2011). Finally, 276 

our results are presented based on a sample size of N~600 which is a common sample size for publicly 277 

available datasets in the field of neuroimaging. 278 

Given the limited number of subjects in neuroimaging studies compared to potential features (number 279 

of vertices/voxels), most prediction studies apply dimension reduction as an initial step. We used PCA 280 

for dimension reduction of the cortical thickness data. Due to its simplicity and interpretability, PCA 281 

has been widely used in the brain age prediction literature. Furthermore, we employed linear regression 282 

with cross-validation as our prediction model (Smith et al., 2019a). As expected, we observed an initial 283 

drop in the prediction error, followed by a plateau/increase in the error as the sample to feature ratio 284 

increases (Hastie et al., 2009). At each parcellation level, the accuracy drops with increased smoothing, 285 

and for each smoothing level, the accuracy decreases with larger parcels/regions. 286 
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It is commonplace for neuroimaging studies to use smoothing and parcellation as the first step of their 287 

analysis to achieve higher statistical power with reducing the individual variability within the data. 288 

Furthermore, with increased availability of public neuroimaging datasets, it is commonplace to release 289 

a preprocessed version of the data with a fixed smoothing level and averaged based on a given 290 

parcellation. Many research groups in the field use preprocessed and parcellation-based data releases 291 

as the starting point for their analyses. In fact, in many cases, the raw data is not publicly distributed, 292 

and the preprocessed parcellated data is the only version of data available. For example, some of the 293 

most influential public datasets in the field of neuroimaging such as Adolescent Brain Cognitive 294 

Development (ABCD, for details see https://nda.nih.gov/abcd) Study and UKBiobank (for details see 295 

https://www.ukbiobank.ac.uk) provide cortical thickness data using Desikan-Killiany-Tourville 296 

parcellations (Klein & Tourville, 2012) with 62 regions (smoothing varies across studies) as one of 297 

their pre-calculated measures. Our findings can help provide a guide to interpret these available 298 

measures and shed light on the effect of these preselected parameters/parcellation when applied in 299 

aging studies. 300 

Higher correlation values across brain regions (as a result of smoothing) can be explained by increased 301 

signal to noise ratio and reduced individual variability (Figure 2). The effect of smoothing on brain 302 

related associations has previously been studied (Lerch & Evans, 2005). Indeed, Zhao and colleagues 303 

propose smoothing as a scaling dimension which needs optimization for any given target analysis 304 

(Zhao et al., 2013). The effect of parcellation on brain association has been addressed in several studies. 305 

However, the optimal parcellation level is still an open question dependent on the specific case of 306 

interest (Eickhoff et al., 2018). Here, we showed that parcellation level has a similar impact, by 307 

reducing variability, using both CV (Figure 2) and number of resels (Figure 1).  308 

In neuroimaging, smoothing and parcellations are generally studied separately. In this study, we used 309 

a unified metric to directly compare the effect of smoothing and parcellation. Using resel numbers and 310 

variance explained in the model, we have calculated common measures for both association and 311 

prediction results. Our results show that with increased smoothing and larger parcels (i.e. lower number 312 

of resels), cortical thickness variability reduces. This will remove inter-individual differences across 313 

brain regions and result in higher associations between cortical thickness and aging (Figure 5-A). 314 

However, while this improves the regional correlation with age, most of this general trend can be 315 

captured in a few PCs (mainly the first component) and the rest of the PCs do not explain the remaining 316 

variance of age. On the other hand, this relationship is reversed in the conditions with higher resel 317 

numbers (i.e. lower smoothing and higher spatial resolutions). While in these cases higher regional 318 

variability results in lower correlation with age, the age related associations capture different portions 319 

of age variance in different PCs and overall they have a higher adjusted 𝑅2 (Figure 5-B). There was a 320 

consistent bias in the adjusted 𝑅2 across conditions (Figure 5-C and 5-D), however, the effects 321 

remained similar after removing the overfitting with cross-validation. Altogether, these analyses 322 

explain the seeming opposite direction of correlation values and prediction accuracies for different 323 

smoothing/parcellation levels in section 3.3 and 3.4. 324 

Brain age studies investigate the relationship between and other phenotypes, using a given smoothing 325 

and vertex/parcellation resolution as their initial step (James H. Cole & Franke, 2017). However, the 326 

effect of the preprocessing condition on estimation is not studied. In the current manuscript, we found 327 

a range of associations (0.5-1) between 𝛿2s obtained in different conditions. These results suggest not 328 

only that each study needs to optimize their choice of the smoothing and parcellation level, but also 329 

when interpreting results from different studies in the field, these parameters should be considered. 330 
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One of the main limitations of the current study is the number of subjects (N~600), particularly given 331 

that their age spans across 70 years. This leads to overfitting as the number of features increase. In fact, 332 

for vertex-wise prediction (with 0 mm smoothing), the first 30 PCs only explain 20 % of the variability 333 

in the data. This number is around 40% for 10 mm smoothing. In comparison, the first 30 PCs for 100 334 

parcels explain 80 and 90% of the variance of the cortical thickness data for 0 mm and 40 mm 335 

smoothing levels, respectively (Supplementary Figure 5). Given the higher performance of the vertex-336 

wise PCs at 0-10 mm smoothing, it is likely that with a larger sample size and increased sample to 337 

feature ratio, the accuracy can be further improved. It should be noted that in each case the variance 338 

explained corresponds to the total variability for the corresponding smoothing and parcellation 339 

condition. Another limitation in the current study is the use of functionally driven Schaefer 340 

parcellations. While this does not automatically suggest a disadvantage, multi-resolution anatomically 341 

driven parcellations have the theoretical advantage of a more relevant initial feature space for cortical 342 

thickness studies. Finally, CamCAN data used in our study is cross-sectional. This potentially 343 

decreases the detection power of our study, since we can only estimate the effect of time between 344 

subjects with individual variability as part of the measurement, whereas a longitudinal dataset can 345 

decrease variability by estimating the effect of aging within subjects.  346 

Traditionally, neuroimaging studies have targeted brain related associations with a given 347 

phenotype/symptom or the statistical differences between different groups for a given brain region, 348 

followed up with the association of these differences with a given biological or behavioral variable of 349 

interest. More recently, there has been an ongoing conversation in the field towards prediction as an 350 

alternative approach. Along the same line, the field of brain aging, has pursued age related associations 351 

as well as age prediction. The relationship between the two approaches is often taken for granted (since 352 

in ideal settings, i.e. large sample size and low inter-individual variability or noise levels, the results 353 

would be equivalent) and ignored in practice. In this study, we have directly addressed both age 354 

association and prediction as a function of smoothing and parcellation levels. Within our sample size, 355 

we found an inverse relationship between regional age related associations and brain age prediction 356 

accuracy as a function of smoothing and parcellation level, highlighting the importance of the 357 

parameter selection based on the goal of the study. 358 
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 572 

 573 

Figure 1 | Number of resels and affective smoothing for cortical thickness association with age. A) 574 

Number of resels estimated for different parcellations/smoothing pairs. The lines show the interpolated 575 

iso-response values.  B) Effective smoothing based on the number of resels for each condition. The 576 

results show the initial effective smoothing as a result of parcellation with additional smoothing with 577 

applied smoothing kernels.  578 
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 579 

 580 

Figure 2 | The coefficient of variation (CV) of cortical thickness across population. A) CV projected 581 

across brain vertices for each parcellations/smoothing pair. B) CV shown at 0 mm smoothing level for 582 

each cytoarchitectural region across parcellation resolutions.  583 
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 584 

Figure 3 | Cortical thickness variance explained by age (𝑟2). A) Cortical thickness variance explained 585 

by age (𝑟2) for each vertex/parcel across smoothing/parcellation conditions. B) Histograms for 586 

correlation values ® for each parcellation conditions, grouped by smoothing level.  587 
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 588 

Figure 4 | Root mean square error (RMSE) for age prediction as a function of number of principal 589 

components included as features in the predictive model. A) Results grouped together based on the 590 

smoothing level. B) Results grouped together based on the parcellation resolution.  591 
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 592 

Figure 5 | The relationship between cortical thickness association with age versus brain age prediction. 593 

A) Median variance explained of cortical thickness across the brain. The results are grouped based on 594 

the parcellation. Circles represent the something level within each parcellation. B) Total variance 595 

explained of age by the first 30 principal components (PCs) of cortical thickness as independent 596 

variables. C) The relationship between age prediction accuracy and total variance explained of age. In 597 

the case of prediction, the first PCs are used as predictive features alongside cross validation to prevent 598 

overfitting. The total variance explained of age is the same as depicted in B. D) The overfitting bias of 599 

linear model compared to the same model used with cross validation. As expected, a higher number of 600 

predictive features results in higher level of overfitting bias.  601 
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 602 

 603 

Figure 6 | Root mean square error (RMSE) for Age prediction with 𝛿2 as the error term. The x axis 604 

shows the number of principal components included as features. The results are grouped based on the 605 

parcellation resolution.  606 
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 607 

Figure 7 | 𝛿2 age prediction error. The correlation between delta age (as measured by 𝛿2) across 608 

parcellation resolutions (x and y axis labels) and smoothing kernels (represented by circle size).  609 
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