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Abstract   

An   outstanding   challenge   in   protein   design   is   the   design   of   binders   against   therapeutically   

relevant   target   proteins   via   scaffolding   the   discontinuous   binding   interfaces   present   in   their   often   

large   and   complex   binding   partners.   There   is   currently   no   method   for   sampling   through   the   

almost   unlimited   number   of   possible   protein   structures   for   those   capable   of   scaffolding   a   

specified   discontinuous   functional   site;   instead,   current   approaches   make   the   sampling   problem   

tractable   by   restricting   search   to   structures   composed   of   pre-defined   secondary   structural   

elements.   Such   restriction   of   search   has   the   disadvantage   that   considerable   trial   and   error   can   

be   required   to   identify   architectures   capable   of   scaffolding   an   arbitrary   discontinuous   functional   

site,   and   only   a   tiny   fraction   of   possible   architectures   can   be   explored.   Here   we   build   on   recent   

advances   in   de   novo   protein   design   by   deep   network   hallucination   to   develop   a   solution   to   this   

problem   which   eliminates   the   need   to   pre-specify   the   structure   of   the   scaffolding   in   any   way.   We   

use   the   trRosetta   residual   neural   network,   which   maps   input   sequences   to   predicted   

inter-residue   distances   and   orientations,   to   compute   a   loss   function   which   simultaneously   

rewards   recapitulation   of   a   desired   structural   motif   and   the   ideality   of   the   surrounding   scaffold,   

and   generate   diverse   structures   harboring   the   desired   binding   interface   by   optimizing   this   loss   

function   by   gradient   descent.   We   illustrate   the   power   and   versatility   of   the   method   by   scaffolding   

binding   sites   from   proteins   involved   in   key   signaling   pathways   with   a   wide   range   of   secondary   
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structure   compositions   and   geometries.     The   method   should   be   broadly   useful   for   designing   

small   stable   proteins   containing   complex   functional   sites.     

Main   Text   

Many   protein-protein   interactions   primarily   involve   a   single   contiguous   structural   element   such   

as   an   alpha   helix   or   an   ordered   loop.    For   example,   the   BCL2   family   of   anti-apoptotic   proteins   

bind   the   BIM   helix,   botulinum   toxin   primarily   interacts   with   a   helical   peptide   from   its   cellular   

receptor,   and   many   monoclonal   antibodies   recognize   single   contiguous   peptides   in   their   protein   

targets.    In   such   cases,   with   modern   protein   design   methods   it   is   now   straightforward   to   build   

proteins   de   novo   that   scaffold   the   relevant   structural   element,   as   has   been   done   for   the   RSV-F   

epitope    ( 1 ) ,   anti-apoptosis   inhibitors    ( 2 ) ,   and   botulinum   toxin    ( 3 ) ,   among   others.    When   the   

binding   elements   span   multiple   structural   elements,   and   are   composed   on   one   side   primarily   of   

alpha   helices,   as   in   the   case   of   the   IL2-IL2-receptor   interactions,   idealized   helical   bundles   can   

be   generated   which   place   the   relevant   helices   in   the   correct   orientations    ( 4 ) .    More   general   

scaffolding   of   binding   sites   can   be   achieved   using   structure-blueprint-based   approaches   in   

which   the   binding   interface   segments   are   kept   fixed   and   the   connecting   and   terminal   regions   are   

built   up   using,   for   example,   Rosetta   fragment   assembly    ( 5 ) ,   but   achieving   a   viable   protein   

architecture   is   challenging   even   if   the   locations   of   the   secondary   structure   elements   in   the   

built-up   region   are   specified.    This   is   because   the   fragment   assembly   approach   does   not   have   

an   internal   measure   of   global   consistency   of   the   placement   of   the   various   structural   elements,   

so   large   numbers   of   backbones   have   to   be   built   up   and   then   subjected   to   CPU-intensive   

sequence   design   calculations   to   identify   those   for   which   plausible   amino   acid   sequences   likely   

to   encode   the   structure   can   be   designed.   

To   overcome   this   challenge,   a   method   is   needed   to   generate   structures   that   contain   the   binding   

elements   arrayed   correctly   in   space   that   are   scaffolded   in   a   protein   architecture   that   is   likely   to   

be   designable   --   that   is,   the   lowest   energy   state   of   some   amino   acid   sequence.    We   reasoned   

that   the   recently   developed   trRosetta   residual   neural   net   which   maps   protein   sequences   to   

residue-residue   distance   and   orientation   distributions   (which   can   be   readily   transformed   into   

protein   3D   structures)   could   be   adapted   for   this   purpose    ( 6 ) .   The   trRosetta   network,   although   

trained   entirely   on   native   protein   sequences   and   structures,   predicts   the   structure   of   

de-novo- designed   proteins   remarkably   well.   This   made   it   possible   recently   to   use   the   network   to   
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hallucinate   completely   new   proteins   without   any   constraint   on   the   backbone   geometry    ( 7 ) ,   and   

to   design   amino   acid   sequences   likely   to   fold   into   a   fully   specified   input   backbone   structure    ( 8 ) .     

Partially   constrained   protein   hallucination   with   a   composite   loss   function   

To   design   proteins   with   a   defined   binding   interface   without   having   to   specify   overall   structure,   

we   explored   the   use   of   a   loss   function   with   two   parts:   a   motif   satisfaction   loss,   which   captures   

the   extent   to   which   the   sequence   specifies   the   structure   of   the   desired   functional   site,   and   a   free   

hallucination   loss,   which   captures   the   extent   to   which   the   sequence   specifies   a   globally   

well-folded   protein   (Methods).   Given   a   sequence   and   the   coordinates   of   a   specified   functional   

motif,   which   can   be   composed   of   multiple   discontinuous   chain   segments    (Figure   1A,   Methods),   

the   trRosetta   network   predicts   from   the   sequence   C-β   distance   and   orientation   distributions   

between   all   pairs   of   residues   (Figure   1B).   The   motif   satisfaction   loss   is   defined   as   the   

cross-entropy   between   the   predicted   distributions   and   those   of   the   input   structural   motif,   and   

rewards   recapitulating   the   binding   motif   in   the   designed   protein.   The   free   hallucination   loss   is   

defined   as   the   contrast   (Kullback-Leibler   (KL)   divergence)   between   the   predicted   distributions   

and   those   from   a   sequence-agnostic   background   model,   and   is   applied   to   the   parts   of   the   

protein   outside   of   the   functional   site.   These   two   losses   were   previously   used   individually   for   

fixed   backbone   sequence   design    ( 8 )    and    de   novo    protein   hallucination    ( 7 ) ,   respectively.     

The   evaluation   of   the   motif   satisfaction   loss   requires   assigning   residues   in   the   protein   sequence   

to   functional   site   positions.    We   explored   two   approaches   for   carrying   out   this   assignment.    In   

the   first   approach,   the   sequence   order   of   the   functional   site   residues   was   preserved,   and   

variable   length   sequence   segments   were   placed   before,   between,   and   after   blocks   of   residues   

assigned   to   the   functional   site.    Independent   optimization   trajectories   were   then   carried   out,   

each   initialized   with   stochastically   chosen   length   for   each   inserted   sequence   segment   from   a   

user   specified   range   (see   Methods).    In   the   second   approach,   the   overall   length   of   the   sequence   

was   fixed   but   the   residues   corresponding   to   the   functional   site   were   not   prespecified;   instead   

during   optimization   the   functional   sites   were   assigned   to   regions   that   best   minimized   the   motif   

satisfaction   loss,   using   a   greedy   search   algorithm   (see   Methods).   

We   experimented   with   two   approaches   for   optimizing   the   composite   loss   function   (Figure   1B)   

starting   from   a   randomly   generated   amino   acid   sequence.   First,   we   explored   a   Monte   Carlo   

sampling   procedure   in   which   starting   at   each   iteration,   a   randomly   selected   amino   acid   

substitution   is   made   and   the   trRosetta   network   is   used   to   generate   predicted   distances   and   
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orientations.   The   composite   loss   function   is   evaluated   and   the   move   accepted   or   rejected   

according   to   the   standard   Metropolis   criterion.   For   proteins   around   120   residues   long,   we   found   

this   approach   converged   in   about   30,000   steps   and   took   about   90   minutes   on   Nvidia   GeForce   

RTX2080   GPUs.   

Second,   we   evaluated   gradient-based   sequence   optimization.   Unlike   the   Monte   Carlo   approach,   

the   gradient-based   approach   could   design   an   entire   multiple   sequence   alignment   (MSA)   

because   the   gradient   updates   all   sequence   positions   simultaneously,   instead   of   mutating   a   

single   amino   acid   at   time.   We   represented   the   MSA   as   a   continuous   random   variable    Y NxLxA   

(“input   logits”)   initialized   randomly   from   Normal(0,   0.01),   where    N    is   the   number   of   sequences   in   

the   MSA,    L    is   the   length   of   the   protein   and    A =20   is   the   number   of   amino   acids.   On   each   

iteration,   we   converted   these   input   logits   to   amino   acid   probabilities   by   a   softmax   operation   and   

one-hot-encoded   them   for   input   to   trRosetta   by   either   taking   the   most   probable   amino   acid   (i.e.   

argmax)   or   sampling   from   the   amino-acid   distribution    ( 9 )    at   each   position   in   each   sequence.   To   

backpropagate   the   gradient   to   the   continuous   input   logits   through   the   discrete   one-hot   protein   

sequence,   we   employed   a   reparameterization   trick    ( 8 ,    9 ) ,   where   gradients   were   passed   through   

the   one-hot   sequence   as   if   it   had   the   softmax   values   of   the   input   logits.   Conceptually   similar   

approaches   are   used   in   other   works   optimizing   biological   sequences    ( 10 ,    11 ) .   Over   the   course   

of   a   trajectory,   we   often   decayed   the   learning   rate   according   to   a   schedule,   as   it   struck   a   

balance   between   design   quality   and   computational   efficiency,   but   other   optimization   methods   

were   superior   in   some   cases   (Methods).   We   found   that   gradient-based   optimization   with   decay   

converged   in   about   200   steps   for   proteins   about   120   residues   long,   taking   approximately   5   

minutes   on   our   GPUs.     

The   output   of   optimization   is   a   structure   that   scaffolds   the   binding   interface   and   a   sequence   

predicted   to   encode   it.    Because   trRosetta   does   not   have   full   atomic   resolution   (only   the   

backbone   is   considered),   we   locally   optimized   the   sequence   and   structure   of   each   design   in   

complex   with   the   target   structure   using   Rosetta   full   atom   flexible   backbone   design,   keeping   the   

interacting   residues   inherited   from   the   original   binder   fixed.    This   ensures   tight   complementary   

core   packing,   and   improves   shape   complementarity   with   the   target.  

Hallucinating   scaffolds   supporting   functional   sites   

We   tested   the   method   by   designing   mimetics   of   a   variety   of   naturally   occuring   proteins   with   

structurally   diverse   binding   interfaces   (Figure   2,   Table   1).    We   began   by   focusing   on   interfaces   
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composed   primarily   of   alpha-helices.    We   chose   as   representatives   of   such   interfaces   the   

complement   cascade   protein   C3d    which   enhances   immune   responses   to   fused   antigens    ( 12 ) ,   

and   the   interleukin   4   (IL-4)   cytokine   which   plays   an   important   role   in   immune   cell   differentiation   

( 13 ) .    In   both   cases,   the   method   generated   backbones   which   recapitulated   the   target   motifs   to   

within   1   Å   Cɑ   RMSD   (Figure   2A-B).   The   generated   designs   have   an   additional   1-2   helices   

buttressing   the   interface;   a   hydrophobic   core   between   the   original   helices   and   the   added   helices   

stabilizes   the   hallucinated   folds.   The   C3d   mimetics   are   much   smaller   (approximately   100   

residues   with   3-4   helices)   than   the   native   protein   (307   AAs,   12   helices),   a   potential   advantage   

for   vaccine   and   other   therapeutic   applications    ( 4 ,    14 ) .     

Since   our   hallucination   approach   does   not   rely   on   any   information   about   the   relative   placement   

of   the   functional   regions   in   the   protein   sequences   from   which   they   were   derived,   it   can   be   

readily   applied   to   scaffold   interfaces   originally   involving   multiple   chains.   We   chose   as   examples   

of   such   challenges   the   key   blood   sugar   regulator   insulin   which   is   widely   used   in   treating   

diabetes    ( 15 ,    16 )    and   the   anti-inflammatory   cytokine   interleukin   10   (IL-10)    ( 17 ) .    Insulin   is   

composed   of   two   disulfide   bonded   chains   derived   from   a   larger   precursor   (pro-insulin)   by   

proteolytic   cleavage.    The   resulting   unusual   helical   arrangement   (Figure   2C,   3B)   is   challenging   

to   recapitulate   with   traditional    parametric   helical   bundle   generation    ( 2 ,    4 ,    18 )    or   

structure-blueprint-based   methods   in   which   the   location   of   secondary   structure   elements   in   the   

sequence   is   specified,   but   not   their   relative   orientation    ( 3 ,    19 ) .   Although   insulin   interacts   with   the   

insulin   receptor   through   two   binding   sites    ( 20 ) ,   we   focused   on   site   2   as   it   is   formed   primarily   by   

alpha   helices.   The   hallucination   method   generated   mimics   of   this   site   (Figure   2C)   that   

recapitulate   the   corresponding   regions   of   insulin   to   0.8   Å   RMSD.    IL10   is   a   domain-swapped   

dimer   with   two   IL10R   interacting   domains   each   containing   portions   of   the   two   chains   in   the   

dimer    ( 17 ) .    We   used   the   hallucination   method   to   scaffold   the   binding   site   for   a   single   receptor   

subunit   in   a   single   chain;   the   resulting   scaffolds   recapitulate   the   IL10   binding   region   to   1.23   Å   

RMSD   (Figure   2D).   

We   next   explored   the   scaffolding   of   functional   loops   with   well-defined   structures.    We   chose   as   

an   example   the   calcium   binding   EF-hand   motif   found   in   many   naturally   occurring   calcium   

binding   proteins   and   physiological   processes    ( 21 ) .   Unlike   the   other   examples   considered   in   this   

paper,   the   EF-hand   is   composed   of   a   single   contiguous   chain   segment,   and   the   hallucination   

method   readily   generated   a   variety   of   scaffolds   recapitulating   the   EF-hand   motif   to   0.4   Å   RMSD.   

We   tested   a   subset   of   these   designs   using   Rosetta   ab   initio   folding   simulations   to   predict   the   
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structure   from   sequence.   We   found   that   the   lowest   energy   states   for   the   designs   were   very   

close   to   the   hallucinated   design   models   (Figure   4B,D).    We   carried   out   further    in   silico    testing   

using   explicit   solvent   Molecular   Dynamics   (MD),   and   found   that   many   designs   maintained   

calcium   positioning   inside   the   EF-hand   loop   in   simulations   longer   than   300   nanoseconds   (Figure   

4A,C).     

We   next   considered   interfaces   composed   primarily   of   beta   strands.    We   chose   as   an   example   

the   B7-2   protein    ( 22 ) ,   which   is   of   considerable   therapeutic   relevance   as   it   is   a   ligand   for   both   the   

co-stimulatory   T-cell   surface   protein   CD28   and   the   inhibitory   T-cell   surface   protein   CTLA-4.    We   

focused   on   scaffolding   the   B7-2   interface   involved   in   CTLA-4   binding,   which   is   composed   of   four   

beta   strands   (Figure   2E).   Despite   the   greater   complexity   of   folding   beta   sheet   proteins,   the   

hallucination   method   readily   generated   scaffolds   recapitulating   the   binding   interface   to   0.68   Å   

RMSD.   Rosetta   ab   initio   folding   simulations   again   provided   independent   in   silico   confirmation   

that   the   designed   sequences   encode   the   designed   structures   (Figure   4   F,H).   

Finally,   we   investigated   the   scaffolding   of   more   extensive   interfaces   composed   by   a   mix   of   

helices,   strands,   and   loops.    We   chose   as   a   case   study   the   central   hematopoietic   growth   factor   

and   immune   modulator     granulocyte-macrophage   colony-stimulating   factor   (GM-CSF)    ( 23 ) ,  

which   targets   GMRɑ   with   an   interface   consisting   of   two   strands   and   a   helix.   Despite   the   

complexity   of   the   interface,   the   hallucination   method   generated   structures   to   1.61   Å   RMSD   

(Figure   2G).   

Structurally   diverse   proteins   can   scaffold   the   same   motif     

For   each   functional   motif,   the   generated   designs   spanned   a   range   of   topologies   (Figure   3).   The   

IL-4   mimetics   incorporate   an   additional   helix   to   maintain   the   spatial   positioning   of   the   three   

binding   helices,   but   there   is   considerable   variation   in   the   placement   of   the   different   helices   in   the   

sequence   and   structure   (Figure   3A).   The   insulin   mimetics   solve   the   challenge   of   scaffolding   

helices   from   the   two   chains   of   insulin   by   positioning   them   within   mixed   ɑ/β   scaffolds   with   

variable   numbers   of   strands   and   helices   varied;   in   all   cases   the   network   favored   buttressing   the   

binding   helices   with   strands   which   were   further   stabilized   by   back   helices   (Figure   3B).   In   the   

case   of   B7-2   mimetics,   which    are   required   to   scaffold   four   strands   with   strong   curvature,   

solutions   with   quite   different   folds   were   obtained:   some   had   all   beta   Ig-like   folds   similar   to   

natural   B7-2;   others   had   alpha-beta   ferredoxin-like   folds   (Figure   3C).    The   generated   scaffolds   

were   often   quite   different   from   any   naturally   occurring   protein   structure,   with   TM   scores   to   the   
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closest   native   protein   in   some   cases   below   0.6   (as   expected,   designs   with   smaller   constrained   

regions   generally   had   lower   TM-scores,   as   trRosetta   has   more   freedom   to   hallucinate   in   such   

cases).   

Conclusions   

We   have   described   a   deep-learning-based   method   to   generate   protein   scaffolds   containing   a   

predefined   functional   motif   that   spans   multiple   discontinuous   structural   elements.   The   method   

requires   no   inputs   other   than   a   desired   sequence   length   and   the   structure   of   the   functional   

motif,   thus   offering   much   greater   flexibility   over   existing   methods   that   restrict   the   secondary   

structure   of   the   motif,   the   topology   of   the   scaffold,   or   both.    Full   confirmation   of   the   accuracy   and   

robustness   of   our   approach   will   require   experimental   characterization   of   folding   and   binding,   but   

the   designed   sequences   are   predicted   to   fold   to   the   designed   structures    in    ab   initio   

forward-folding   simulations,   a   stringent     in   silico    benchmark.   

Our   approach   further   illustrates   the   broad   utility   of   “inverted   models”   which   optimize   an   input   

sequence   with   respect   to   a   loss   function,   and   have   previously   been   used   to   design   DNA   

sequences    ( 10 ) ,   guide   directed   evolution    ( 24 ) ,   and   design   proteins   using   trRosetta    ( 7 ,    8 ,    11 ) .   An   

alternative   deep-learning   paradigm   generates   proteins   directly   in   the   forward   pass   of   a   

generative   adversarial   network   (GAN)   or   variational   autoencoder   (VAE)    ( 25 ) .   Although   GANs   

and   VAEs   have   been   used   to   design   functional   sequences    ( 26 – 28 )    or   biophysically   plausible   

structures    ( 29 ,    30 ) ,   none   have   so   far   been   used   to   create   new   proteins   with   functional   elements.   

Furthermore,   VAEs   have   only   been   successfully   trained   on   families   of   related   proteins    ( 30 ) ,   

whereas   trRosetta   has   been   trained   on,   and   thus   can   in   principle   generalize   from,   all   known   

protein   structures.   Finally,   existing   GANs   require   retraining   to   accommodate   varying   sequence   

lengths    ( 29 ) .   By   contrast,   with   an   inverted   model,   loss   functions   and   design   hyperparameters   

such   as   sequence   length   can   be   varied   without   retraining.   

Despite   its   broad   scope   and   ability   to   rapidly   search   through   structure   space   for   solutions,   our   

approach   is   currently   limited   by   the   accuracy   of   trRosetta    structure   predictions,   about   2   Å   

RMSD   on   average    ( 6 ,    8 ) .    To   overcome   this   limitation,   we   currently   refine   the   sequence   and   

structure   of   the   designs   generated   by   the   network   using    Rosetta   all-atom   flexible-backbone   

design   calculations.     In   essence,   we   use   deep   network   hallucination   to   solve   the   open-ended   

architecture   and   fold   design   sampling   and   design   problems,   and   Rosetta   for   the   higher   
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resolution   details.    As   progress   in   deep-learning-based   protein   structure   prediction   continues,   

we   expect   it   to   become   possible   to   directly   generate   more   and   more   accurate   functional   designs   

using   our   dual-loss   hallucination   approach   without   need   for   further   refinement.     

Methods   

Sequence   representation   

For   structure   prediction,   the   input   to   trRosetta   is   a   one-hot-encoded   multiple-sequence   

alignment   (MSA)   in   the   form   of   an   N   x   L   x   A   tensor,   where   L   is   the   length   of   the   first   sequence   in   

the   alignment   and   the   protein   whose   structure   is   being   predicted,   N   is   the   number   of   aligned   

sequences,   and   A=21   is   the   number   of   amino   acids   plus   gap   character   (although   we   do   not   use   

gaps   during   design).   TrRosetta   accurately   predicts   the   structure   of    de   novo    proteins   even   when   

only   one   sequence   is   used   as   input   (N=1),   so   previous   work   on   unconstrained   protein   design   

optimized   a   single   sequence    ( 7 ) .   When   designing   proteins   to   recapitulate   structural   constraints  

derived   from   natural   backbones,   however,   better   accuracy   was   obtained   when   the   loss   was   

optimized   over   an   entire   MSA    ( 8 ) ,   probably   due   to   the   increased   degrees   of   freedom.   Therefore,   

in   this   work,   we   optimized   an   MSA   of   N=1000   sequences   to   generate   each   scaffold,   with   an   

80%   dropout   on   the   input   features   to   TrRosetta   (including   2D   tiled   sequence,   conservation   and   

coevolution)   to   avoid   overfitting.     

Loss   function   

Our   composite   loss   function   (Figure   1B)   scores   how   well   a   given   sequence   satisfies   our   dual   

design   constraints.   That   is,   does   the   given   sequence   strongly   encode   a   backbone   geometry   and   

does   that   backbone   geometry   include   the   binding   site   motif.   It   contains   a   motif   satisfaction   (MS)   

loss   and   a   free   hallucination   (FH)   loss.   

oss Loss Loss  L =  MS +  FH   (1)   

The   motif   satisfaction   loss   is   the   cross   entropy   of   the   network   predictions   at   the   coordinate   

values   ( ,   )   derived   from   the   target   motif,   averaged   over   all   residue   pairs  y0  y ∈ d, , , , ,{ ⍵ θ φ θT φT}  

in   the   masked   regions   ( m ).   
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  LossMS =  − ∑
 

y∈ d,⍵,θ,φ,θ ,φ{ T T}
 log p(y )((∑

L

i =1
∑
L

j=i/
mij

0
ij ) /(∑

L

i=1
∑
L

j=i/
mij))  (2a)   

  mij =   { 0,
1,  Cβ Cβ  ≤ 20 and i,j∈{contigs}∣∣ i−

 
j∣∣ }  

The   free   hallucination   loss   is   the   KL   divergence   between   the   network   predictions   ( y )   and   a   

background   distribution   ( b )    ( 7 ) .   

 LossFH =  − ∑
 

y∈ d,⍵,θ,φ,θ ,φ{ T T}
 (1 ) p(y ) log ((∑

L

i=1
∑
L

j=i/
− mij ij p(b )ij

p(y ) 
ij ) / (1 )(∑

L

i=1
∑
L

j=i/
− mij )) (2b)   

We   explored   several   optimization   procedures   to   find   sequences   that   minimized   this   loss.   

Optimization   methods   

First,   we   explored   a   Monte   Carlo   sampling   procedure   similar   to   that   employed   in   our   de   novo   

hallucination   study.   Starting   from   a   random   sequence,   single   mutations   were   proposed   and   the   

loss   function   evaluated.   The   mutation   was   either   accepted   or   rejected   according   to   the   standard   

Metropolis   criterion.    We   found   that   this   approach   converged   in   roughly   30,000   steps   for   a   120   

amino   acid   protein   with   a   50   residue   motif,   which   took   about   90   minutes   on   our   GPUs.   Although   

slow,   this   approach   has   the   advantage   that   mutations   can   include   insertions   and   deletions,   

which   allows   for   the   lengths   of   loops   to   be   easily   optimized.   

Second,   we   evaluated   a   gradient   based   sequence   optimization   similar   to   that   used   in   our   fixed   

backbone   sequence   design   study    ( 8 ) .   Starting   with   randomly   initialized   input   logits   ( Y ;    N(0,   

0.01) ),   the   gradient   of   the   loss   function   with   respect   to   the   upstream   logits   is   computed   by   

backpropagation   through   the   network.   We   explored   applying   the   gradient   to   the   input   logits   by   

normalizing   it   and   applying   a   constant   learning   rate     

   Y i+1 = Y i +  √L ∂Y
∂Lossi /  ∣ 

∣ 
 ∣ 
∣ ∂Y

∂Lossi  ∣ 
∣ 
 ∣ 
∣ (3a)   

or   by   scaling   the   learning   rate   according   to   a   predefined   schedule   (gradient   decay).     

  Y i+1 = Y i + (1 i N )−  / d 
∂Y

 ∂Lossi /  ∣ 
∣ 
 ∣ 
∣ ∂Y

∂Lossi  ∣ 
∣ 
 ∣ 
∣ (3b)   
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where    L    is   the   length   of   the   protein,    i    is   the   optimization   step,    N    is   the   total   number   of   

optimization   steps   and    d    is   the   decay   rate.   

We   found   that   both   methods   converged   to   roughly   the   same   range   of   loss   values   in   100   

iterations   for   a   120   residue   protein,   taking   about   3   minutes   on   our   GPUs.   We   defaulted   to   using   

the   gradient   decay   method   for   the   structures   in   this   paper,   unless   noted   otherwise.   

Hardware   

Tensorflow   code   for   trRosetta   was   run   on   Nvidia   GeForce   RTX2080   GPUs.     

Motif   placement   algorithms   

We   applied   one   of   two   motif   placement   algorithms;   one   which   we   specify   a   range   of   lengths   for   

the   regions   to   be   hallucinated   between   motifs   before   optimization   and   the   other   which   

determines   motif   placement   during   optimization   via   a   greedy   search.   We   use   “contig”   to   refer   to   

a   contiguous   portion   of   the   designed   sequence   that   is   subject   to   the   motif-satisfaction   loss.   

Pre-specified   motif   placement   

The   first   algorithm   takes   the   input   structure   and   specifies   multiple   regions   to   replace   with   a   new   

hallucinated   region   of   a   given   length   range.   A   specific   value   within   each   range   is   chosen   

randomly   before   starting   optimization.   The   free   hallucination   loss   is   applied   to   these   regions,   

while   the   motif   satisfaction   loss   is   applied   to   the   rest   of   the   structure.   The   residue   positions   

being   hallucinated   or   constrained   as   motifs   stay   fixed   throughout   each   optimization   trajectory,   

but   many   trajectories   are   run   with   different   sampled   lengths   of   the   hallucinated   regions.   This   

approach   allows   for   greater   control   over   the   tertiary   structure   of   designs.   It   also   allows   users   to   

shorten   connections   between   contigs,   limiting   the   search   space,   while   lengthening   the   

connections   in   other   regions,   biasing   the   network   to   do   a   more   exhaustive   conformational   

search   in   these   regions.     

Motif   placement   during   optimization   via   greedy   search  

Other   times   it   may   not   be   obvious    a   priori    how   the   contiguous   segments   of   the   motif   (contigs)   

should   be   joined,   especially   if   the   contigs   are   small   or   far   apart.   As   an   alternative   to   running   

many   trajectories   that   sample   different   lengths   for   these   intervening   gaps,   we   used   a   greedy   

search   algorithm   to   determine   where   to   apply   the   motif   satisfaction   loss.   
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The   idea   behind   the   algorithm   is   to   apply   the   motif   satisfaction   loss   to   regions   in   the   predicted   

geometry   that   already   closely   match   the   target   geometry   at   each   step   of   the   optimization.   

Initially,   the   motif   satisfaction   loss   is   applied   somewhat   randomly   but   then   eventually   settles   on   

one   region   once   it   starts   to   minimize   towards   the   desired   geometry.   From   there,   the   process   

becomes   self-reinforcing   as   the   motif   satisfaction   loss   will   be   applied   to   regions   that   are   already   

similar   to   the   desired   geometry.   

We   focused   the   search   on   regions   in   the   predicted   geometry   that   minimize   the   cross   entropy   of   

the    inter -contig   geometry   because   we   were   primarily   focused   on   how   to   space   the   contigs   

relative   to   each   other.   Regions   where   the   contigs   should   be   placed   (and   the   corresponding   motif   

satisfaction   loss   applied)   was   determined   in   a   stepwise   manner.  

In   the   first   step,   we   placed   two   contigs   simultaneously   because   we   searched   the   predicted   

geometry   with   the   inter-contig   geometry   (the   one-hot   encoding   of   the   6D   transform   between   all   

pairs   of   residues   between   two   contigs).   We   convolved   the   inter-contig   geometry   over   the   

negative   log   of   the   network   predictions,   thus   calculating   the   cross   entropy   for   all   possible   

placements   of   a   contig   pair.   We   required   contigs   to   remain   in   a   user   defined   order.   Positions   

that   would   result   in   the   contigs   overlapping   with   each   other   or   prevent   the   placement   of   the   

remaining   contigs   were   scored   as   positive   infinity.   This   process   was   repeated   for   all   contig   pairs,   

after   which   the   contig   pair   with   the   lowest   cross   entropy   was   fixed   in   place.   

In   the   second   step,   contigs   were   placed   one   at   a   time   until   none   were   left.   A   new   contig   was   

placed   such   that   it   minimized   the   inter-contig   cross   entropy   with   the   already-placed   contigs.     

Because   greedy   searches   can   miss   global   optimums,   we   added   the   top   3   scoring   results   at   

each   step   to   a   search   tree,   yielding   a   collection   of   possible   contig   placements.   The   contig   

placement   with   the   lowest   motif   satisfaction   loss   was   then   used   to   mask   the   network   predictions   

( m    in   equation   2a),   dividing   it   into   parts   subjected   to   the   motif   satisfaction   or   free   hallucination   

loss.   

Designing   mimetics   of   natural   protein   ligands   

We   selected   binding   motifs   from   protein   interfaces   that   contained   mostly   secondary   structural   

elements   and   were   biomedically   relevant.   First,   we   identified   interface   residues   as   those   within  

5   Å   of   the   binding   partner.   We   made   the   binding   motifs   by   manually   clustering   these   binding   

residues   (and   any   intervening   residues)   into   several   contiguous   elements.   In   some   cases,   we   
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also   manually   added   other   contiguous   elements   from   the   native   structure   to   buttress   the   

interface   geometry.   Table   1   lists   the   mimetic   design   targets,   their   PDB   accessions,   the   residue   

numbers   of   constrained   regions,   and   references.   

Rosetta   sequence   design   and    ab   initio    folding   

Briefly,   we   used   the   Rosetta   FastDesign   mover   with   layer   design   and/or   fragment   based   PSSMs   

to   constrain   amino   acid   choices   in   the   protein.   We   also   constrained   residues   that   formed   key   

interaction   in   the   native   protein   structure   (both   to   its   binding   partner   and   between   regions   of   the   

binding   motif)   to   only   repack.   We   added   harmonic   potential   restraints   to   these   key   residues   to   

ensure   they   didn’t   move   during   relaxation.   The   complete   scripts   used   for   sequence   design   will   

be   released   with   the   full   version   of   this   paper.   

After   the   sequences   were   designed,   we   used   Rosetta    ab   initio    folding   to   test   the   plausibility   of   

the   protein   sequence   to   encode   the   desired   structure.   In   some   cases   we   prevented   fragment   

insertion   in   motifs   that   had   large   loops   as   it   was   hard   to   find   good   quality   fragments   for   those  

regions,   even   though   we   knew   that   geometry   was   possible   from   the   native   protein   structure.   

The   complete   scripts   for   ab   initio   folding   will   be   released   with   the   full   version   of   this   paper.   

Molecular   dynamics   simulations     

We   equilibrated   our   model   structures   in   explicit   water   using   the   NAMD   (NAMD3alpha6)     ( 31 )   

molecular   dynamics   package   with   initial   runfiles   and   setups   created   by   VMD    ( 32 )    plugin   

QwikMD    ( 33 ) .   We   used   the   CHARMM36   force   field    ( 34 )    and   TIP3   water   model    ( 35 )    in   all   

simulations.   We   centered   structures   in   a   water   box   at   least   15   Angstrom   larger   than   the   

protein’s   longest   dimension,   NaCl   was   added   to   150 mM.   Minimization   (2000   steps),   then   

Annealing   (0.29 ns,   temperature   rise   60 K   to   300 K,   1   atm   pressure,   protein   backbone   

restrained),   then   equilibration   (1 ns,   temperature   300 K,   1 atm   pressure,   protein   backbone   

restrained),   then   we   performed   MD   simulation   (temperature   300 K,   1 atm   pressure,   no   

restraints)   in   the   NpT   ensemble.   We   ran   the   final   MD   equilibration   simulations   for   at   least   

300 ns,   in   which   an   N-   or   C-terminal   amino   acid   backbone   far   from   the   Ca-binding   loop   of   each   

design   was   restraint   harmonically   to   keep   the   design   centered   in   the   water   box.   

All   simulation   parameters   were:   a   distance   cut-off   of   12.0 Å   was   applied   to   short-range,   

non-bonded   interactions,   and   10.0 Å   for   the   smoothing   functions.   Long-range   electrostatic   

interactions   were   treated   using   the   particle-mesh   Ewald    ( 36 )    method.   The   pressure   was   
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maintained   at   1 atm   using   Nosé-Hoover   Langevin   piston    ( 37 ) .   The   equations   of   motion   were   

integrated   using   the   reversible   reference   system   propagator   algorithm   (r-RESPA)   multiple   time   

step   scheme   to   update   the   short-range   interactions   every   1   steps   and   long-range   electrostatics   

interactions   every   2   steps.   The   time   step   of   integration   was   2 fs   for   all   simulations.   The   

temperature   was   maintained   at   300 K   using   Langevin   dynamics.   
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Figures   and   tables   

  

Figure   1.   Incorporating   multipartite   geometric   motifs   into   hallucinated   proteins   with   a   
dual   loss   function   

Protein   binding   motifs   are   important   for   a   variety   of   biochemical   functions,   including   protein   complex   

assembly,   substrate   recognition   and   targeting   therapeutic   delivery.    (A)    Unfortunately,   they   can   also   be   

difficult   to   incorporate   into   a    de   novo    protein   because   they   can   be   part   of   a   large,   complex   structure   or   

split   between   two   chains   .   Our   technique   seeks   to   build   de   novo   scaffolds   where   the   motif   requirements   

are   part   of   the   design   process   from   the   beginning.    (B)    The   forward   pass   in   our   network   (black   arrows)   

begins   by   feeding   a   random   sequence   to   trRosetta,   which   predicts   distributions   of   distances   and   angles   

between   every   residue.   This   prediction   is   masked   and   subject   to   the   two   mutually   exclusive   terms   of   the   

loss   functions.   The   motif   satisfaction   term   is   the   categorical   cross   entropy   between   the   predicted   

distribution   and   the   motif   one-hot   encoding   and   the   free   hallucination   term   is   the   negative   KL   divergence   

between   the   predicted   distribution   and   a   background   distribution,   which   represents   the   average   trRosetta   

prediction   for   a   protein   of   the   given   length.The   gradient   with   respect   to   the   total   loss   is   then   calculated   by   
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backpropagation   (red   arrows)   to   the   input   sequence   logits.   The   gradient   is   used   to   update   the   sequence   

and   the   process   begins   for   the   next   step.     

18   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2020. ; https://doi.org/10.1101/2020.11.29.402743doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.29.402743
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

19   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2020. ; https://doi.org/10.1101/2020.11.29.402743doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.29.402743
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure   2.   Design   of   scaffolds   presenting   discontinuous   binding   interface   motifs   of   
diverse   natural   ligands   

Crystal   structures   of   native   binder/receptor   complexes   and   examples   of   designed   structures   harboring   the   

function   site   of   interest.    (A   and   B)    Helical   interfaces:    C3d   (PDB   ID   1GHQ)    (A)    and   IL-4   (PDB   ID   3BPL)   

(B) .      (C   and   D)    Interfaces   formed   from   different   chains :     insulin   (PDB   ID   6PXV)    (C)     and   IL-10   (PDB   ID   

1Y6K)    (D) .      (E)    The   B7-2   interface   formed   primarily   from   β-strands   (PDB   ID   1I85).    (F)    The   structured   

calcium   binding    EF-hand   (PDB   ID   1A75).    (G)    The   GM-CSF   (PDB   ID   4RS1)   interface   is   composed   of   a   

mixture   of   helices,   sheets,   and   loops.   In   each   panel,   the   native   binding   protein   is   colored   light   pink   with   

the   binding   interface   motif   colored   magenta   (light   orange/orange   for   the   alternate   chain)   and   the   receptor   

or   binding   partner   colored   light   blue.   The   designed   protein   is   colored   gray   with   the   motif-mimicking   region   

in   green.   
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Figure   3.   TrRosetta   hallucinates   diverse   solutions   to   scaffolding   the   same   functional   
motif.     

Three   solutions   are   shown   for    (A)    IL4,     (B)    insulin   site   2,   or    (C)    B7-2   binding   motifs.   The   left   image   shows   

the   native   protein   structure,   with   the   binding   motif   colored   green   and   the   native   binding   partner   colored   

blue.   To   the   right   of   the   native   structure   are   ribbon   diagrams   of   three   trRosetta   solutions,   with   the   region   

constrained   by   the   motif   geometry   colored   green.   The   reported   TM-score   is   the   highest   score   to   any   

protein   in   the   PDB,   indicating   that   trRosetta   didn’t   simply   generate   the   structure   of   the   native   protein   or   

any   other   protein   in   the   PDB   (TM-scores   are   higher   when   the   geometric   motif   is   larger,   because   a   larger   

part   of   the   hallucinated   protein   is   constrained).   Topology   diagrams   show   that   although   the   tertiary  

structure   of   design   solutions   can   be   similar,   their   secondary   structure   elements   are   connected   in   very   

diverse   ways;   the   method   does   not   suffer   from   mode   collapse,   which   can   occur   with   other   generative   

techniques   such   as   GANs.   
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Figure   4.   In   silico   validation   of   hallucinated   proteins     

(A,C,E,G)    Hallucinated   design   models   presenting   the   EF-hand   loop   in   grey    (A,C)    or   the   CTLA-4   binding   

B7-2   mimetics    (E,G) ,   with   the   scaffolded   region   shown   in   green.    (B,D,F,H)    Energy   landscapes   for   the   

designed   sequences   for   the   structures   shown   in    (A,C,E,G)    mapped   using   Rosetta   de   novo   folding   

simulations   (y   axis   energy,   x   axis   distance   from   design   model).    In   each   case,   the   lowest   energy   structure   

is   very   close   to   the   design   model,   providing   independent   in   silico   validation   of   the   folding   of   the   sequence   

to   the   designed   structure.    (A,C)     Starting   and   final   snapshot   of   380   and   835ns   MD   simulations   with   

calcium   for   EF   hand   designs   in   grey   and   cyan   respectively.     
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Table   1.   Natural   proteins   used   for   mimetic   design.   

  

   

24   

Native   
protein   

PDB  
ID   

Chain   Constrained   
residues   

Binding   
partner(s)   

Reference   

IL-4   3BPL   A   5-15,   78-92,   
114-128   

IL4   receptor   
α-chain   and   
cytokine   receptor   
common   γ-chain   

( 38 )   

Insulin   6PXV   F   10-19,   56-74  Insulin   receptor   ( 20 )   

C3d   1GHQ   A   104-126,   
170-185   

Complement   
receptor   2   

( 39 )   

GM-CSF   4RS1   A   40-65,   97-120   GMR- α   ( 23 )   

IL-10   1Y6K   A,B   19-57,   133-155   IL-10   receptor   1   ( 17 )   

B7-2   1I85   B   28-32,40-43,85 
-89,95-100   

CTLA-4,   CD28  ( 22 )   

EF-hand   1A75   A   88-97   Ca 2+     Unpublished   
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