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Abstract 

Odours are transported by turbulent air currents, creating complex temporal fluctuations in 
odour concentration. Recently, we have shown that mice can discriminate odour stimuli 
based on their temporal structure, indicating that information present in the temporal structure 
of odour plumes may be extracted by the mouse olfactory system. Here using in vivo 
electrophysiological recordings, we show that mitral and tufted cells (M/TCs), the projection 
neurons of the mouse olfactory bulb, can encode the dominant temporal frequencies present 
in odour stimuli up to frequencies of at least 20 Hz. We show that M/TCs couple their 
membrane potential to odour concentration fluctuations; coupling was variable between 
M/TCs but independent of the odour presented and with TCs displaying slightly elevated 
coupling compared to MCs in particular for higher frequency stimulation (20Hz). 
Pharmacologically blocking the inhibitory circuitry strongly modulated frequency coupling. 
Together this suggests that both cellular and circuit properties contribute to the encoding of 
temporal odour features in the mouse olfactory bulb.   

 

 

Introduction 

Temporal structure has long been considered as an integral part of sensory stimuli, notably in 
vision (Borghuis, Tadin, Lankheet, Lappin, & van de Grind, 2019; Buracas, Zador, DeWeese, 
& Albright, 1998; Chou, Toft-Nielsen, & Porciatti, 2019; Kauffmann, Bourgin, Guyader, & 
Peyrin, 2015; Kauffmann, Ramanoel, & Peyrin, 2014; Wang, Garcia, Sabottke, Spencer, & 
Sejnowski, 2019) and audition (Deneux, Kempf, Daret, Ponsot, & Bathellier, 2016; Nelken, 
Rotman, & Bar Yosef, 1999; Theunissen & Elie, 2014; VanRullen, Zoefel, & Ilhan, 2014). 
Odours in natural environments are transported by turbulent air streams, resulting in complex 
spatiotemporal odour distributions and rapid concentration fluctuations (Celani, Villermaux, 
& Vergassola, 2014; Pannunzi & Nowotny, 2019; Shraiman & Siggia, 2000). The neuronal 
circuitry of the olfactory system, particularly in invertebrates, has been shown to encode 
temporal structures present in odour stimuli (Hendrichs, Katsoyannos, Wornoayporn, & 
Hendrichs, 1994; Huston, Stopfer, Cassenaer, Aldworth, & Laurent, 2015; Pannunzi & 
Nowotny, 2019; Szyszka, Gerkin, Galizia, & Smith, 2014; Vickers & Baker, 1994; Vickers, 
Christensen, Baker, & Hildebrand, 2001). Temporal features in odour stimuli such as 
differences in stimulus onset were shown to be detectable on a behavioural level by bees 
(Sehdev, Mohammed, Triphan, & Szyszka, 2019; Szyszka, Stierle, Biergans, & Galizia, 
2012). While the mammalian olfactory system is often considered a “slow” sense with single 
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sniffs being the units of information (Cury & Uchida, 2010; Kepecs, Uchida, & Mainen, 
2006; Wachowiak, 2011), recent reports have indicated that the neural circuitry of the early 
olfactory system readily sustains temporally precise action potential discharge and is capable 
to relay information about optogenetic stimuli with ~10 millisecond precision (Rebello et al., 
2014; Shusterman, Smear, Koulakov, & Rinberg, 2011; Smear, Shusterman, O'Connor, 
Bozza, & Rinberg, 2011). Furthermore, we have recently shown that mice can utilise 
information in the temporal structure of odour stimuli at frequencies as high as 40 Hz to 
guide behavioural decisions (Erskine, Ackels, Dasgupta, Fukunaga, & Schaefer, 2019). 
However, how specific temporal features are represented in individual neurons in the brain 
remains unclear.  

The olfactory bulb (OB) is the first stage of olfactory processing in the mammalian brain. 
Olfactory sensory neurons (OSNs) in the nasal epithelium convert chemical signals into 
electrical activity forming the input to the OB. They are known to show slow response 
profiles to odour stimuli (Sicard, 1986). This, together with the slow GPCR based odour-
receptor interaction (Reisert & Matthews, 2001), created the general notion that mammalian 
olfaction has a limited temporal bandwidth. While OSN activity reflects only a low pass 
filtered version of the incoming odour signal, information about different frequency 
components might still be present in OSN activity (Nagel & Wilson, 2011). Moreover, circuit 
mechanisms in other brain regions and species have been shown to boost high-frequency 
content and sharpen stimulus presentation (Atallah & Scanziani, 2009; Nagel, Hong, & 
Wilson, 2015; O'Sullivan, Weible, & Wehr, 2019; Tramo, Shah, & Braida, 2002). Given the 
intricate circuitry present in the OB, where multiple types of interneurons (Burton, 2017) 
process incoming signals, we decided to investigate the role of the OB circuitry in 
representing and processing the temporal features of odour stimuli. 

In this study, we show that mitral and tufted (M/T) cells, the OB output neurons, respond to 
odours - temporally modulated at frequencies of 2-20 Hz - in a frequency-dependent manner. 
Using whole-cell recordings, we show that subthreshold M/T cell activity in vivo can follow 
odour frequencies both at sniff and supra-sniff range for monomolecular odours and odour 
mixtures. We observe that while putative tufted (pTC) and mitral cells (pMC) show similar 
frequency coupling capacity at 2Hz, tufted cells have a higher propensity to follow odour 
frequencies at 20Hz. Pharmacologically “clamping” GABA receptors (Fukunaga, Berning, 
Kollo, Schmaltz, & Schaefer, 2012) we show that local inhibition in the OB strongly 
modulates frequency coupling of M/T cells. 
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Results 

 

M/T cells differentially respond to different frequencies in odour stimuli 

In order to probe the effect of temporal structure in odour stimuli on M/T cell activity, we 
recorded extracellular spiking activity using Neuronexus silicone probes (97 units, 6 mice) 
from the dorsal OB of anaesthetized mice while presenting 4 different odours (ethyl butyrate, 
2-hexanone, amyl acetate and eucalyptol) at 5 different frequencies (2, 5, 10, 15 and 20Hz, 
Fig. 1A-B) using a high-speed odour delivery device we recently developed (Erskine et al., 
2019). As M/T cells can respond to changes in air pressure due to mechanosensitivity of 
OSNs (Grosmaitre, Santarelli, Tan, Luo, & Ma, 2007), we offset changes in flow by 
presenting an odourless air stream from an additional valve following a temporal structure 
that operated anti-correlated to the odour valve. This resulted in approximately constant air 
flow profile throughout the odour presentation (Fig. 1B&C). The temporal odour delivery 
device (tODD) allowed for a reliable odour pulse presentation (Fig. 1C) with similar net 
volumes of odour for all the frequencies (P > 0.3 Welch’s t-test) (Fig. 1D). To control for 
responses to residual flow changes, we included ‘blank trials’, i.e. trials identical to the odour 
trials in temporal structure, except that both the valves were connected to a vial filled with 
mineral oil. Respiration was continuously monitored using a flow sensor placed in close 
proximity to the nostril contralateral to the recording hemisphere. To minimise sniff-cycle 
related variability (Shusterman et al., 2011) we triggered odour stimulation at the onset of 
inhalation. 

A typical recording session yielded recordings from multiple clusters from a depth of 300-
500 µm from the OB surface. The recorded clusters were classified either as ‘good’ (well 
isolated clusters), ‘MUA’ (multi-unit activity, clusters which contained spikes of 
physiological origin but from numerous cells), or ‘noise’ (clusters containing spikes of non-
physiological origin, e.g. electrical interference, movement artefacts) based on their 
autocorrelograms (Fig. 1E-F left), waveforms (Fig. 1E-F middle), firing rate and amplitude 
stabilities. Corroborating previous findings (Ackels, Jordan, Schaefer, & Fukunaga, 2020; 
Fukunaga et al., 2012; Jordan, Fukunaga, Kollo, & Schaefer, 2018; Jordan, Kollo, & 
Schaefer, 2018) we observed that most of the units also coupled distinctly to either the 
inhalation (Fig. 1 E right, G) or exhalation phase (Fig. 1 F right, G) of the sniff cycle. From 
the entire population of recorded units, we estimated a total of 64 putative tufted cells (pTCs) 
and 26 putative mitral cells (pMCs) while 7 units could not be resolved into either of the class 
(Fig. 1G). The average baseline firing of the recorded units was found to be 11 ± 9 Hz (mean 
± SD) (Fig 1I). Depending on the odour identity, between 13% and 50% of units displayed 
significant changes (>= 2 SD for 50ms from baseline) in their firing rates in response to the 
stimuli (Ethyl butyrate – 47/97; 2-Hexanone – 50/97; Amyl acetate – 43/97; Eucalyptol – 
13/97) (Fig S1). Furthermore, a subset of units displayed visibly different spiking profiles in 
response to different frequency odour stimuli (Fig. 1J-K). Comparing e.g. activities of units 
between 2Hz and 20Hz stimuli we observed that a substantial number of units compared to 
the shuffled control showed significant difference in their activity in the first 500ms after 
odour onset. This was true for all the 4 odours tested (Ethyl butyrate – 14/97; 2-Hexanone – 
18/97; Amyl acetate – 17/97; Eucalyptol – 12/97; Shuffled – 6/97, P<0.05 Unpaired t test) 
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(Fig. 1L). 
 

 

Figure 1: OB neurons encode odour frequency 
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(A) Schema of the unit recording experimental setup (B) Photo-Ionisation Detector (PID) 
signal (left) and airflow (right) measurements of Ethyl Butyrate stimuli at 5 different 
frequencies. (C) Fidelity of the odour stimuli and flow at different frequencies. (D) Integral 
values of the total odour for the 5 frequencies, shown in B, for 3 seconds after odour onset (2 
seconds of odour and 1 second to allow full return to baseline). (E) Autocorrelogram from a 
‘good’ example putative mitral cell (pMC) (left), individual spike waveforms from the cell 
(grey) and its average waveform (magenta) (middle) and baseline spiking probability 
(magenta) overlaid on the respiration trace (black) (right). Peak spiking probability coincides 
with inhalation phase of the animal. (F) Same as in (E) but for putative tufted cell (cyan) with 
peak firing probability coincides with exhalation of the animal. (G) Summary Phase plot 
displaying peak firing probability of all recorded units against phase of respiration (n=64; 
pTC (cyan), n=26; pMC (magenta) and n=7; unresolved (black)). (H) Average waveform for 
the pTC in (F) across all channels of recording probe. Average waveforms shown in black, 
with the cyan average indicating the channel with the largest average waveform. (I) Baseline 
firing rate distribution of all recorded units across all experiments. (J) Respiration trace (top) 
and raster plot for a single unit’s response to five odour frequencies. (K) Respiration trace 
(top) and average PSTH of the same unit’s responses in (J). (L) Fraction of units showing 
significant difference in firing rate in the first 500ms after odour onset between the 2Hz and 
20Hz odour stimuli. The different colours represent the different odours used for all the units. 
(EB: Ethyl Butyrate; 2H: 2-Hexanone; AA: Isoamyl Acetate; EU: Eucalyptol; S: Shuffled) 

 

To examine the population level response to these different stimuli, we constructed response 
vectors by computing the cumulative spike count for all the 97 recorded units in the first 
500ms post odour-onset and subtracting from it the spike counts of a blank trial. We trained 
linear classifiers on 80% of the data and tested on 20% to examine whether spiking activity 
obtained for different stimulus frequencies was linearly separable (Fig. 2A). We observed 
that when we used a 500ms rolling window with temporal steps of 10ms, a classifier could 
achieve accuracies (Ethyl butyrate: 55 ± 8%; 2-Hexanone: 51 ± 8%; Amyl acetate: 53 ± 8%; 
Eucalyptol: 45 ± 8) notably higher than what was obtained by training on shuffled data (20 ± 
7%) (Fig. 2B). In addition, we trained classifiers on random subsets of unit responses, binned 
in a 500ms window from odour onset. The classifier accuracies increased with increasing 
number of units, with peak accuracies found for classifiers which had the full set of units 
available (Ethyl butyrate: 41 ± 5%; 2-Hexanone: 35 ± 5%; Amyl acetate: 46 ± 5%; 
Eucalyptol: 39 ± 5%) compared to shuffled data (20 ± 5%) (Fig. 2C). We then trained a series 
of classifiers to distinguish pairs selected from all possible combinations of odour frequencies 
and identities. We found that classifiers could readily distinguish responses for different 
stimulus frequencies well above chance (>0.5) for a given odour while performing even 
better while comparing responses for trials across different odours (Fig. 2D). Next, we 
withheld one trial of each type of stimuli and trained a classifier with all the remaining trials. 
We tested the classifier on the withheld trials to see both how well a classifier can distinguish 
trials, as well as explore the structure of the false classifications (Fig. 2E). For a given odour, 
the predictability of a frequency of stimulus reached well above chance (> 0.04). 
Furthermore, when comparing across the different odours, the predictability was almost 
perfect (Fig. 2E). Overall, this suggests that OB neurons can encode temporal structure 
present in odour stimuli at frequencies of at least up to 20Hz in their spiking pattern.  
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Figure 2: Classifiers to unit responses 

(A) Schematic outlining of the procedure to train classifiers on unit spike times following an 
odour stimulus. (B) Average accuracy of linear SVM classifiers trained on a summed 500ms 
rolling window of detected unit spikes from different start times post odour onset. (C) 
Average accuracy of a set of linear SVM classifiers trained on the summed response from 
units 500ms from odour onset as the number of units available increases. (D) A matrix of all 
possible 1 vs. 1 comparisons between different trial types and the average accuracy of a linear 
SVM trained to distinguish between the two. Chance is 0.5 (E) A confusion matrix of linear 
fractional classifications for a set of classifiers trained to distinguish all trial types from one 
another. Y axis represents a trial’s true label and the x axis represents a classifier’s given 
label to a trial. Chance is 0.04. 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 29, 2020. ; https://doi.org/10.1101/2020.11.29.402610doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.29.402610
http://creativecommons.org/licenses/by-nc-nd/4.0/


M/T cells follow odour stimulus both at 2 and 20Hz 

To better understand the mechanism that gives rise to frequency dependent M/T cell spiking 
responses and to get insight into their subthreshold basis, we performed whole-cell recordings 
from M/T cells (Fig. 3A). To increase the probability of finding a responsive cell-odour pair 
and due to the time limitation and lower yield of reliable whole-cell recordings, we employed 
odour mixtures as stimuli (A: Ethyl butyrate + 2-Hexanone; B: Amyl acetate + Eucalyptol) 
and presented odours at only two frequencies, 2Hz and 20Hz (Fig. 3E). As with the unit 
recordings, stimuli were triggered at the onset of inhalation and blank trials were included. 
We recorded from 42 neurons in 25 mice at depths of 180-450 µm from the surface of the 
olfactory bulb (Fig. 3B). The neurons showed physiological RMP ranging from -38 mV to -
60 mV (Fig. 3C) and input resistance of 48-280 MΩ (Fig. 3D). These values are congruent 
with previous findings indicating that our recordings were largely from M/T cells (Fukunaga 
et al., 2012; Jordan, Fukunaga, et al., 2018; Jordan, Kollo, et al., 2018; Margrie, Brecht, & 
Sakmann, 2002; Margrie, Sakmann, & Urban, 2001; Margrie & Schaefer, 2003). 

Comparing average change in action potential firing frequency in the first 500ms after odour 
onset from the baseline between the 2Hz and 20Hz responses (3F-H), we observed that 15/68 
cell-odour pairs behaved significantly different between the two cases (Fig. 3H, P<0.05, 
Two-tailed unpaired t-test). This is consistent with our findings from the unit recordings. To 
assess whether or how the subthreshold response of the recorded neurons for the 2Hz and 
20Hz stimuli differ, we calculated the average change in membrane potential (Δ Voltage) 
during the first 500ms of the stimulus from the baseline (Fig. 3I-K). Overall, a larger number 
of cell-odour pairs (27/68) pairs showed significant differences between the responses to the 
two stimuli (Fig. 3K, P<0.05; Two-tailed unpaired t-test) compared to the suprathreshold 
response.  
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Figure 3: OB neurons respond to both 2 Hz and 20Hz temporally structured odour 
stimuli 
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(A)  Schema of the whole-cell recording experimental setup. (B) Histogram representing the 
distribution of depth from the OB surface of all the recorded neurons, (C) resting membrane 
potential and (D) input resistance (n=42 cells, 25 mice) (E) Example recordings for 2Hz (left) 
and 20Hz (right) stimuli. From top to bottom, schema of odour stimulus, representative 
respiration trace, representative recording from a neuron, extracted Vm and PSTH. (F) 
Histogram of change in action potential frequency in the first 500ms compared to the baseline 
for 2Hz stimuli and (G) 20Hz stimuli. (H) Spike frequency change for 2Hz vs 20Hz for all 
cell-odour pairs. The hollow circles represent cells which showed statistically insignificant 
difference between the 2Hz and the 20Hz trials while the solid markers (15/68) represent 
cells showing significant difference (P<0.05, Two-tailed unpaired t-test). Each marker 
represents a cell and the error bars represent the SD obtained from all the trials. (I) Histogram 
of change in average Vm in the first 500ms compared to the baseline for 2Hz stimuli and (J) 
20Hz stimuli. (K) Avg. Change in Vm for 2Hz vs. 20Hz. The markers and error bars have 
similar meaning as in (H) but for change in Vm from baseline. 27/68 cell odour pairs showed 
significant difference between the 2Hz and 20Hz trials (P<0.05, Two-tailed unpaired t-test). 

 

To quantify the coupling of membrane potential to the frequency of odour stimulation, we 
computed a coupling coefficient index (CpC, Fig. 4 A-F) for each individual cell (n = 42 
cells, 70 cell-odour pairs, 25 mice, see Methods for details). In brief, to calculate CpC, the 
membrane potential was first baseline subtracted to minimise sniff-related membrane 
potential oscillations (Abraham et al., 2010). For a given cell-odour pair, CpC is then 
obtained by normalising the peak cross-correlation value for the odour response to that for the 
mineral-oil response (Fig 4 C-F), resulting in a CpC value > 0. A high CpC value indicates a 
cell that has a strong cell-odour frequency coupling. Further, a CpC > 1 indicates a cell’s 
response to the odour-frequency pair is stronger than that to a blank trial, and is not due to a 
response of a potential residual purely mechanical stimulus. A subset of the recorded neurons 
showed CpC >1 indicating substantial coupling to both 2Hz (35/70) (Fig. 4G) and 20Hz 
(25/70) (Fig. 4J). To assess statistical significance of this coupling measure, we shuffled the 
phases of the membrane potential before computing the shuffled control CpC (Fig. 4H&K). 
Comparing the CpC between the original and the shuffled control, we observed that a 
substantial number of M/T cells indeed significantly coupled to both 2Hz (23/70 cell-odour 
pairs) (Fig. 4I) and 20Hz (16/70 cell-odour pairs) (Fig. 4L) (P<0.01, Two-tailed paired t-test). 
For a subset of recorded cells, we presented a third stimulus, a continuous odour (with no 
temporal structure) and estimated the CpC as before. As expected, CpCs obtained from the 
2Hz and 20Hz stimuli was significantly higher than that from the constant odour stimulus for 
a substantial portion of the recorded M/T cells (2Hz: 17/32 cell-odour pairs; 20 Hz: 13/26 
cell-odour pairs; P<0.01, Two-tailed paired t-test, Fig. S2). 
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Figure 4: Olfactory bulb neurons can follow temporally structured odour stimuli 

(A) (Top) A representative trace recorded using a PID of a 2Hz odour stimulus; (Middle) a 
representative Vm trace (action potentials clipped) recorded during 2Hz odour stimulus 
presentation; (Bottom) recording from the same neuron during 2Hz mineral oil stimulus 
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presentation. (B) Same as in (A) but for a 20Hz stimulus from a different neuron. (C) Cross-
correlation plot between 2Hz PID trace and 2Hz Vm odour trace; (D) 2Hz PID trace and 2Hz 
Vm mineral oil trace; (E) 20Hz PID trace and 20Hz Vm odour trace and (F) 20Hz PID trace 
and 20Hz Vm mineral oil trace. (G) Histogram of coupling co-efficient (CpC) for all cells for 
2Hz responses (n=42 cells, 25 mice). Note a considerable fraction of neurons showing CpC > 
1 indicating that they follow the temporal odour stimuli. (H) CpC estimated from the 
individual original trials (red hollow) and that from the shuffled control (grey) of 2Hz odour 
stimuli for a given cell. The filled circle represents the population average of CpC obtained 
from the original trials (red solid) and the shuffled controls (black). P<0.0001, Mann-
Whitney test. (I) Original CpC vs shuffled CpC from all recorded cells. The grey markers 
(n=47/70) represent the cell-odour pair showing non-significant difference between the two 
while the coloured markers (23/70) represent the significantly different cells. Significance 
threshold was set at P<0.01 (J) Same as in G but for 20Hz responses (K) Same as in (H) but 
for 20Hz responses. (n=16/70, significant cell-odours) (L) Same as in (I) but for 20Hz 
responses. 

 

Putative Tufted cells show higher CpC than putative Mitral cells 

Spontaneous oscillation of membrane potential has been observed to be a reliable predictor of 
projection neuron type in the OB (Ackels et al., 2020; Fukunaga et al., 2012; Jordan, 
Fukunaga, et al., 2018). We classified the recorded neurons into 23 putative mitral cells 
(pMC) and 17 putative tufted cells (pTC) based on the phase locking of the spontaneous 
membrane potential to the respiration cycle of the mouse (Fig. 5A-B). Two of the cells could 
not be resolved. While overall similar, pTCs tended to couple more strongly to the odour 
stimuli than pMCs, reaching significance for the 20 Hz case (2 Hz: CpCpTC=1.32±0.48 
(mean±SD), CpCpMC=1.24±0.41; P=0.64, KS test; 20 Hz: CpCpTC=1.12±0.29, 
CpCpMC=0.95±0.49; P = 0.04, KS test). This corroborated our depth-based classification (Fig. 
S4 E-F) where we observe that for the 20Hz cases, superficially located tufted cells showed 
higher CpC compared to the deeper mitral cells (Fig. S4F, P<0.05).  
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Figure 5: Putative Mitral and Tufted cells show similar probability of following both 2 
and 20Hz stimulus 

(A) (Top) Representative baseline average Vm trace from a putative tufted cell (cyan) 
overlaid with average sniff cycle (black). (Bottom) similar traces for a putative mitral cell 
(magenta). (B) Summary phase diagram of peak subthreshold oscillation phase plot (pTC; 
n=17, pMC; n=23). (C) CpC for all the recoded pTC and pMC for 2Hz showing no 
significant difference between the two population (P=0.64, KS test) while (D) pTCs show 
higher CpC than pMCs for 20Hz cases (P=0.04, KS test). (E) Cumulative histogram of CpC 
for all pTC and pMC for 2Hz and (F) 20Hz cases. 
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CpC for odour mixtures can be linearly predicted from that of individual constituents 

As described above, we presented two different odour stimuli at different frequencies (odour 
A and odour B). Comparing CpCs for odour A with that displayed for odour B we noticed 
that these were tightly linked: M/T cells coupling well to odour A, also coupled well to odour 
B whereas M/T cells poorly coupling to one also coupled weakly to the other (Fig. 6A-B). 
This was the case for both 2Hz (Fig. 6C) and 20Hz (Fig. 6D) suggesting that the frequency 
coupling of a cell is independent of the odour presented. To further corroborate that CpC is 
an odour independent parameter, we probed M/T cells with a mixture of the two odours. If 
frequency-coupling is indeed odour-independent, a cell’s response to odour mixtures should 
be predictable from the CpC for the individual odour. To assess this, we first categorized 
recordings based on the direction of average change in membrane potential in the first 500ms 
after odour onset, and classified responses into 3 types: excitatory-inhibitory (Ex-In), 
excitatory-excitatory (Ex-Ex), and inhibitory-inhibitory (In-In) (Fig. 7A-B). Notably, we did 
not observe any significant difference between CpCs for the different response types – 
neither for 2Hz (P = 0.54, One-way ANOVA; Fig. 7C) nor for 20Hz (P = 0.15, One-way 
ANOVA; Fig. 7D). 
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Figure 6: CpC is odour invariant 

(A) Representative recordings from two cells responding to both odours A and B at 2 Hz. 
Note that CpC values are similar for the two odours. (B) As in (A) for 20Hz stimulation. (C) 
Plot of estimated CpC A vs CpC B from all the recorded cells for 2Hz and (D) 20Hz case. 
Note the strong correlation in both cases suggesting that coupling to frequency-modulated 
odour stimuli is odour-independent. 

 

Next, we tried to predict the CpC of a given cell to an odour mixture, based on the cell’s CpC 
obtained from the constituent odours. As predicted from the observation that CpC is largely 
cell-intrinsic and odour-independent, we observed that the CpC for a given cell-mixture pair 
could be reliably predicted from the cell-constituent pairs both for 2Hz (Fig. 7E) and 20Hz 
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(Fig. 7F) (P<0.01). Notably, we observed that CpC was not correlated with the strength of 
odour response for a given cell-odour pair (Fig. S3).  

 

Figure 7: CpC for a mixture of odour can be linearly predicted from their individual 
component 

(A) Representative recordings for 3 different types of mixture interaction; excitatory-
inhibitory (Ex-In), excitatory-excitatory (Ex-Ex) and inhibitory-inhibitory (In-In). From top 
to bottom respiration trace, Vm for odour A, B and A+B mixture delivered at 2Hz. (B) as (A) 
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but for 20Hz. (C) No significant difference in CpC between the 3 types of mixture responses 
for 2Hz and (D) 20Hz. The numbers in bracket are the number of cells. (1-way Annova, 
P=0.54 (2Hz); P=0.14 (20Hz)) (E) Computed CpC of odour (A+B)/2 vs actual CpC of 
mixture (A+B) for 2Hz cases and (F) 20Hz cases. Note linear regression can reliably predict 
the relation between calculated and estimated CpC (n=35, P<0.01). 

 

Influence of inhibition on CpC 

Since our observations indicated that CpC is cell-intrinsic, independent of the odour 
presented (Fig. 6,7), we next asked whether a cell’s CpC was linked to intrinsic cellular or 
shaped by circuit properties. We observed that input resistance (Fig. S4A-B) and resting 
membrane potential (RMP, Fig. S4C-D) of a cell were not correlated with its CpC. CpC and 
depth showed different correlations for 2Hz and 20Hz. For the 2Hz cases we could not find 
any correlation between depth and CpC (Fig. S4E), while CpC decreased with depth for the 
20Hz cases (Fig. S4F) (P<0.05). This suggests that tufted cells which are located more 
superficially than mitral cells might couple more strongly to high frequency (20 Hz) odour 
stimuli. This is consistent with our finding that pTCs showed significantly higher CpC to 
20Hz than pMCs (Fig 5D). 

To assess the role that circuit level inhibition may have on cellular CpC, we recorded from 
M/T cells as outlined previously, and then washed in a titrated mixture of 0.4mM gabazine 
and 2mM muscimol to cause “GABAA clamping” (Fukunaga et al., 2012), blocking synaptic 
inhibition while providing sufficient unspecific, background inhibition to avoid epileptic 
discharge. Following a short period of change in membrane potential, the recorded neurons 
returned to approximately their original RMP (Fig. 8A). The input resistance (Fig. 8E) and 
RMP (Fig. 8H) did not change significantly in any of the neurons recorded. Under baseline 
conditions before GABA-clamping, the estimated CpC was significant compared to their 
shuffled controls for most of the recorded cell-odour pairs (13/15; 2Hz and 12/15; 20Hz, 
P<0.01, Two-tailed paired t-test). Post drug perfusion (with GABAA-clamp) all recorded cells 
were significantly coupled (15/15; 2 & 20Hz, P<0.01, Two-tailed paired t-test) (Fig. 8C-D). 
Furthermore, we noticed a significant change in CpC for most of the cell-odour pairs post 
drug treatment from their baseline values (n = 10/15; 2Hz and 9/15; 20Hz, P<0.01, Two-
tailed paired t test) (Fig. 8F-G). Interestingly, this shift in CpC post GABAA clamping 
happened in both directions with 5/15 cells showing a significant decrease and 5/15 a 
significant increase in their CpC values in the 2Hz case (Fig. 8F). For the 20Hz case, we 
observed that 2/15 cells show decrease while 7/15 show increase in CpC (Fig. 8G). 
Furthermore, we observed that cell-odour pairs which significantly showed an increase in 
CpC post GABAA clamp from their baseline values, largely had initial CpC < 1 (2Hz: 
0.947±0.076, 20Hz: 0.98±0.11 (mean±SD)), while for cell-odour pairs showing a decrease 
post GABAA clamp had initial CpC > 1 (2Hz: 2.31±0.39, 20Hz: 1.3±0.07 (mean±SD)). 
Overall, our results indicate that the local inhibitory circuitry contributes significantly to 
determining a cell’s CpC. 
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Figure 8: Influence of blocking inhibition on CpC  

(A) Representative recording showing time of 2mM Muscimol + 0.4mM Gabazine infusion 
for GABAA clamping. (B) Example Vm trace without drug (Top) and after 10 minutes from 
drug infusion point (Bottom) in a continuous recording for 2Hz (red) and 20Hz case (blue). 
(C) Fraction of cell-odour pairs showing significant CpC compared to their shuffled control 
before and after the drug infusion point for 2Hz stimuli. (D) Same as in (C) but for 20Hz 
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cases. (E) Input resistance of the recorded neurons estimated both before and after drug 
infusion (n=5). No significant change was observed (Paired t test; P=0.272). (F) 10/15 cell-
odour pairs (red) showed significant change in their CpC post GABAA clamping while 5/15 
(grey) showed no significant change in the 2Hz case (P<0.01, Two-tailed paired t-test). (G) 
9/15 cell-odour pairs (blue) showed significant change in their CpC post GABAA clamping 
while 6/15 (grey) showed no significant change in the 20Hz case (P<0.01, Two-tailed paired 
t-test). (H) RMP of the recorded cells did not change significantly due to GABAA clamping 
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Discussion 

 

Olfaction research has largely used odour identity (chemical structure) and intensity as 
modulators of odour responses despite the presence of rich temporal structure in natural 
odour landscapes. Here we have shown that M/T cells in the OB in vivo can encode 
frequencies in odour stimuli as high as 20Hz. Furthermore, whole-cell recordings indicate 
that a subset of M/T cells significantly couple to frequencies of odour stimuli both at the sniff 
range and supra-sniff range in a largely odour-independent manner. We have demonstrated 
that odour frequency coupling capacity is similar between pMCs and pTCs populations at 
2Hz, while at 20 Hz, pTCs couple more strongly than pMCs. Finally, while coupling capacity 
is independent of intrinsic properties, we observed that local inhibition strongly modulates a 
cell’s frequency coupling capacity. Overall, we show that the OB has the capacity to encode 
high frequency temporal patterns present in olfactory stimuli. 

 

In mammals, respiration ensures a periodic sampling of olfactory stimuli which in turn is the 
main source of theta activity in the early olfactory areas (Macrides & Chorover, 1972; 
Margrie & Schaefer, 2003; Schaefer, Angelo, Spors, & Margrie, 2006). This causes rhythmic 
activity in M/T cells, even when devoid of odour stimuli (Connelly et al., 2015; Grosmaitre et 
al., 2007). Furthermore, the concentration of natural odour stimuli fluctuates in time (Celani 
et al., 2014; Erskine et al., 2019; Martinez & Moraud, 2013; Pannunzi & Nowotny, 2019; 
Riffell, Abrell, & Hildebrand, 2008) providing an extra layer of temporal information to the 
input signal of the OB. Altogether this creates temporally complex input signals for OSNs 
that are thought to carry information about the odour source (Celani et al., 2014; Erskine et 
al., 2019; Hopfield, 1991; Vergassola, Villermaux, & Shraiman, 2007). The fact that mice 
can discriminate optogenetically delivered excitation presented at different sniff phases 
(Smear et al., 2011) despite the relatively slow kinetics of signal transduction at the olfactory 
receptor neuron level (Ghatpande & Reisert, 2011) indicates the presence of circuit 
mechanisms (Gorur-Shandilya, Demir, Long, Clark, & Emonet, 2017) that might allow the 
early olfactory system to encode high frequency natural odour stimuli. Here we have shown 
that indeed the projection neurons in mouse OB can encode frequency in odour fluctuations 
and that local circuit inhibition plays an important role in this encoding. 

 

Functional implications 

Naturally odours are carried by turbulent plumes of wind or water thus generating 
filamentous fluctuations of odour concentration (Celani et al., 2014) that can in principle 
contain information about the nature and location of odour sources (Erskine et al., 2019; 
Hopfield, 1991; Vergassola et al., 2007). Our observations here indicate that the M/T cells 
can encode information about odour fluctuations at frequencies from 2-20 Hz (Fig. 1-2, 4). 
Consistent with these results obtained from unit recordings, we observe that indeed a subset 
of neurons recorded intracellularly showed significantly different spiking and subthreshold 
membrane potential activity when presented with 2Hz or 20Hz fluctuating odour stimuli (Fig. 
3H&K). Furthermore, our read-out parameter, CpC, provides an estimate of how strongly a 
given neuron can directly couple to a specific odour frequency. Both types of projection 
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neurons showed overall similar frequency coupling to 2Hz (Fig. 5C) while tufted cells 
showed somewhat higher coupling than mitral cells to 20Hz (Fig. 5D and S4F). This might 
indicate that low frequency temporal information could be readily available to all the 
downstream cortical and sub-cortical areas while high frequency information cascades 
preferably to the anterior olfactory nucleus or anterior piriform cortex (Nagayama et al., 
2010; Schneider & Scott, 1983; Scott, McBride, & Schneider, 1980). Further studies will be 
required to find exact structures in the downstream areas related to high frequency odour 
signal computation. The fact that blocking inhibition altered the frequency coupling capacity 
(Fig. 8) indicates that the inhibitory circuitry of the OB plays a strong role in encoding 
temporal features. This corroborates a previous finding in Drosophila projection neurons 
where blocking presynaptic inhibition altered response kinetics for temporally dynamic odour 
stimuli (Nagel et al., 2015). Additionally, we observe that post GABAA clamping some of the 
cells displayed a decrease of CpC while other cells showed an increase (Fig. 8F-G). Further 
studies are required to pinpoint the precise inhibitory pathway which might be responsible for 
modulating frequency-coupling in M/T cells in a cell to cell basis and possibly identify 
subpopulations of MCs and TCs that encode specific temporal features. 

Overall, here we provide one of the initial steps in understanding the capacity of the OB to 
encode temporally dynamic stimuli.  

 

Limitations of the study 

All the recordings presented here were performed in anesthetized mice. Previous reports 
suggested that the behavioural state affects mitral cell firing properties (Kato, Chu, Isaacson, 
& Komiyama, 2012; Rinberg, Koulakov, & Gelperin, 2006). However, studies have 
suggested that M/T cell firing rates in awake conditions do not change but rather get 
redistributed over a breathing cycle (Gschwend, Beroud, & Carleton, 2012). Whole cell 
recordings from M/T cells indicate that membrane properties are largely similar between the 
two states (Kollo, Schmaltz, Abdelhamid, Fukunaga, & Schaefer, 2014), consistent with 
recent unit recording results (Bolding, Nagappan, Han, Wang, & Franks, 2020). It will 
nevertheless be important to repeat these experiments in awake mice to probe if the M/T cells 
hold to the same frequency coupling behaviour as that found in anaesthetised. Secondly, 
owing to the time limitation of reliable whole-cell recordings we could probe only two 
frequencies. Extracellular unit recording data partially alleviated this problem by 
investigating additional intermediate frequencies. Linear classifiers performed at accuracies 
well above chance level (Fig. 2), suggesting that M/T cells can encode several frequencies up 
to 20Hz. Therefore, it is likely that the frequency coupling capacity of subthreshold activity 
could span this range as well. 

 

Temporally structured stimuli and pathophysiology 

In addition to better replicating naturalistic stimuli, temporally patterned sensory stimuli have 
been found to be advantageous in treating diseases. While direct electrical (and more recently 
optical) rhythmic deep brain stimulation is recognised as a possible treatment for a variety of 
neurodegenerative diseases (Benabid, Pollak, Louveau, Henry, & de Rougemont, 1987; 
Laxton et al., 2010; Zhang et al., 2019), it is only quite recent that temporally modulated 
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sensory stimulation has been employed to in a similar manner.  For example using 40 Hz 
visual and/or auditory stimuli has been found to help alleviate the amyloid burden from 
medial prefrontal cortex (Martorell et al., 2019). These reports strongly suggest that 
temporally structured sensory stimuli can be used as a tool to treat AD patients. A recent 
report indicating that humans can use temporal olfactory cues suggests this may be possible 
for olfaction as well (Perl, Nahum, Belelovsky, & Haddad, 2020). Therefore, temporally 
structured odour stimuli could offer an additional route for treatment for neurodegenerative 
disorders.  

 

To conclude, in this study we report that M/T cells in the mouse olfactory bulb can encode 
temporal structure in odour stimuli and that their membrane potentials can follow frequencies 
of at least up to 20Hz. Furthermore, inhibition is key in generating this frequency-coupling. 
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Material and Methods 

 

Animals 

All animal procedures performed in this study were approved by the UK government (Home 
Office) and by Institutional Animal Welfare Ethical Review Panel. 5-8 weeks old C57/Bl6 
males were used for the study. 

 

Reagents 

All odours were obtained at highest purity available from Sigma-Aldrich, St. Louis MO, USA. 
Unless otherwise specified, odours were diluted 1:5 with mineral oil in 15 ml glass vials 
(27160-U, Sigma-Aldrich, St. Louis MO, USA). 

  

High-speed odour delivery device 

A high speed odour delivery device was built as described previously (Erskine et al., 2019). 
Briefly, we connected 4 VHS valves (INKX0514750A, The Lee Company, Westbrook CT, 
USA) to odour containing 15ml glass vials (27160-U, Sigma-Aldrich, St. Louis MO, USA) 
through individual output filters (INMX0350000A, The Lee Company, Westbrook CT, 
USA). The vials were connected to a clean air supply (1L/min) through individual input flow 
controllers (AS1211F-M5-04, SMC, Tokyo, Japan). Each valve was controlled through a data 
acquisition module (National Instruments) controlled by a custom written script using Python 
software (PyPulse, PulseBoy;  github.com/warnerwarner).     

 

In vivo electrophysiology 

 

Surgical and experimental procedures 

Prior to surgery all utilised surfaces and apparatus were sterilised with 1% trigene. 5-8 weeks 
old C57BL/6Jax mice were anaesthetised using a mixture of ketamine/xylazine (100mg/kg 
and 10mg/kg respectively) by injection inter-peritoneally (IP). Depth of anaesthesia was 
monitored throughout the procedure by testing the toe-pinch reflex. The fur over the skull and 
at the base of the neck was shaved away and the skin cleaned with 1% chlorhexidine scrub. 
Mice were then placed on a thermoregulator (DC Temperature Controller, FHC, ME USA) 
heat pad which was controlled using a feedback from a thermometer inserted rectally. While 
on the heat pad, the head of the animal was held in place with a set of ear bars. The scalp was 
incised and pulled away from the skull with 2 arterial clamps on each side of the incision. A 
custom head-fixation implant was attached to the base of the skull with medical super glue 
(Vetbond, 3M, Maplewood MN, USA) such that its most anterior point rested approximately 
0.5 mm posterior to the bregma line. Dental cement (Paladur, Heraeus Kulzer GmbH, Hanau, 
Germany; Simplex Rapid Liquid, Associated Dental Products Ltd., Swindon, UK) was then 
applied around the edges of the implant to ensure firm adhesion to the skull. A craniotomy 
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over the right olfactory bulb (approximately ~2mm diameter) was made with a dental drill 
(Success 40, Osada, Tokyo, Japan) and then immersed in ACSF (NaCl (125 mM), KCl (5 
mM), HEPES (10 mM), pH adjusted to 7.4 with NaOH, MgSO4.7H2O (2 mM), CaCl2.2H2O 
(2 mM), glucose (10 mM)) before removing the skull with forceps. The dura was then peeled 
off using a bent 30G needle tip. 

Following surgery, mice were transferred to a custom head-fixation apparatus with a heat-pad 
for recording. The animals were maintained at 37±0.5 ˚C.  

 

Unit Recording 

A Neuronexus poly3 probe was positioned above the OB craniotomy. An Ag/Ag+Cl- 
reference coil was immersed in a well that was constructed of dental cement around the 
craniotomy. The reference wire was connected to both the ground and the reference of the 
amplifier board (RHD2132, Intan, CA, USA), which was connected (Omnetics, MN, USA) to 
a head-stage adapter (A32-OM32, Neuronexus, MI, USA). The probe, after zeroed at the OB 
surface, was advanced vertically into the dorsal OB at <4µm/s. This was continued until the 
deepest channels showed decrease in their recorded spikes indicating the end of the dorsal 
mitral cell layer. This was largely in the range of 400-600 µm from the brain surface. The 
signal from the probe was fed into a OpenEphys acquisition board (https://open-
ephys.org/acquisition-system/eux9baf6a5s8tid06hk1mw5aafjdz1)  and streamed through the 
accompanying GUI software (https://open-ephys.org/gui). The data was acquired at 30KHz 
and displayed both in a raw format, and a band pass filtered (300 - 6KHz) format. The band 
passed format was used primarily to visualise spikes across channels during the recording.  

 

Odour stimulation (unit recordings) 

Four odours (ethyl butyrate, 2-hexanone, isopentyl acetate, and eucalyptol) were diluted in 
mineral oil, as mentioned previous, in a ratio of 1:5.  

Temporal structure of the odour stimulation was created using the VHS valves while blank 
valves helped maintain air flow to be constant through-out the stimulation period (Fig. 1B). 
The start of a stimulation was always triggered to the start of inhalation which was 
continuously monitored online using a flow sensor (AWM2000, Honeywell, NC, USA). A 
minimum of 8s inter-trial interval was given for all the experiments. 

The onset pulse was passed to the OpenEphys acquisition board so that the trial trigger was 
recorded simultaneously with the neural data. 800 total trials were presented during the 
experiment, consisting of 32 repeats of 5 different frequencies for 4 odours and 1 blank. Each 
trial lasted 2 seconds and was spaced by a minimum of 8 seconds between the offset of one 
trial and the onset of the following trial. 

 

Whole cell recording 

Borosilicate pipettes (2x1.5 mm) were pulled and filled with (in mM) KMeSO3 (130), HEPES 
(10), KCl (7), ATP-Na2 (2), ATP-Mg (2), GTP-Nax (0.5), EGTA (0.05) (pH = 7.3, osmolarity 
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~290 mOsm/kg). The OB surface was submerged with ACSF containing (in mM) NaCl 
(135), KCl (5.4), HEPES (5), MgCl2 (1), CaCl2 (1.8), (pH = 7.4 and ~300 mOsm/kg. Signals 
were amplified and low-pass filtered at 10 kHz using an Axoclamp 2B amplifier (Molecular 
Devices, USA) and digitized at 40 kHz using a Micro 1401 analogue to digital converter 
(Cambridge Electronic Design, UK).  

After zeroing the pipette tip position at the OB surface, we advanced the tip to reach a depth 
of ~ 200 µm from the surface. Next, we stepped at 2µm/s to hunt for a cell in a similar 
manner as described before (Margrie et al., 2002; Margrie & Schaefer, 2003). Upon getting a 
successful hit, we released the positive pressure to achieve a gigaseal. The next gentle suction 
helped achieve the whole-cell configuration. We swiftly shifted to current-clamp mode to 
start a recording. Series resistance was compensated and monitored continuously during 
recording. Neurons showing series resistance >25 MΩ were discarded from further analysis. 

The vertical depths of recorded neurons reported (e.g. Figure S4) are vertical distances from 
the brain surface. Respiration was recorded using a mass flow sensor (A3100, Honeywell, 
NC, USA) and digitized at 10KHz. 

The GABAA clamping experiments were performed as described before (Fukunaga et al., 
2012). Briefly, muscimol and gabazine (Tocris Biosciences, Bristol, UK) were dissolved in 
ACSF to achieve a final concentration of 2mM (muscimol) and 0.4mM (gabazine). In a 
subset of experiments, this solution was superfused after ~10 minutes of recording under 
control conditions. 

 

Odour stimulation (whole-cell recording) 

Odours were presented as mixtures of monomolecular odorants mixed in 1:1 ratio which was 
eventually diluted in mineral oil in a 3:7 ratio. Odour A (ethyl butyrate + 2-hexanone) and B 
(isopentyl acetate + eucalyptol) were used for in vivo patch clamp experiments. Odour 
presentations were triggered on the onset of inhalation of the mouse as described for the unit 
recordings. The temporal structure of the odour pulses and the triggering of the blank valves 
were done as for the unit recording experiments described above. A minimum of 8s inter-trial 
interval was given for all the experiments. 

 

Analysis 

 

Fidelity 

Fidelity was defined here as the value of peak-to-trough of each square pulse normalised to 
the peak-to-baseline value. A fidelity of 1 therefore indicates that odour fully returns to 
baseline value between subsequent pulses, while a fidelity of ~ 0 for the flow indicates an 
almost continuous square pulse of air flow devoid of temporal structure. 

 

Spike sorting 
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Kilosort2 (https://github.com/MouseLand/Kilosort2) was used to spikesort detected events 
into ‘clusters’. Clusters were then manually curated using phy2 (https://github.com/cortex-
lab/phy) and assigned a ‘good’, ‘mua’, or ‘noise’ label depending on if they were considered 
to be made up of neural spikes (good and multi-unit activity), or false detections (noise). The 
clusters made up of spikes were further divided into good or mua dependent on if they are 
thought to be spikes from a well isolated single unit or not. A ‘good’ unit is characterised by 
a well-defined rest period in its auto-correlogram, a characteristic spike waveform, and a 
stable firing rate and spike amplitude (however these can both vary throughout the recording) 
(Fig. 1E-F). Only good clusters were used for further analysis. 

 

Linear Classifier 

97 clusters across 6 animals were grouped together and used for classification. Windows used 
to bin spikes varied both in size and in start relative to odour onset. Window starts span 0s to 
3.99s from odour onset. The window sizes ranged from 10ms to 4s. All classifiers did not 
consider spikes from greater than 4s from odour onset. Therefore, a classifier with a 500ms 
window range could start between 0s and 3.5s, and a window range of 1s would use starts up 
to 3s from odour onset. This full range of starts and widths were used to determine both the 
time after odour onset that frequencies could be distinguished, and the time window required. 

 

The data sets were always of dimensions 160 x 97 where 160 is the number of trials and 97 
the number of clusters. The range of unit responses were scaled to have a mean response of 0 
and a SD of 1. The data was split into a training (80%) and a test set (20%). The training set 
was used to train a linear Support Vector Machine (SVM) with a low regularisation 
parameter. The low regularisation parameter translates to less restrictions in weightings 
assigned to each cluster by the classifier. Once the classifiers had been trained, they were 
tested with the remaining 20% of trials. The trials to be saved for testing were picked at 
random. This training and testing were repeated 1000 times with a random selection of 
testing trials used each time. Classifiers were then trained on the same data but with their 
labels shuffled.  To test how accuracy varied with number of clusters, random subsets of 
clusters were selected and used to train and test the classifiers. 

 

Classifiers were then trained and tested on all 1v1 combinations of trials from the 
experimental data set. In this case a classifier was trained on all but two trials, one from each 
of the two trial types present in the training data. In this set chance was 50%. Finally, a series 
of classifiers were trained on all frequencies across all odours, with a single trial from every 
type being withheld for the test set. As there were 20 total trial types (5 frequencies with 4 
odours) chance was 4%. 

 

Change in membrane potential 
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The raw recordings were spike-clipped using custom script in spike2 (Cambridge Electronic 
Design, UK). They are then stored into MATLAB (Mathworks, USA) readable files for 
further analysis. 

All the recordings used have been baseline subtracted to rule out the effect of sniff related 
background membrane potential oscillations. This was done as described previously 
(Abraham et al., 2010). Briefly, stretches of baseline period were collated after matching the 
sniff-phase to that during the actual odour presentation. The membrane potential associated 
with these baseline periods was averaged to make a generic baseline trace for every cell. This 
was then subtracted from all the recorded traces during the odour-stimulation period to create 
a baseline subtracted trace. 

For calculating the average change in membrane potential for 2 and 20Hz; we averaged the 
membrane potential in a 2s period pre odour onset (Vmbase). Next, we averaged the 
membrane potential in the first 500ms (~ 2 sniffs) post odour onset (Vmodour500) and 
subtracted from the baseline average voltage. In short; 

𝐴𝐴𝐴𝐴𝐴𝐴. 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝐴𝐴𝑎𝑎 𝑖𝑖𝑎𝑎 𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝𝑖𝑖𝑎𝑎𝑝𝑝 = 𝑉𝑉𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜500 −  𝑉𝑉𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

 

Change in spike frequency 

Action potentials are counted in the raw data and converted into spike frequency in bins of 
50ms. Bar plot of the spike frequency yields PSTH plots in Fig. 3E. Further, we calculate the 
average spike frequency in 2s before onset (FRbase) and 500ms post onset (FRodour500) and 
eventually subtracting from each other to calculate the net change in spike frequency. In 
short; 

𝐴𝐴𝐴𝐴𝐴𝐴. 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝐴𝐴𝑎𝑎 𝑖𝑖𝑎𝑎 𝑠𝑠𝑝𝑝𝑖𝑖𝑠𝑠𝑎𝑎 𝑓𝑓𝑚𝑚𝑎𝑎𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑐𝑐𝑓𝑓 = 𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜500 −  𝐹𝐹𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

 

Frequency-coupling coefficient estimation 

Baseline subtracted membrane potential traces for every odour and frequency were collected 
(Fig. 4A middle). PID traces recorded for the 2Hz and 20Hz odour stimulation was also 
averaged over 10 different trials (Fig. 4A top). Next, we cross-correlated the PID trace and all 
the individual baseline subtracted traces. This was repeated for all the trials for a given odour 
and frequency. We selected the peak correlation (CCodour2Hz or CCodour20Hz) for all the 
trials. Similarly, we repeated the same exercise for the control blank stimulus which was also 
delivered at 2 and 20Hz and obtained a CCblank2Hz or CCblank20Hz. Next, we normalized the 
CCodour with the CCblank for the respective frequencies and averaged them over all the 
trials to achieve a frequency-coupling coefficient (CpC) for a given cell-odour pair. In short 
for a given cell-odour pair: 

C𝑝𝑝C = 𝐶𝐶𝐶𝐶𝑝𝑝𝐶𝐶𝑝𝑝𝑓𝑓𝑚𝑚2𝐻𝐻𝐻𝐻

𝐶𝐶𝐶𝐶𝑚𝑚𝑝𝑝𝑎𝑎𝑎𝑎𝑠𝑠2𝐻𝐻𝐻𝐻
  and C𝑝𝑝C = 𝐶𝐶𝐶𝐶𝑝𝑝𝐶𝐶𝑝𝑝𝑓𝑓𝑚𝑚20𝐻𝐻𝐻𝐻

𝐶𝐶𝐶𝐶𝑚𝑚𝑝𝑝𝑎𝑎𝑎𝑎𝑠𝑠20𝐻𝐻𝐻𝐻
 

 

Shuffled control 
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For every recorded trial a set of 100 shuffled controls were created by shuffling the phase of 
the signal while maintaining the power similar to that of the original trace. We used custom 
written script in MATLAB for this process. A Fast-Fourier transform was done on the 
baseline-subtracted trace followed by separating the amplitude and phase of the signals. Next, 
the 0 Hz components were isolated while the other components were used for shuffling. Next, 
the phase and amplitude pairs for one half of the signal was shuffled in a pseudo random 
method using the ‘randperm’ function in MATLAB (Mathworks, USA). Next, conjugates of 
the thus shuffled combinations were created and concatenated with the previous shuffled half.  
This created a set of random combination of amplitude and phase pair of the same number of 
sampling points. Next, the signal was recreated using thus obtained shuffled amplitude and 
phase pairs and the 0Hz components. This was done 100 times for every cell-odour pair and 
frequency. The CpC was then estimated from each of these individual shuffled control in the 
same manner as described above.  
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