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Abstract

Absence epilepsy is a neurological condition characterized by abnormally synchronous electrical
activity within two mutually connected brain regions, the thalamus and cortex, that results in seizures
and affects more than 6.5 million people. Epilepsy is commonly studied through the use of the
electroencephalogram (EEG), a device that monitors brain waves over time. In this study, we
introduced machine learning models to predict epileptic seizures in two ways, one to train logistic
regression models to provide an accurate decision boundary to predict based off frequency features,
and second to train convolutional neural networks to predict based off spectral power images from
EEG. This pipeline employed a two model approach, using logistic regression and convolutional
neural networks to predict seizures. The evaluation, performed on data from 9 mice, achieved
prediction accuracies of 98%. The proposed methodology introduces a novel aspect of looking
at predicting absence seizures, which are known to be short events, in addition to the comparison
between a time-dependent and time-agnostic seizure prediction classifier. The overall goal of these
experiments were to build a model that can accurately predict whether or not a seizure will occur.

1 Introduction and Objectives

Epilepsy is the 4th most common neurological condition affecting more than 65 million people.
Absence epilepsy, a particular form of epilepsy, is a neurological disorder affecting children between
the ages of 4 and 12, and accounts for approximately 10% of all patients with epilepsy. Although
absence seizures have traditionally been described as stochastic events [1], recent research has
discovered that the cortex and thalamus show notable changes in neural activity prior to seizure
onset [2], which may predict seizure severity [3]. These pre-seizure changes demonstrate a dynamic
shift in brain state associated with an evolution into a seizure, and are clinically useful as patients
may be warned of an impending seizure prior to its initiation [4]. Currently, there is no model that
can accurately predict epileptic seizures with sufficient warning time to administer anti-convulsant
medications or relocate the patient to a safe location [5]. While this work demonstrates a link between
pre-seizure brain state and the subsequent seizure, the relationship between the likelihood of seizures
at any moment and the state of the brain remains unknown in general. Indeed, seizures tend to cluster
in groups separated by long periods of normal brain activity as shown by preliminary work in the
Huguenard Lab [3]. This suggest that, in addition to the pre-seizure period of each seizure, there
is a slower shift in network state (brain state) that influences seizure probability [6]. It is crucial to
understand this process in more detail as the potential power of predicting future seizure likelihood
and severity is clinically invaluable and may vastly improve the well-being of epilepsy patients [7].

Current literature has focused on a binary classification approach between pre-seizure and seizure
signals of an electroencephalogram (EEG), which is an electrophysiological monitoring method
consisting of electrodes used to record electrical activity of the brain [8]. The standard approach is
gathering data from EEG segments and splitting the data into two categories (seizure and non-seizure).
We can then train machine learning classifiers to predict seizures by distinguishing between these
pre-seizure, termed preictal, and non-seizure, termed interictal, segments. One of the biggest problem
that patients face with spontaneously occurring seizures is being unsure when their seizures will
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occur [5]. Thus, having a better understanding of how early we can tell these predictions could be
incredibly helpful for both patients and physicians.

In this paper, we introduce a new absence seizure prediction model built on the finding that there exists
a longer and slower shift in network activity that influences probability of seizures. We implemented
both a logistic regression classifier and convolutional neural networks to achieve high performance
with predicting seizures. In addition, we explore the extent of the prediction window by varying the
amount of time before seizure onset. By applying these existing machine learning models to a new
form of epilepsy, we can attempt to better understand the mechanisms of absence seizures.

Figure 1: Pipeline detailing approach to seizure prediction using logistic regression. A. Cartoon
experimental setup detailing Scn8a(+/-) mouse model and recording to signal. B. Logistic regression
and two-layer convolutional network pipeline with two inputs (1 averaged thalamic and 1 averaged
cortical channel from EEG) C. Final seizure prediction system showing correct predictions in green,
and incorrect predictions in red. Seizure start times marked by black dotted line.

2 Related Work

Previous work with general seizure prediction has focused on a binary prediction approach. Petrosian
et al.[9] was one of the first studies that focused on investigating the existence of a preictal stage
before the seizure through the use of wavelet transformations and found that they were able to detect
the presence of preictal stages before the occurrence of the seizure. These findings opened up the
way for future predictive methods and studies based on classification with the preictal period. A
study done by Li et al.[10] in 2013 showed that seizures could be predicted up to 10 seconds prior to
seizure onset with sensitivity of 0.758, despite previous studies basing prediction off of much longer
timescales. This allowed future studies to be based off of shorter time scales, which helped simplify
the prediction problem and amount of data.

Two additional studies in 2017 used support vector machines to classify EEG seizure signals [11]
[12]. One of the studies, Sharif et al. from 2017, was able to achieve sensitivities between 91.8-96.6%
[11]. The other study, Direito et al., was the first study to implement a realistic seizure prediction
approach by using multi-channel high-dimensional datasets as opposed to the typical dimensionality
reduction techniques used in previous papers [12]. By using multiclass support vectors machines
on 1206 seizures, Direito et al. was able to achieve sensitivity of 38.47%. While this number was
rather low, it showed that seizure prediction could be applied to realistic clinical datasets that have
much more data than previous studies. This gave our group the confidence to try and use a large,
and realistic EEG dataset with 1913 seizures. Finally, Tsiouris et al. was one of the first to use long
short-term memory (LSTM) networks for EEG signal prediction and was able to achieve sensitivity
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over 99% [13]. We build on these results and attempt to focus on achieving good performance with
our models, while also testing how varied the preictal window can be.

This paper specifically focuses on absence seizures. Absence seizures have traditionally been thought
of as completely unpredictable events with no defined correlation between different network states
[1]. Behaviorally, absence seizures are characterized by periods of quiet wakefulness, when delta
waves, brain wave oscillations recorded in an EEG between 1-4 Hz, are most prevalent in the brain
[14]. Absence epilepsy is characterized by abnormally synchronous electrical activity within two
mutually connected brain regions, the thalamus and cortex [15]. This absence seizure dataset our
group has allowed us to explore novel approaches for a difficult type of seizure prediction.

3 Methods

3.1 Data Collection

Data recording: The data analyzes comes from extra-cellular recordings of individual cortical and
thalamic neurons from rodents with genetic absence epilepsy. Local field potential (LFP), a signal
analogous to the elecrocorticogram (EEG), was obtained from the Scn8a(+/-) murine model of absence
epilepsy via a multi-electrode silicon probe implanted within the somatosensory cortex. Electrodes
contacts were 10x10 um in size and gold-plated to achieve an impedance of 250 kOhms. Raw LFP
was bandpass filtered between 1-7000 H, sampled at 30 kHz, and subsequently downsampled to 500
Hz for offline analysis. Recordings were performed between the hours of 8 AM and 4 PM in a quiet,
isolated room with dim ambient light using an Intan RHD-128 headstage connected to an OpenEphys
acquisition board (https://open-ephys.org/acq-board). For more details, see [CITE SOROKIN et al.
2020]. (http://intantech.com/files/IntanRHD2000128channelheadstage.pdf)//

3.2 Models

3.2.1 Logistic Regression

Logistic regression is a common statistical modeling tool used for binary classification tasks. The
probability of dichotomous outcome event given by P1 (seizure or non-seizure). In our project, the
two classes were defined as epileptic EEG signals and non-epileptic EEG signals (thus referred to as
preictal and interictal signals). This probability P1 is related to a set of explanatory variables that
follows the relation shown below.

logit(P1) = ln(
P1

1− P1
) = β0 + β1x1 + β2x2 + ...+ βnxn

In this equation, we can note that βn represents the coefficient associated with the explanatory variable
xn. Class membership probability is computed via the following relation:

P (x) =
1

1 + e−θT x

In the above equation, the model will learn the vector parameter, θ, and output a value that represents
the model confidence in classification grouping. The probability of the dichotomous outcome event
is based on a set of explanatory variables and yields a value that is restricted to a binary, two-choice
decision such as seizure/non-seizure, mathematically represented as a 1 vs 0 case scenario. Maximum
liklihood estimation (MLE) is used to estimate these coefficients βn, and is commonly used in
logistic regression. The MLE method is normally chosen since it maximizes the log likelihood which
reflects the probability of a successful prediction of the dependent variables. MLE is also an iterative
algorithm, which starts with an arbitrary estimate of the coefficients (βn), and minimized using
Newton’s method until convergence criterion is reached. We choose to use logistic regression rather
than ordinary linear regression (OLR) because logistic regression does not assume an underlying
linear relationship between the explanatory variables and response variable. In addition, OLR requires
Gaussian distributed independent variables.

3.2.2 Convolutional Neural Networks

Artificial Neural Networks (ANNs) are a common machine learning method that employ artificial
neurons or nodes to learn salient trends within the data in order to inform a prediction. ANNs vary in
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terms of their structure based on the type of problem that they are being implemented for. A relevant
category of ANNs are convolutional neural networks (CNNs) that are particularly useful for extract
distortion-invariant patterns. Convolutional networks are mostly effective with image recognition,
and commonly used to predict seizures by collapsing the raw EEG into a matrix representation. These
matrix representations maintain only the relevant information, such as power or frequency extracted
from the EEG, and are used in many binary classification seizure prediction methodologies. We use
an EEG window length of 3 seconds. In this paper, we adopted a shallow 2-layer CNN model to
classify between the two categories of epileptic states. There are 2 blocks that have a convolutional
unit. We chose to use a rectified linear activation function (ReLU) that will help overcome the
vanishing gradient, as ReLU will not saturate.

3.3 Feature Selection

Multichannel epileptic EEG signals are used in this methodology, with 10 chosen cortical and 10
chosen thalamic channels. Feature extraction helps reduce dimenionsality of large datasets, and
extract useful information for predictions. Each seizure clip has been segmented into a 12 second
window, and the seizure start is aligned at the 8 second mark.

The seizure start was detected by spike sorting software written by author Jordan Sorokin. A
preictal length of 3 seconds was chosen for this analysis by checking logistic regression prediction
performance averaging different sized preictal windows. These time-dependent logistic regression
models were independently trained on their time-specific data. For example, the offset −3 classifier
was trained on preictal segments of 3 seconds that ranged from -6 to -3 seconds before seizure onset.
The motivation of training time-dependent LR classifiers was to identify valid thresholds for the
preictal and interictal cutoffs. Results of these time-dependent classifiers are shown below.

Figure 2: Performance of 6 animals (668, 573, 660, 656, 2715, 1934) and average of time-dependent
logistic regression seizure prediction model at 7 different seizure offset times (-6 to 0 seconds before
seizure start). Each individual animal trial is shown with a colorful dotted line, and the 6 animal
average is shown with a solid black line. A. Graph detailing sensitivity TP

TP+FN . B. Graph detailing
specificity TN

TN+FP . C. Graph detailing accuracy TP+TN
TP+FN+TN+FP
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By segmenting seizures into these 12 second blocks, it allows for a more standardized training
approach that can be widely applied to any animal with marked seizures. It also allows for easier
observation of trends both overall in the dataset, and in particular animals or subsets of recordings.

EEG feature extraction varies between prediction models, and can range from univariate to multi-
variate features. Univariate features from EEG include any features regarding one variable, such as
information from a single recording site. Multivariate features focus on information from multiple
recording sites. For this study, features were extracted from 10 averaged thalamic channels, and
10 averaged cortical channels taken from a 64 channel EEG. Absence epilepsy has been shown to
heavily involved the thalamocortical circuit, so only thalamic and cortical channels were chosen for
feature extraction [1].

As input to the logistic regression binary classifier and CNN, different features were fed as inputs.
For variations of the logistic regression classifier, the inputs consisted of the fast Fourier transform
(FFT) of the EEG signal applied to decompose the wave from the time domain into its corresponding
frequency signals.

For the convolutional neural network approach, we extracted features of the multichannel EEG by
characterizing the energy variation of signals. We de-noise these signals through wavelet transform,
and then analyze the power spectrum density (PSD) and use these two-dimensional images as input
to our CNN model. These power spectrum density energy diagrams are representations of relative
energy intensity of different frequency bands. The PSD analysis is implemented on 3 second frames
of the EEG signals, with non-trivial differences noted between the preictal and interictal states.

4 Results

4.1 Logistic Regression Results

The goal of the logistic regression model approach was a straightforward binary classification using
logistic regression, a simplistic model that is not computationally time-intensive. Using a preictal
window of 3 seconds, and an interictal window of 5 seconds, the results of the logistic regression
binary seizure classification task can be given below. We first show the results of the time-agnostic
classifier, which means that the single model was training on aggregated data.In the first table,
the 9 animals were kept separate in both training and testing of the model, while in the second,
the 9 animals’ 1500 total seizures were shuffled to provide insight into the generalizability of this
performance task. A train:test split of 80:20 was chosen for this task on account of the binary classes
being balanced and there not being a shortage of data available.

Logistic Regression Unique Animal Model Results
Animal # of Seizures TP FN TN FP Sensitivity(%) Specificity(%) Accuracy(%)

668 151 150 1 143 8 99.34 94.70 97.02
573 176 176 0 182 18 100 93.75 96.88
660 246 243 3 231 15 98.78. 93.90 96.34
656 175 170 5 168 7 97.14 96 96.57

2715 330 330 0 297 33 100 90 95
1934 202 201 1 195 7 99.50 96.53 98.02
1931 87 87 0 87 0 100 100 100
3906 77 76 1 77 0 98.70 100 99.35
3908 57 57 0 54 3 100 94.74 97.37

Logistic Regression Combined Animal Model Results
Animal # of Seizures TP FN TN FP Sensitivity(%) Specificity(%) Accuracy(%)
Average 1500 1492 8 1417 83 99.47 94.47 96.97

We can see that in the table above, each animal-specific model had higher sensitivity than specificity,
with the exception of animal 3906. This shows that in each animal-specific case, the model was
able to correctly classify more seizures than non-seizure activity. For the combined animal model,
this also holds true, with a sensitivity of 99.47% compared to a specificity of 94.47%. This binary
prediction task performed well at classifying all forms of seizures and non-seizures overall having
a classification accuracy of 96.97% in the generalized model, showing that a binary prediction is
feasible with this pipeline.

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 29, 2020. ; https://doi.org/10.1101/2020.11.29.402461doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.29.402461


Figure 3: Graph detailing 0.1 second step accuracy for time-agnostic LR models. Prediction
accuracies given by the relation TP+TN

TP+FN+TN+FP were calculated for each 0.1 step following
(6, 5.9, 5.8 ... 0.1, 0) seconds before seizure start. Individual performance of 6 animals (668, 573,
660, 656, 2715, 1934) shown in colorful dotted lines, while the 6 animal average is shown with a
solid black line.

Additionally, we can see a closer look at the time-agnostic model below with the 0.1s Step Accuracy
graph. The graph shows the prediction accuracy of 6 different animals (animals selected based on
having> 100 seizures), for 0.1 second steps with a single time-agnostic best-performing LR classifier.

Convolutional Neural Network Results
Seconds offset # of Seizures TP FN TN FP Sensitivity(%) Specificity(%) Accuracy(%)

0 1500 1497 3 1459 41 99.8 97.27 98.53
1 1500 1495 5 1460 40 99.67 97.33 98.5
2 1500 1478 22 1444 56 98.53 96.26 96.5
3 1500 1421 79 1392 108 94.73 92.8 93.77
4 1500 1388 112 1303 197 92.53 86.87 89.7
5 1500 956 544 630 870 63.73 42 52.87
6 1500 562 938 498 1002 34.47 33.2 35.33

For the convolutional neural network approach we show a generalized time-agnostic model that has
been offset by various increments. We trained the CNN by sliding it along in 1 second increments
as shown in the chart, and then 0.1 second increments as shown in the graph. We can see that
the convolutional neural network approach reports similarly high accuracies and metrics as the
logistic regression model. Additionally, the convolutional neural network approach was an aggregated
approach and done on all the animals, giving an idea about how this model would generalize past the
animal-specific models like LR. Below the chart we can see a similar 0.1 second step graph showing
the performance of the time-agnostic classifier on 0.1 step prediction windows for the CNN. The
graph shows the result of the aggregated total 9 animal data, containing 1500 total seizures.

5 Discussion

A number of metrics are used to evaluate seizure prediction performance such as the true positive
rate (TP) which is defined by the number of EEG segments that are correctly classified as preictal
segments, true negative rate (TN) which is defined by the number of EEG segments that are correctly
classified as interictal, false positive rate (FP) which is defined as the number of EEG segments that
are incorrectly classified as preictal, and the false negative rate (RN) which is defined as the number
of segments incorrectly classified as interictal. When evaluating performance of models, we consider
these quantitative metrics, as well as overall generalizability of model. Observe the table below for a
comparison of our models with other seizure prediction results from the field.
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Figure 4: Graph detailing 0.1 second step accuracy for convolutional neural network model. Prediction
accuracies given by the relation TP+TN

TP+FN+TN+FP were calculated for each 0.1 step following (6, 5.9,
5.8 ... 0.1, 0) seconds before seizure start. Values of the predictions are marked with a blue dot on the
graph, while the overall trend is connected with a black line.

Study Overview
Study Dataset Classifier Sensitivity Specificity Accuracy
Li[7], 2007 Absence epilepsy

(GAERS) dataset
custom permutation
entropy algorithm

54 98.6 -

Maksimenko[4],
2017

Absence epilepsy
(WAG/Rij) dataset

custom SWD algo-
rithm

- - 88

Chu[8], 2017 CHB-MIT dataset Fourier Transform co-
efficients and PSD

77.78 0.608 -

Truong[16],
2018

Freiburg, CHB-MIT,
Kaggle

CNN 75-81.4 94-79 -

Rajaguru[17],
2017

own human EEG
dataset

Logistic Regression 96.04 95.71 95.88

Daoud[18],
2019

own dataset semi-supervised DL - 99.7 99.6

Mirowski[19],
2009

Freiburg Seizure
Dataset

CNN 71 100 -

Zhang[20],
2019

own dataset Logistic Regression
and CNN

- 92.2 -

Tsiouris[13],
2018

CHB-MIT dataset LSTM 100/99.28 99.28 -

Tsiouris[21],
2017

CHB-MIT dataset SVM 85.75 85.75 -

Subasi[22],
2004

own dataset Logistic Regression 89.2 90.3 -

Iasemidis[23],
2003

own iEEG dataset custom STLmax algo-
rithm

82.6 83 -

This study,
2020

Absence seizure
dataset (Scn8a)

Logistic Regression 99.47 94.47 96.97

This study,
2020

Absence seizure
dataset (Scn8a)

CNN 99.8 97.27 98.53

Both the Logistic Regression model and the CNN model were able to achieve remarkably good
performance. For the Logistic Regression model with short-term fourier transform (FT) features, we
can see that the predictive algorithm was able to differentiate between seizures and non-seizures with
a 97% accuracy and 99% sensitivity. Contextually, this means that for every 100 events measured,
the model was able to correctly identify 97 of them, and out of every 100 seizure events measured,
the model was able to correctly identify 99 of them. The CNN model was able to achieve accuracies
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around 98% with the PSD approach. Compared to traditional seizure prediction literature, we can
see that the logistic regression model presented in this paper performed better than most other LR
studies, and comparable to more advanced classification models. Subasi et.al.[22] achieved specificity
of 90.3% and sensitivity of 89.2% with a similar LR approach, while Mirowski et.al.[19] was able
to achieve 100% sensitivity in only 11 out of the 21 patients studied. Compared to other, more
complex machine learning classifiers, the LR approach gave comparable results, and the CNN result
was able to easily match the current results. A convolutional neural network (CNN) was used by
Zhang et.al.[20] to predict seizures using common spatial patterns of EEGs, and achieved a sensitivity
of 92.2%. Daoud et.al.[18] employed a semi-supervised approach to raw EEG with a number of
different deep learning models such as multilayer perceptron, CNNs and bi-directional LSTMs, as
well as fused versions of these models. They achieved high values, namely with their fused bi-LSTM
models, around 99.7% for sensitivity and 99.6% for accuracy. In addition, Tsiouris et.al.[13] was
also able to achieve remarkably high numbers using an LSTM approach for binary prediction, getting
sensitivities around 99-100%. One drawback to using such a powerful model is run-time drastically
increases for more computationally intensive models such as LSTMs. This same group employed
the less computationally intensive models for an approach with Support Vector Machines (SVMs),
and Decision Trees and achieved sensitivity measures at 86.75% for the SVM and 82-83% for the
Decision Trees [21]. Our model in comparison utilizing a more basic logistic regression classifier
and can achieve sensitivity measures ranging from 97-100%. We can see that the high sensitivity rate
indicates that the model is better at predicting seizure-like events, which when translated to a real-life
implementation would make for a more effective device.

Additionally, the comparison of the time-dependent LR models with the time-agnostic LR models
showed that while specialized training can result in higher prediction accuracies for longer offsets, it
is not necessary for a strong prediction. Figure 3 shows that a time-agnostic classifier can achieve
high prediction (> 0.9) even when training is highly generalized. While the overall results might
give slightly lower metrics than a time-dependent, specialized model, the time-agnostic model is
easier to train and implement, and gives comparable results. If this seizure prediction system were to
be applied to a closed-loop system with real-time EEG data, then a single time-agnostic classifier
would be highly beneficial for ease of training and implementation. Additionally, our inclusion of
the convolutional neural network model showed strong performance from the [−3.2→ −2] second
interval compared to the time-agnostic best logistic regression model. The CNN model was able to
achieve 0.9 accuracy, while the LR model ranged from 0.6− 0.88 This demonstrates that the CNN
model was able to use latent features in this period of time to outperform the LR model, which could
indicate that different or fused prediction models would perform the best for clinical implementation.

6 Conclusion

As new machine learning methods are developed, the future of seizure prediction will continue
to evolve and change. In this paper we were able to show a two-model approach to an absence
seizure prediction pipeline using logistic regression and convolutional neural networks. The logistic
regression seizure prediction model achieved accuracies of 97%, and sensitivities of 99%, while the
CNN model achieved accuracies of 98% and sensitivities of 99%. We were also able to show that
seizure prediction performance was consistent for a certain threshold of a sliding preictal window.
The comparison between a time-dependent classifier and a time-agnostic classifier had highly similar
evaluation metrics, with a time-dependent being slightly more accurate. However, while the time-
dependent was performed slightly better, the time-agnostic still performed well with accuracies 90%
for 3-6 seconds before seizure onset. This demonstrated that a time-agnostic model is viable for future
implementation in a real-time, closed-loop system. The proposed methodology could be useful for
informing preictal window selection for future prediction devices that utilize EEG. Next steps would
focus on clinical, closed-loop testing of this methodology, in addition to the inclusion of different
feature selections to create a more robust classifier.
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