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Abstract 
Being able to predict future events in learned sequences is a fundamental cognitive ability. 
Successful behavior requires the brain to not only anticipate an upcoming event, but to also 
continue to keep track of the sequence in case of eventual disruptions, (e.g., when a predicted 
event does not occur). However, the precise neural mechanisms supporting such processes 
remain unknown. Here, using multivariate pattern classification based on 
electroencephalography (EEG) activity and time-frequency amplitude, we show that the visual 
system represents upcoming expected stimuli during a sequence-learning task. Stimulus-
evoked neural representations were reinstated prior to expected stimulus onset, and when 
an anticipated stimulus was unexpectedly withheld, suggesting proactive reinstatement of 
sensory templates. Importantly, stimulus representation of the absent stimulus co-occurred 
with an emerging representation of the following stimulus in the sequence, showing that the 
brain actively maintained sequence order even when the sequence was perturbed. Finally, 
selective activity was evident in the alpha-beta band (9-20 Hz) amplitude topographies, 
confirming the role of alpha-beta oscillations in carrying information about the nature of 
sensory expectations. These results show that the brain dynamically implements anticipatory 
mechanisms that reinstate sensory representations, and that allow us to make predictions 
about events further in the future. 
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Introduction 
The brain makes predictions about upcoming events based on regularities that have 

been learned in the past. This ability to extract and learn associations between events allows 
us to anticipate the future, and prepare appropriate actions and decisions accordingly. In the 
real-world however, expectations are often violated. For instance, one may have learned the 
order of traffic signs on a familiar route, but may occasionally find one of these signs missing. 
In these situations, when an event sequence is momentarily and occasionally disrupted, a 
crucial requirement of predictive neural mechanisms is to be able to deal with the missing 
information: the brain must be able to keep track of where it was in the sequence, and 
continue to make predictions about what will happen next. 
 Theoretical accounts (de Lange et al., 2018) predict that prior information about 
upcoming events biases neural representations. Several studies have shown that an expected 
stimulus induces sensory representations in visual and auditory cortex (Demarchi, 2019; 
deLange, 2018; Miyashita, 1988; Kok et al., 2012a, 2017), and evokes anticipatory activity in 
higher-level structures (Schapiro et al., 2012; Davachi and DuBrow, 2015; Reddy et al., 2015). 
Less clear is how the brain copes with disrupted expectations. At the perceptual level, when 
expectations are invalid, the speed of stimulus detection may be delayed (de Lange et al., 
2018). However, it is unknown how the prediction of events further into the future is affected 
when a current expectation is violated (e.g., when an expected event does not happen). 

In the current study, we investigated whether the brain actively and dynamically 
predicts future events in a sequence before they occur. Moreover, we asked what happens 
when the sequence is disrupted and an anticipated event does not occur. Does the brain still 
actively maintain its position in the sequence, and can it predict what comes next? Finally, we 
tested whether the neural signatures of expectation were supported by specific oscillatory 
components.  

Using multivariate, time-resolved electroencephalography (EEG) decoding and a visual 
sequence learning task, we observed anticipatory reinstatement of stimulus-evoked neural 
patterns before each stimulus appeared. Furthermore, these anticipatory neural activity 
patterns for future stimuli were not erased when the sequence was disrupted and the next 
stimulus did not appear. They persisted even after incoming sensory information indicated 
the absence of the expected stimulus, concurrently with the emergence of the neural patterns 
of the next stimulus in the sequence. These results suggest dynamic mechanisms that activate 
neural representations for upcoming stimuli ahead of time, and keep track of sequence 
information even when expectations are violated. These anticipatory mechanisms might allow 
the brain to make predictions about future events, and to cope with missing information 
during sequence maintenance. 
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Results 
Task and behavioral results. Fifteen participants were presented with a sequence of 6 images 
in a fixed order (Reddy et al., 2015) while their brain activity was recorded with EEG. The image 
sequence was repeated 480 times (i.e. 6 images*480 iterations of the sequence = 2880 trials). 
On “stim” trials (45% of trials), each image was presented for 1s. On these trials, the 
participants’ task was to learn the order of images in the sequence. Participants were tested 
on how well they learned the sequence order on a random 10% of trials (“test trials”). On 
these “test” trials the sequence stopped, and participants were presented with two choice 
stimuli and asked to report which of the two was the next one in the sequence. After their 
report, the sequence resumed. On the remaining 45% of trials (“catch trials”, occurring 
randomly), the expected stimulus was omitted and replaced by a gray square for the 1s 
duration of the trial. In order to be able to perform successfully on the subsequent test trials, 
this design required participants to actively maintain sequence information on catch trials. 
Each trial (stim/catch/test) was preceded and followed by an inter-stimulus interval (ISI) of 
0.5s (SI Appendix, Fig. S1A). 

 
Figure 1. Experimental protocol and behavioral results. A. Fifteen participants were asked to 
learn the order of a sequence of six stimuli. B. The experiment consisted of three trial types. 
On stim trials the expected stimulus was shown. On catch trials, the expected stimulus was 
replaced by a gray square. On test trials, participants were presented with two choice stimuli 
and had to report which of the two was the next one in the sequence. Each stimulus occurred 
for 1s and was preceded by an inter-stimulus interval (ISI) of 0.5s. C. Accuracy on the 2-AFC 
task during test trials. Participants achieved more than 80% accuracy on average in the first 
block. White dots represent the average across participants, gray shading around the curve 
represents standard error of the mean and each small dot represents a single participant’s 
accuracy. 
 
  Accuracy on the 2-alternative forced choice (AFC) task performed during test trials was 
above chance in all blocks (one-sample t-test: t(14) > 8, P < 10-6), but increased across the 8 
blocks performed by each participant (one-way, random-effects ANOVA: F(7, 120) = 5.55, P < 
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5.10-5). A post-hoc Tukey’s HSD showed that only the first block was significantly different 
from the others (P < 0.05). Participants therefore rapidly learned the stimulus sequence by 
the end of the first block of the experiment. 
 
Decoding of stimulus identity in the sequence.  
We first asked if EEG activity patterns carried stimulus-specific information for the six stimuli 
in the sequence. A multivariate six-way pattern classifier was trained on the EEG responses to 
discriminate between the six visual stimuli on the “stim” trials, when the stimuli were visually 
presented to the participants, and a temporal generalization approach (King and Dehaene, 
2014) was used to evaluate how stimulus-specific information evolved over the time course 
of the trial. Decoding performance of these “stim-classifiers” was successful and highly above 
chance (peak accuracy: 64.4%/3.25 (mean/s.e.m); P < 10-4; SI Appendix, Fig. S1B) indicating 
that EEG response patterns uniquely represented each of the six stimuli in the sequence. 
Activation patterns, reflecting the discriminative topography used by the classifier to 
distinguish the different classes (see Materials and Methods), revealed a sequence of right-
occipital, occipito-frontal and parietal topographical distributions across the stim trial time 
course. 
 
Selective neural activity for anticipated events. 

Do brain activity patterns also uniquely encode anticipated events in the absence of 
visual input? To address this question, we first examined the ISI periods before the onset of 
each trial. Because the sequence was repetitive and the image order predictable, in each ISI 
period participants could anticipate the next upcoming stimulus of the sequence. There were 
therefore six possible ISI period events, based on which image they preceded. In this analysis 
we asked if these six ISI events could be distinguished from each other based on EEG activity 
patterns. Because the ISI periods were not predictive about whether the subsequent trial 
would be a stim, catch or test trial, all ISI periods were pooled together in this analysis. 

Since no visual stimulus was presented during these ISI periods, significant decoding 
performance observed in the ISI periods would reflect a unique anticipatory preparation for 
the upcoming, expected event. As above, we used temporal generalization to distinguish the 
six ISI events. The different ISI events were discriminable from each other, starting around 
250ms-300ms prior to trial onset (P < 0.0001, Fig. 2A). Decoding performance exhibited a 
ramping selectivity for the upcoming event, in the absence of any visual input, suggesting 
anticipatory preparation for the immediately following event. Activation patterns revealed a 
succession of right-occipital and occipito-frontal topographical distributions across the ISI time 
course (Fig. 2A), similar to those observed at the beginning of stim trials (SI Appendix, Fig. 
S1B). 

We next explored whether selective patterns of neural activity can be induced purely 
as a result of top-down expectation signals, (i.e., in the “catch” trials when stimuli were 
expected, but omitted (Fig. 2B)). As above, we used temporal generalization to distinguish the 
six catch events from each other (i.e., one catch event per stimulus type) across the entire 
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catch trial epoch (from 0ms to 1000ms relative to trial onset). The catch events could be 
discriminated from each other over almost the entire duration of the catch trial window, 
starting from stimulus onset to around 800ms post stimulus onset (P < 0.02, Fig. 2B). Since in 
the catch trials all stimulus information was replaced by a gray square, this successful decoding 
of catch trial activity necessarily reflects a top-down representation of the expected event. 
Activation patterns revealed occipital and mostly parietal topographical distributions across 
the catch trial time course (Fig. 2B). 

 
Figure 2. Classification performance during the ISI periods and the catch trials. A. Temporal 
generalization on ISI periods. A classifier was trained at each time point (vertical axis: training 
time) and tested on all time points (horizontal axis: testing time). The black dashed line 
represents the diagonal of the temporal generalization matrix, i.e. classifiers trained and 
tested on the same time point. Black contours indicate a cluster of significant above-chance 
classification accuracy (P = 0.0001). B. Temporal generalization on catch trials (0 to 1000ms 
with respect to trial onset). Same arrangement as in A. Black contours indicate a cluster of 
significant above-chance classification accuracy (P < 0.02). Topographies on the right side of 
the map represent activation patterns weighted by decoding performance (see Materials and 
Methods) for classifiers trained on catch trials. C. Cross-temporal generalization in which 
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classifiers were trained on data from the ISI period and tested on catch trials. Black contours 
indicate a cluster of significant above-chance classification accuracy (P < 0.002). Topographies 
on the right side of the map represent activation patterns weighted by decoding performance 
(see Materials and Methods) for classifiers trained on ISI periods. 
 
 Anticipatory neural activity patterns elicited during the ISI periods were also informative 
about the subsequent catch trials. A cross-temporal generalization analysis in which classifiers 
were trained on data from only the ISI period and tested on data from the post-trial onset 
period of catch trials revealed that the selective neural patterns found during the ISI period 
generalized to the post-trial onset period (cluster test, P < 0.002), (Fig. 2C). These results 
indicate that predictive patterns of neural activity elicited prior to the onset of an expected 
event persisted during the event itself. 

These results thus indicate that unique neural activity patterns are instantiated in 
anticipation of a predicted event, and importantly, that these patterns are maintained 
throughout the duration of the expected event, even when it ultimately fails to occur. These 
activity patterns thus might be critical markers that allow the brain to keep track of the 
progress of the sequence when the sequence is disrupted. However, do these “markers” only 
signal sequence position, or are they also informative about the identity of the upcoming 
and/or missing stimuli?  
 
Neural activity patterns for anticipated events are informative about stimulus identity. 

To determine whether the brain activity patterns that we observed above for 
anticipated stimuli are merely generic signals marking the progress of the sequence, or 
whether they actually carry information about the identity of one or more upcoming stimuli, 
we performed a cross-temporal generalization analysis. In this analysis, a multivariate “stim-
classifier” was trained on EEG data to predict stimulus identity. This stim-classifier was then 
tested on 1) the ISI periods before trial onset, and 2) the post-trial onset periods of catch trials 
(i.e., in the absence of stimulus input). This approach allowed us to extract neural activity 
patterns that uniquely identify the different stimuli, and use them to test whether these same 
patterns were evoked by purely predictive mechanisms when no stimulus was presented. In 
other words, are stimulus-evoked neural representations reinstated when the same stimuli 
are expected? 

More precisely, the stim-classifier was trained to discriminate between the 6 images, 
at each time point of “stim” trials (150ms after stimulus onset, see Materials and Methods). It 
was then used to decode stimulus identity when stimuli were expected but not shown (i.e., 
during the ISI periods and catch trials). For example, consider a segment of the sequence 
consisting of three stimuli: face-house-phone, and let us label them stimuli N-1, N, and N+1 
respectively (SI Appendix, Fig. S2B). Let us assume that the sequence is currently at stimulus 
N (i.e., the house), but that on this iteration of the sequence, this trial is a catch trial i.e., the 
house was expected, but it actually did not materialize (“catch house trial”). If the stim-
classifier is tested on data recorded during this “catch house” trial and predicts a “house” 
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label, that would indicate that the brain currently encodes the house stimulus (stimulus N), 
purely as a result of an expectation of that stimulus, and that this representation persists even 
though the expectation has been violated (SI Appendix, Fig. S2C). If instead the stim-classifier 
predicts a face label, that would indicate a lingering prediction of the previous stimulus (N-1), 
for example because of left-over activity from the previous trial in the sequence. Similarly, a 
prediction of a phone label on this same “catch house” trial would indicate that the neural 
activity pattern was already representing the future stimulus N+1, even though the sequence 
is currently at stimulus N (SI Appendix, Fig. S2C). Note that these representations are not 
mutually exclusive, but could occur at the same time, as a sort of “superposition” state. 

This cross-generalization approach was applied to the ISI periods and the catch trials. 
The example above describes the procedure for catch trials, but a similar reasoning can also 
be applied to the ISI periods. Note that in the case of ISI periods, a prediction of “current” 
refers to the next upcoming stimulus (stimulus N) after the present ISI period, and a prediction 
of “next” refers to the stimulus that is two stimuli away from the present ISI period (i.e., 
stimulus N+1). The cross-temporal generalization procedure was repeated separately for ISI 
and catch trials, and the proportion of predictions for the previous, current and next stimuli 
was counted. The null hypothesis in these analyses was that no relation existed between 
patterns of stimulus-evoked activity found in stim trials and patterns of activity recorded in 
the ISI periods and catch trials. Conversely, above-chance decoding of the “stim classifier” on 
the ISI and/or catch trials would mean that the ISI and/or catch trials carried sensory-like 
stimulus information even when no sensory input was available, purely as a result of top-down 
expectations.  

Using this approach, for each sequence position (i.e. previous, current, next with 
respect to each trial onset) and period of interest (i.e. ISI period of all trials, and post-trial 
onset of catch trials), we tested whether there were significant above chance predictions of 
stimulus identity (Fig. 3). In the ISI period, the “current” upcoming event (stimulus N from the 
example above) was predicted significantly above chance (cluster test, P = 0.0001, Fig. 3B). 
This result indicates that stimulus-specific patterns of activity evoked by stimulus presentation 
on stim trials were already found in the ISI period, suggesting the emergence of a sensory 
template of the expected upcoming stimulus. No significant proportion of predictions for the 
previous sequence position was found (Fig. 3A), suggesting that stimulus-evoked patterns of 
neural activity of the preceding stimulus in the sequence were not present anymore in the ISI 
period. For the next sequence position, i.e. stimulus N+1 which was two stimuli away, one 
cluster was marginally significant toward the end of the pre-trial onset period (cluster test, p 
= 0.0534, Fig. 3C). To investigate the temporal dynamics of the reinstatement of stimulus-
evoked neural patterns we computed the average classification accuracy across training time 
points (i.e, the Y-axis in A-C). The time course of the current sequence position (averaging 
across the Y-axis of Fig. 3B) exhibited a temporal cluster of significantly above chance 
predictions (P = 0.0001, Fig. 3G, blue curve). The time course of the next sequence position 
(averaging across the Y-axis of Fig. 3C) exhibited a smaller and later temporal cluster of 
significantly above chance predictions (P = 0.0128 Fig. 3G, red curve).  
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Figure 3. Decoding of ISI and catch trials using stimulus-evoked activity. A stimulus classifier 
was trained to discriminate between the six stimuli on stim trials. It was then used to predict 
stim identity on all ISI periods (A, B, C, G), and catch trials (D, E, F, H). We separately examined 
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the time course of decoding performance for predictions of the preceding, current or next 
stimuli of the sequence (with respect to each trial onset; green curves represent the prediction 
of the previous stimulus in the sequence (N-1), blue curves represent the prediction of the 
current stimulus (N) and red curves represent the prediction of the next stimulus (N+1)). A-C. 
Cross-temporal prediction on all trials in the ISI period (-500 to 0ms prior to trial onset). A 
classifier was trained at time points from 150 to 1000ms of stim trials (vertical axis: training 
time on stim trials), and tested on all time points of the ISI period (horizontal axis: testing time 
in ISI period). Black contours indicate clusters of significant above-chance proportion of 
predictions (panel B: P < 0.0001). Black dashed contours indicate a marginally significant 
cluster (panel F: P = 0.0534). D-F. Cross-temporal prediction on catch trials. The same stim 
classifier was tested on catch trials (0 to 1000ms relative to catch trial onset). The black dashed 
line represents the diagonal of the temporal generalization matrix, i.e. classifiers trained and 
tested on the same time point in stim and catch trials. Black contours indicate clusters of 
significant above-chance proportion of predictions (cluster test, panel E: P = 0.0001, panel F: 
P < 0.001). G-H. Average of the prediction proportions across training time points (i.e., average 
along the Y-axis of the panels above). The black dotted line indicates chance-level (1/6). The 
horizontal lines below the curves indicate clusters of significant above-chance predictions. In 
panel G, the current (blue curve, P < 0.0001) and next (red curve, P = 0.0128) predictions were 
significantly above chance. In panel H, the current (blue curve, P < 0.0001) and next (blue 
curve, P < 0.002) predictions were significantly above chance. 
 

Decoding performance on catch trials also indicated that sensory-like stimulus 
templates were established when the stimuli were expected, but not shown. On these catch 
trials, the current expected event (i.e., the omitted stimulus N from our example above) and 
the next event in the sequence (i.e., stimulus N+1), were predicted significantly above chance, 
on average across trials (cluster test, P = 0.0001, Fig. 3E and P < 0.001, Fig. 3F respectively). 
No significant proportion of predictions for the previous sequence position was found (Fig. 
3D). To investigate the temporal dynamics of the reinstatement of stimulus-evoked neural 
patterns in catch trials we computed the average decoding performance across training time 
points (Fig. 3H). The time courses exhibited the same pattern of results: current sequence 
position (N) and next sequence position (N+1) were found to be significantly above chance 
(cluster test, P = 0.0001 and P < 0.002, respectively for current and next predictions). The time 
course of the N+1 stimulus prediction started later in the trial time course (approximately 
200ms later) than the current stimulus N prediction (Fig. 3H). These results show that the brain 
maintains the identity of the current expected stimulus even when it is omitted, and after a 
short delay, starts encoding the next upcoming stimulus of the sequence.  

Thus, during sequence learning, reinstatement of stimulus-evoked neural 
representations take place prior to expected stimulus onset (ISI periods) as well as when a 
stimulus is omitted in the sequence (catch trials). The brain starts representing future stimuli 
several hundred milliseconds before they actually appear, and critically, this stimulus 
representation is not erased when incoming sensory information indicates that the stimulus 
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has not occurred. Instead, the brain actively represents information about the expected but 
omitted stimulus, and starts predicting the next stimulus to come, despite disruptions of the 
expected events. 
 
Spectral profile of predictive patterns of neural activity.  

Finally, to characterize the neural mechanisms supporting reinstatement of stimulus 
representations purely by top-down mechanisms, in the absence of bottom-up sensory input 
(i.e. catch trials), we tested whether specific oscillatory components exhibited selective 
patterns of activity. We performed a time-frequency decomposition of single catch trials in 
the post-trial onset period and used a classifier at each time and frequency point to decode 
the expected event. This analysis yielded a map of classification accuracy at each time point 
and frequency (Fig. 4A). No significant clusters were found in these maps using cluster-based 
permutations (P > 0.16), possibly due to the large number of multiple comparisons. To test 
whether certain frequencies carried information about the expected event, we averaged 
classification accuracies in these time-frequency maps across time and performed a cluster-
based permutation analysis. We found a significant cluster of above-chance classification 
accuracies in the alpha-beta range (P < 0.05, Fig. 4B). This result suggests that neural activity 
selective to the expected stimulus was present in the alpha-beta frequency bands. 

 

 
Figure 4. Spectral components of predictive neural patterns. A. Time-frequency map of 
classification accuracies. B. Frequency profile of classification accuracy (average accuracy over 
time). Gray bar at the bottom represents the significant cluster of classifier accuracy going 
from 9Hz to 20Hz. 
 
Discussion 

In this study we investigated whether visual sequence learning induced anticipatory 
reinstatement of expected stimulus neural representations. We found that (1) both prior to 
expected stimulus onset and when the expected stimulus was omitted, EEG activity exhibited 
neural patterns selective to the expected stimulus. (2) The selective patterns of neural activity 
present prior to the onset of the expected stimulus generalized to periods in which the 
expected stimulus was omitted, and (3) following this reinstatement of the representation of 
the omitted stimulus, patterns selective to the next stimulus in the sequence emerged, 
suggesting a proactive mechanism forming predictions about future events. (4) Finally, these 
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selective patterns were mostly evoked in the topography of alpha-beta bands oscillations, 
confirming the role of these oscillatory bands in carrying feedback signals across cortical areas 
(Spitzer and Haegens, 2017; Alamia and VanRullen, 2019). These results suggest that the brain 
actively reinstates representations for upcoming stimuli in a predictable sequence, and that 
these patterns of activity persist even when the expected event eventually fails to occur. This 
mechanism might play an important role in maintaining sequence order, in the face of 
eventual disruptions.  
 

An important result of our study is the finding that during catch trials, neural activity 
patterns simultaneously represented the current expected stimulus, as well as the next 
stimulus in the sequence (Fig. 3). This finding suggests an active mechanism for predicting 
future events. This decoding of stimulus-selective neural patterns during the catch trials relied 
on using the “stim” trials as the template for sensory representations. However, since the stim 
trials themselves were not free of expectations (the subjects were performing the task and 
anticipating the upcoming stimuli), we cannot exclude the fact that the representations 
reinstated during the catch trials did not also partly include a reinstatement of the expectation 
signal. It would be interesting in future research to test whether purely perceptual 
representations, allows for stimulus-selective decoding during catch trials.  
 
 Our study builds on and extends previous work on how expectations shape neural 
representations in anticipation of future events. In this study we focused on the anticipatory 
reinstatement of stimulus representations during the maintenance of an ongoing sequence of 
events. Previous studies have shown that expectations can bias perception (Chalk et al., 2010; 
Sotiropoulos et al., 2011; Pajani et al., 2015), improve perceptual performance (Kok et al., 
2012, 2014; Rohenkohl et al., 2012; Wyart et al., 2012) and action preparation and execution 
(Nobre et al., 2007). Numerous studies have explored the neural bases of expectation signals 
(Kok et al., 2017; Blom et al., 2020; Boettcher et al., 2020). For instance, it has been shown 
that expectations sharpen and bias neural representations of expected features in early visual 
cortex (Kok et al., 2013, 2014). A recent magnetoencephalography (MEG) study revealed that 
expectations create sensory templates before the expected stimulus presentation and that 
this template influenced post-stimulus neural representations (Kok et al., 2017). Another 
recent study, similarly showed that a visual object’s spatial movement is anticipated in a 
similar fashion, by reactivating neural representations of this expected stimulus position 
(Blom et al., 2020). Our results complement these studies by demonstrating that 
reinstatement induced by expectations of future events takes place in more complex settings 
(i.e. learning a sequence of stimuli instead of single stimulus association pairs), and that 
multiple future events can be simultaneously represented in EEG activity patterns. 
 

Our findings resemble forward prediction found in navigation, and more generally 
sequence-learning, found in medial temporal lobe structures (Johnson and Redish, 2007; 
Davachi and DuBrow, 2015; Reddy et al., 2015, 2019). Indeed, learning sequential event order 
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allows one to form predictions and adequately prepare future actions. This ability has been 
shown to critically depend on intact hippocampal circuits and that sequence learning 
strengthens relational representations in this region (Schapiro et al., 2012; Reddy et al., 2015). 
To date it has been unclear how sequence learning affects distinct neural representations of 
expected stimuli, prior to their expected apparition or in their absence. In this study, we show 
that neural representation of expected stimuli embedded in a sequence are evoked prior to 
expected onset, but also that a proactive reinstatement of future stimuli takes place. 
Furthermore, we found selective activity patterns evoked in the alpha-beta band which is in 
line with recent studies showing increased alpha-beta synchrony between hippocampal and 
prefrontal cortices (Brincat and Miller, 2015), and increases in parieto-occipital alpha-beta 
amplitude related to future events in learned sequences (Crivelli-Decker et al., 2018). 
 

We found evidence that alpha-beta band amplitude topography was selective to the 
expected stimulus. This is in line with accumulating evidence from experimental and modeling 
work pointing towards a critical role of alpha band oscillations in instantiating perceptual 
priors (Sherman et al., 2016; Chang et al., 2017) and reflecting predictive coding computations 
(Han and VanRullen, 2017; Alamia and VanRullen, 2019). Furthermore, it has recently been 
shown that shared neural representations of visual objects in perception and imagery are 
expressed in the alpha band (Xie et al., 2020), which suggests a functional overlap between 
the reinstatement of expected stimulus representations observed in our study, and mental 
imagery. 

Beta band oscillations, on the other hand, have been shown to provide feedback 
signals across cortical areas (Bastos et al., 2012; Michalareas et al., 2016; Richter et al., 2017), 
and to support top-down processes such as attentional preparation and reinstatement of task-
relevant content (Engel and Fries, 2010; Spitzer and Haegens, 2017). The involvement of beta 
oscillations in expectation processes is not restricted to the visual domain, e.g. in the auditory 
domain (Todorovic et al., 2015), which suggest a domain general mechanism carrying 
expectation signals in the beta band. 

Taken together these results suggest an important role of alpha and beta oscillations 
in top-down processes, in allowing synchronization between sensory expectations and an 
external stimulation rhythm (Arnal et al., 2015; Todorovic et al., 2015; Chang et al., 2017) and 
thereby, carrying information about the nature of expected stimulus (Bastos et al., 2012; 
Michalareas et al., 2016; Richter et al., 2017; Spitzer and Haegens, 2017). Our results are thus 
congruent with this proposed role of alpha-beta oscillations, i.e. in our study representing 
expectations of the next stimulus to come in the sequence. The range of frequencies 
supporting these expectation signals seem to vary across the alpha and beta bands. Recent 
studies have shown that task demands affect the specific frequency of neural oscillations 
(Wutz et al., 2018; Senoussi et al., 2020). It would therefore be of interest in future research 
to investigate whether task properties, such as sensory modality, task difficulty, or the nature 
of the task-relevant expectations (e.g. stimulus identity, timing) differentially recruit specific 
frequency bands. 
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Our results also link the fields of sensory expectations, predictive coding and sequence 

learning (Davachi and DuBrow, 2015; de Lange et al., 2018) by providing specific mechanisms 
supporting the reinstatement by the MTL of expected events. A large body of literature has 
shown that theta oscillations are a core mechanism supporting short-term memory and more 
specifically the ordinal organization of memoranda (Fuentemilla et al., 2010; Davachi and 
DuBrow, 2015; Crivelli-Decker et al., 2018; Peters et al., 2018; Reddy et al., 2019). It will 
therefore be an important avenue for future research to investigate how these alpha-beta 
oscillations are generated, how they carry selective information about expected events, and 
the interaction with MTL theta oscillations (e.g. through cross-frequency coupling). 
 

To conclude, using MVPA and time-frequency decomposition we found that visual 
sequence learning elicits selective patterns of EEG activity prior to expected event onset and 
in the absence of the expected stimulus. These patterns were similar to stimulus evoked 
activity, and patterns selective to the next-to-come event emerged towards the end of an 
event period, suggesting a constant prediction of future sensory events. Finally, selective 
neural activity was found to be expressed in the alpha-beta band, which has been associated 
with feedback signals and sensory expectation, confirming its essential role in providing task-
relevant contextual information for efficient processing of future events. These results provide 
important insights into how the brain implements predictive mechanisms for future when 
expectations are violated, based on regularities learned in the past.   
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Materials and Methods 
 

Participants and stimuli 
Sixteen participants (age 21-45 years, five females) were recruited in this experiment. All 
participants had normal or corrected-to-normal vision and no history of neurological 
problems. One participant was excluded due to chance level behavioral performance during 
test trials in half of the blocks. All participants provided written informed consent and received 
monetary compensation for their participation. The study was approved by the local ethics 
committee “Sud-Ouest et Outre-Mer I” and followed the Code of Ethics of the World Medical 
Association (Declaration of Helsinki). 

Six stimuli from six different object categories, i.e. face, camel, car, house, pine cone 
and phone, were gathered from internet. The selection of visual object categories was based 
on previous studies which computed the distance in neural representations between 
exemplars from different visual object categories (Kriegeskorte et al., 2008; Carlson et al., 
2013). The rationale was to maximize the distance in the multivariate EEG response between 
stimuli to maximize their discriminability. All stimuli were equalized in the 2D Fourier power 
spectrum in order to diminish low-level confounds in the stimuli set. 
 

Experimental procedure 
Participants were instructed to learn a stimulus sequence of six images (see Fig. 1A), e.g. pine 
cone -> camel -> face -> house -> phone -> car. The images in the sequence were presented in 
a fixed, pre-determined order, and the sequence was repeated 480 times in total across the 
whole experiment. The stimulus order was randomized for each participant. Participants were 
seated 60cm from the screen. Each image was presented for 1s preceded and followed by an 
inter-stimulus interval (ISI) of 0.5s. 

To further the impression of a sequence of images we used the following display 
arrangement (SI Appendix, Fig. S1A): Each image was presented at the center of the screen 
while placeholders (empty black squares) were presented to the left and right of the central 
image. At the end of the 1s presentation period, the central image was replaced by a black 
placeholder and all the placeholders moved one “step” forward in a clockwise direction for 
the duration of the ISI, such that each placeholder eventually occupied the next placeholder 
position. At the end of the ISI, the placeholder that now occupied the central position was 
replaced by an image. The viewer’s subjective impression at the end of the ISI interval was 
that the central image had been hidden, and then moved clockwise, while the central position 
was replaced by the next image. The central placeholder was at the center of the screen, and 
covered 6° of visual angle. 

On each trial of the sequence, one of three possible types of trial types could appear 
(Fig. 1B): 1) the expected stimulus from the sequence was displayed for 1s (stim trials, 45% of 
all trials), 2) the expected stimulus was not shown, but was replaced by a gray square for 1s 
(catch trials, 45% of all trials), or 3) test trials (10% of trials), in which, instead of showing the 
expected stimulus in the sequence, two choice stimuli were displayed and participants had to 
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report which of the two was the expected image. The test trials were self-paced. Participants 
were told that they could rest their eyes during test trials, and respond to the test trial when 
they were ready to resume the sequence. No feedback was provided on test trials. 

The experiment consisted of eight blocks, each lasting approximately 10 minutes. Stim, 
catch and test trials were randomly interleaved. Each block contained 60 loops of the six-
image sequence, resulting in 360 trials per block and 2880 trials in total for each participant. 
This design resulted in 288 test trials (10% of the total), and 1296 stim and 1296 catch trials 
(45% each of the total). 

A green fixation point was present at the center of the screen at all times and 
participants were instructed to fixate this dot during the whole experiment except for test 
trials during which they could move their eyes freely. In order to familiarize participants with 
the task and experiment layout, they were shown 10 trials (stim and catch trials), of another 
sequence than the one they had to learn, prior to the start of the experiment.  
 

EEG acquisition and preprocessing 
64-channel EEG was recorded using a BioSemi Active-Two system at a sampling rate of 1024 
Hz. A three-channel EOG was also recorded to monitor horizontal and vertical eye movements 
and blinks. Data were downsampled offline to 200Hz and notch-filtered at 50Hz to remove 
electrical line noise. We defined trial start as the onset of the presentation of a stimulus (on 
stim trials), the gray square (on catch trials), or the two choice stimuli (test trials). We 
extracted epochs from 500ms before trial onset to 1000ms post trial onset, yielding epochs of 
1500ms, in which 0ms represents the trial onset. Raw EEG time-courses were screened 
manually on a trial-by-trial basis to reject visible artifacts, eye movements or blinks. Baseline 
correction was applied by subtracting the average activity from -500 to -400ms relative to 
stimulus onset, for each electrode and trial independently. The median number of rejected 
trials (for non-test trials) across participants was 78/2592.  

We use the term trial type to refer to whether a trial was a stim, catch or test trial, and 
the term events for the 6 possible events for each trial type, i.e. the images in the sequence. 
For stim trials there was therefore 6 stim events: stim-face, stim-car, stim-house, stim-camel, 
stim-pine cone and stim-phone. For catch trials there were 6 catch events depending on which 
image should have appeared but was replaced by a gray square: catch-face, catch-car, catch-
house, catch-camel, catch-pine cone and catch-phone. And for ISI periods there 6 ISI events 
depending on which image was about to appear at the end of the ISI period: ISI-face, ISI-car, 
ISI-house, ISI-camel, ISI-pine cone and ISI-phone. 

There was, on average across participants, 201 trials per for each event of stim and 
catch trials (i.e. 6 stim events, 201 trials each; 6 catch events, 201 trials each). ISI periods 
preceding stim, catch, and test trials were pooled because the ISI periods were not predictive 
of the subsequent trial type. Therefore, on average, for each event, an additional 42 ISI periods 
preceding test trials were added to the ISI periods preceding stim and catch trials. There was 
thus, on average across participants, 243 trials per for each ISI event. 
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Time-frequency decomposition 
We computed time-frequency amplitude through a complex Morlet wavelet decomposition 
on single trials implemented in the MNE-Python suite (Gramfort et al., 2013, 2014). The 
frequencies ranged from 3 to 30hz (28 linearly spaced steps) with the number of cycles linearly 
increasing from 1.5 to 5 cycles. 
 

EEG pattern classification 
Our goal was to investigate whether selective patterns of neural activity to the expected 
stimulus arise 1) prior to trial onset (i.e. during the ISI period) and 2) in the absence of the 
expected stimulus (i.e. catch trials). To test whether selective activity patterns were elicited, 
we used multivariate pattern analysis (MVPA) on scalp topographies at each time point to 
classify sequence information in the ISI periods, the stim and the catch trials.  
 
 Classification analysis settings 
In all analyses, we performed time-resolved 6-way (e.g. discriminate the 6 events from each 
other) classification analyses on scalp topographies including all electrodes. These analyses 
were carried out on raw electrical potentials (i.e. broadband EEG signal after preprocessing) 
and time-frequency amplitudes. For all classification analyses we trained and tested a linear 
discriminant analysis (LDA) classifier using a least-square solver combined with automatic 
shrinkage using the Ledoit-Wolf lemma. The 6-way classification was performed using a one-
versus-all multi-class procedure. We used a Stratified 5-fold cross-validation procedure. Both 
classifier and cross-validation were implemented using the Scikit-learn Python toolbox version 
0.21.2 (Pedregosa et al., 2011). 

For all classification results we convolved the classification accuracy time-courses with 
a gaussian kernel, with parameters µ=0 and �=1, to lessen classification accuracies noise. The 
gaussian kernel was trimmed at 4*�, meaning that for each time point, three time points 
preceding, and following it were affected by the convolution, i.e. a 35ms temporal window. 
 
  Pseudo-trials for classification  
To increase signal-to-noise ratio, in all analyses we averaged single trials in order to make 5 
pseudo-trials for each of the six stim, catch and ISI events (Isik et al., 2014; Grootswagers et 
al., 2016). The classification analysis was performed on the pseudo-trials. The pseudo-trials 
were made separately for each of the 6 events of ISI periods, stim and catch trials. Each 
classification section below describes the number of trials that were used to make the pseudo-
trials. Because each pseudo-trial was constructed from an arbitrary selection of single trials, 
we repeated the pseudo-trials creation 50 times (each with a different and random selection 
of single trials) to minimize sampling bias, and re-ran the classification analysis. We averaged 
decoding results across re-samples in all analyses. 
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Preceding trial type control 
Because of the temporal proximity between stimulus and catch trials, i.e. ISI of 500ms, we 
carried out a control analysis to investigate whether the preceding trial type affected 
classification accuracies. That is, is decoding performance on a particular trial N biased by a 
leakage of stimulus information from the preceding trial (trial N-1)? 

We trained a classifier on training data at time point t and tested it on test data at time 
point t. This procedure was repeated for each time point, yielding a 1-dimensional array of 
classification accuracies. This analysis allows to estimate whether there is a difference in 
topography patterns between classes, as a function of time. For each trial N, we performed 
temporal classification at each time point. This was done separately for the stim and catch 
trials. Because, we sought to estimate the time at which the preceding trial-type (trial N-1) did 
not significantly affect the classification accuracy of the current trial (trial N) we used a 
Threshold-Free Cluster Enhancement (TFCE) procedure (start = 0, step size = 0.1, 10,000 
permutations). TFCE creates a threshold for each data point under the null hypothesis, hence 
making inference at the data point level, and not at the cluster level as in fixed-threshold 
cluster-based permutation tests (Maris and Oostenveld, 2007; Smith and Nichols, 2009; 
Sassenhagen and Draschkow, 2019), which allowed us to estimate the latest time point at 
which the preceding trial type (N-1) affected classification accuracy of the current trial (N). 

Using the TFCE procedure we tested whether there was a difference in decoding 
performance depending on whether trial N was preceded by a stim or catch trial (i.e., we test 
the influence of trial N-1 on trial N). We found significantly higher classification accuracies on 
trial N when it was preceded by a stim trial, compared to when it was preceded by a catch 
trial, indicating residual stimulus activity that persisted through the ISI period between trials 
(P < 0.05 corrected for multiple comparisons, see SI Appendix, Fig. S3A). On the Nth stim trial, 
the influence of the preceding (N-1) stim trial was observed as early as -385ms and until 85ms 
after trial onset. For the Nth catch trial, the effect of the preceding (N-1) stim trial was 
observed as early as -265ms and until 230ms after trial onset.  

To ensure that leakage of information from previous trials did not persist even longer 
in time, we performed another control analysis in which we accounted for the influence of 
trial N-2 on trial N. In this analysis, we first selected the subset of trials that were preceded by 
a catch trial (i.e., trial N-1 is a catch trial). This subset of trials is thus not biased by stimulus 
information from the preceding trial. We then tested the influence of trial N-2 on the current 
trial N. Is there a difference in decoding performance on these trials N depending on whether 
trial N-2 is a stim or catch trial? No difference was found in decoding performance on trial N 
when N-2 was a stim trial vs. a catch trial. This was true both when N itself was a stim trial or 
a catch trial. These results thus indicate that trial N-2 did not influence classification accuracies 
on trial N. 

Thus, for temporal generalization decoding analyses (see below) we only included 
trials (N) that were preceded by a catch trial (i.e., N-1 was a catch trial). For classification on 
stim and catch trials, this selection reduced the average number of trials to 112, on average, 
for each of the six stim event and each of the six catch events. For ISI periods, on average an 
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additional 23 ISI periods preceding test trials were added to the ISI periods preceding stim and 
catch trials. There were thus 247 trials on average for each of the six ISI events, i.e. 112 ISI 
periods preceding stim trials, 112 ISI periods preceding catch trials and 23 ISI periods 
preceding test trials. 

In the cross-temporal generalization analysis (see below), a classifier was trained only 
on stim trials (stim-classifier) to discriminate between the six stimulus events. The time 
window for training the classifier (150-1000ms post trial onset) was chosen to only include 
time points that did not show an influence of the preceding N-1 trial (the last time point that 
showed a difference in decoding performance on stim trial N depending on whether N-1 was 
a stim or catch trial was 85ms post trial onset). Thus, this classifier learns to discriminate 
between the six visual stimuli, and was tested on the ISI periods and the catch trials to 
determine whether sensory stimulus activation patterns were found even in these time 
periods when no stimulus was present. 
 

Classification analysis: temporal generalization (Fig. 2A-B, and SI Appendix, Fig. S1B) 
In the temporal generalization analysis, we trained a classifier on the training data at time 
point t, and tested it on test data at every time point t’, including the time point t’=t. This 
procedure was repeated for each training time point t, yielding a 2-dimensional map of 
classification accuracies of training time vs. testing time (Fig. 2). This analysis allowed us to 
estimate whether a discriminative pattern appearing at a certain time point was informative 
for classification at other time points in the trial, e.g. because this neural activity pattern was 
sustained or re-appeared at different moments of the trial (King and Dehaene, 2014). 

As explained in the section “Preceding trial type control” above, only trials preceded 
by a catch trial (N-1 catch) were used in temporal generalization analyses. Thus, for temporal 
generalization analyses on stim and catch trials, the average number of trials per event and 
per trial type (stim or catch) was 112. Therefore, for each event (e.g. catch-face), we averaged 
22 single trials (on average across participants) to make 5 pseudo-trials per event. 

For temporal generalization analyses on ISI periods the average number of trials per 
event was 135. Therefore, for each event (e.g. ISI-face), we averaged 49 single trials (on 
average across participants) to make 5 pseudo-trials per event. 

We then used a Stratified 5-fold cross-validation procedure, in which a classifier was 
trained on 4 pseudo-trials per event x 6 events = 24 pseudo-trials for training, and tested on 
the remaining 1 pseudo-trial per event x 6 events = 6 pseudo-trials for testing. 

 
Classification analysis: cross-temporal generalization from ISI periods to catch trials 

(Fig. 2C) 
In the cross-temporal generalization we performed the same procedure as in temporal 
generalization but the classifier was trained and tested on independent sets of data. Two 
cross-temporal generalization analyses were performed. In the first analysis (Figure 2C), a 6-
way classifier was trained to discriminate between the ISI periods, and tested on catch trials. 
The ISI intervals were split into 6 groups, depending on which event they preceded. More 
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precisely, the classifier was trained on ISI data at time point t and tested at time points t’ of 
the catch trials. This cross-decoding method allowed us to test whether selective patterns of 
neural activity generalize across conditions (Reddy et al., 2010; Kaplan et al., 2015; Senoussi 
et al., 2016): do brain patterns elicited in expectation of a given stimulus (in the ISI period) 
correspond to brain patterns that are recorded when the expected stimulus is not shown (on 
catch trials)? 

As explained in the section “Preceding trial type control” above, only trials preceded 
by a catch trial (N-1 catch) were used in this analysis. We used Stratified 5-fold cross-validation 
on ISI periods preceding catch trials in the training set and catch trials in the testing set. This 
was done to prevent having the ISI period preceding a specific catch trial and the post-trial 
onset period of this trial (i.e. the catch trial) being used respectively as training and testing 
data which would result in spuriously high decoding accuracy, i.e. double-dipping 
(Kriegeskorte et al., 2009). 

Therefore, for one cross-validation fold we used all ISI periods preceding stim trials, all 
ISI periods preceding test trials, but only 4/5th of the ISI periods preceding catch trials. The 
remaining 1/5th of ISI periods preceding catch trials was left-out in this cross-validation fold. 
The catch trials, i.e. the post-trial onset period following the left-out ISI periods) were used as 
the test dataset in this cross-validation fold. This selection procedure was repeated five times 
in order to use all ISI periods preceding catch trials in the training dataset and all catch trials 
in the testing dataset. 

Therefore, for each event (e.g. ISI-face) and each cross-validation fold the training 
dataset was composed of 112 (all ISI preceding stim trials) + 90 (ISI preceding catch trials, i.e. 
4/5th of the total 112 ISI periods preceding catch trials) + 23 (all ISI preceding test trials) = 225 
single trials (on average across participants). For the testing dataset, for each event (e.g. catch-
face) and each cross-validation fold, 1/5th of all catch trials were used, which amounts to 22 
trials. 

As for other classification analyses, we created 5 pseudo-trials per event, separately 
for the training and testing datasets. For the training dataset we therefore averaged 45 trials 
per ISI event to create one pseudo-trial. For the testing dataset we therefore averaged 4 trials 
per catch event to create one pseudo-trial. 

The classifier was then trained on all 5 pseudo-trials per ISI event x 6 ISI events = 30 
pseudo-trials for training, and tested on the 5 pseudo-trial per catch event x 6 catch events = 
30 pseudo-trials for testing. 

  
Classification analysis: cross-temporal generalization from stim to ISI and catch trials 

(Fig. 3) 
In the second cross-temporal generalization analysis (Fig. 3), a 6-way classifier was trained on 
only the stim trials (stim-classifier), to discriminate between the six images, at each time point 
t. It was then tested in two separate analyses on 1) time points t’ of the ISI periods and 2) t’’ 
of the catch trials. This analysis allowed us to determine whether sensory stimulus information 
recorded when participants were viewing the stimuli corresponded to brain patterns induced 
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by purely top-down expectations of these stimuli (in the absence of sensory input). The 
section “Preceding trial type control” above explains which time points of stim trials were used 
for training the stim classifier. 

This procedure was repeated for each training time point of the training dataset and it 
yielded six 2-dimensional maps of classifier predictions (training vs. testing time) for each 
analysis (i.e. on ISI periods and on catch trials). For instance, for the analysis in which we tested 
the stim-classifier on ISI periods (Fig. 3A-C, G), for one training time point t and one testing 
time point t’, we obtained six values representing the proportion of the six stim-events that 
were predicted (e.g. 14% of stim-car event, 18% of stim-house event, 29% of stim-face event, 
etc.). Across all training and testing time points these predictions thus formed six maps for the 
analysis in which we tested the stim-classifier on ISI periods. 

The stim-classifier made a prediction about stimulus identity on the testing data (SI 
Appendix, Fig. S2), and on each test trial it could make a prediction of any of the six stimulus 
events. On each trial of the testing data, we counted the proportion of times the stim-classifier 
predicted the current stimulus, and the stimuli preceding and following it in the sequence. For 
example, in a sequence segment consisting of three stimuli: face-house-phone (SI Appendix, 
Fig. S2B), when testing the stim classifier on a house catch trial (or an ISI preceding a house 
trial), a prediction of “house” by the stim classifier would be counted as a prediction of the 
current stimulus. A prediction of “face” or “phone” would be counted as predictions of the 
preceding and following stimuli, respectively. This measure allowed us to determine whether 
brain activity patterns during the ISI and catch periods encoded stimulus identity, and if so, 
which stimuli in the sequence were being encoded. The null hypothesis was that no sensory-
like stimulus information was present in EEG topographies of ISI periods and catch trials, 
hence each stimulus identity would be predicted at chance level (1/6 = 16.66%).  
 
 Statistical analyses 
Inferential claims about all classification analyses were based on cluster-based permutation 
test (Maris and Oostenveld, 2007) and reported following the recommendation of 
Sassenhagen & Draschkow (2019). Cluster-based permutation analyses assess the probability 
of observing a certain classification accuracy cluster size using a null distribution of cluster 
sizes generated through permutations. The clusters are made by temporally or spectrally 
adjacent samples exceeding a threshold defined using the Student T-value distribution by 
comparing classification accuracies to chance level (1/6 = 16%). This procedure yields a P-value 
corresponding to the probability of observing a cluster of classification accuracies exceeding 
the threshold based on a null distribution of cluster sizes while correcting for multiple 
comparisons. 

For cluster-based permutation tests we used the permutation_cluster_1samp_test of 
the MNE toolbox v.0.18 (Gramfort et al., 2014), with a Hat variance adjustment, with 
parameter �=10-3, to correct for small pixel variances (Ridgway et al., 2012). Specifically, the 
procedure randomly permuted the sign of centered classification accuracy values, i.e. 
classification accuracies minus chance level (1/6), in a random subset of participants, 
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computed the size of clusters exceeding the threshold in these surrogate data, and repeated 
that procedure to obtain a null distribution of cluster sizes. This procedure was repeated 
10,000 times for each analysis and yielded cluster P-values (the clusters being 1- or 2-
dimensional, depending on the analysis). From these analyses, P-values of <0.05 are depicted 
as straight lines below classification accuracy curves (Fig. 3G-H and SI Appendix Fig. S3), or 
black contour lines in 2D maps of classification accuracies (Fig. 2A-C, 3A-F). 

 
Activation patterns 

Because the interpretation of multivariate classifiers’ weights (i.e., the class-selective 
topographies) represents a mixture of signal of interest and noise, we computed activation 
patterns using the method developed in Haufe et al. (2014). This method allows to extract the 
discriminative topographies used by the classifier to distinguish the different classes. Because 
all our analyses consisted of a 6-way classification, six activation patterns were produced at 
each time step. We computed the Student T-value for each event (e.g. catch-face) across all 
participants, rectified these T-value topographies by computing their absolute value, and 
averaged the six topographies. This produced one topography for each training data set (i.e. 
stim trials, catch trials, and ISI periods), for each time point. 

In order to compute a measure of the informativeness of these activation patterns, we 
averaged these topographies in consecutive 100ms temporal window and weighted these 
values by the decoding performance. Specifically, topographies obtained after averaging 
across the six events were averaged in windows of 100ms, scaled to a standard deviation of 1 
across electrodes, and multiplied by the average T-value of decoding performance across 
participants for that same time window. 
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Supplementary Information Appendix 
 
 
 

 
 

Figure S1. Trial structure and temporal generalization analysis on stim trials. A. Participants 
were asked to learn the order of a sequence of six stimuli. On each trial either one a catch, 
stim or test trials appeared. Each trial started with an inter-stimulus interval (ISI) of 0.5s 
followed by the presentation of an image (stimulus or gray square) for 1s, or a test trial during 
which participants had to report which of the two presented stimuli should have appeared in 
the sequence. During the image presentation period the image was presented at the center 
of the screen, flanked by black placeholders. During the ISI period, the placeholder turned 
black, replacing the central image, and all the placeholders moved in the clockwise direction 
(the dashed arrow in ISI screens is only to illustrate the movement and was not shown during 
the experiment). At the end of the ISI period, the central placeholder was replaced by the next 
image in the sequence. The trial type (stim, catch or test) order was randomized. B. A 6-way 
classifier was trained at each time point (vertical axis: training time) and tested on all time 
points (horizontal axis: testing time) to distinguish each stimulus event. The black dashed line 
represents the diagonal of the temporal generalization matrix, i.e. classifiers trained and 
tested on the same time point. Black contours indicate a cluster of significant above-chance 
classification accuracy (P = 0.0001). Topographies on the right side of the map represent 
activation patterns weighted by decoding performance (see Methods) for classifiers trained 
on stim trials. 
 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.11.28.402123doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.28.402123
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 24	

	
	
Figure S2. Cross-temporal generalization analysis. A. An example stimulus sequence to learn. 
B. A sequence segment showing three consecutive (stim) trials. Relative to the trial at the 
“House” position in the sequence, the “Face” trial is the previous one, and the “Phone” trial is 
the next one. C. A stim-classifier is tested on catch-house event data. The stim-classifier can 
predict any of the six stim events. If the classifier predicts a stim-house event, we considered 
it as a prediction of the “Current” position in the sequence. Alternatively, if the stim-classifier 
predicted a stim-face or a stim-phone, these are counted as predictions of the previous and 
next events in the sequence (and could arise for example by left over activity of the preceding 
stimulus, or anticipation of the next stimulus respectively). 
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Figure S3. Preceding trial type analysis. A. Classification accuracies for classified trials (trial N) 
that were preceded by a stim or catch trial (N-1). The diagram on the left represents the color 
code: dark red when trial N-1 was a catch trial, dark blue when trial N-1 was a stim trial. Middle 
and right plots depict average temporal classification on trial N when trial N was a stim trial 
and a catch trial respectively. Classification accuracy was significantly higher in both the stim 
and catch trials (trial N) when the preceding trial (trial N-1) was a stim trial (blue curves) 
compared to when the preceding trial (trial N-1) was a catch (dark red curves), indicating 
residual stimulus activity from the preceding stim trial. B. In this analysis we selected the 
subset of trials (N) that were preceded by a catch trial. We then examined how decoding 
performance on trial N was influenced by whether trial N-2 was a stim or catch trial. The 
diagram on the left represents the color code: orange when trial N-2 was a catch trial, light 
blue for when trial N-2 was a stim trial. Middle and right plots depict temporal classification 
on trial N, when it was a stim and catch trial respectively. Note that there is no significant 
difference between trials in which N-2 was a stim or a catch trial for both trial N types (stim 
or catch), indicating that residual activity of the N-2 stimulus is not observed in trial N. In both 
plots, green areas represent a significant difference (p<0.05) computed between the two 
curves in each plot using a cluster-based permutation (TFCE procedure, see Methods). Colored 
shading around the curves indicates standard error of the mean across participants.   
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