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Abstract 

Recording brain activity during speech production using magnetoencephalography (MEG) can help us to 

understand the dynamics of speech production. However, these measurements are challenging due to the 

induced artifacts coming from several sources such as facial muscle activity, lower jaw and head 

movements. Here, we aimed to characterise speech-related artifacts and subsequently present an approach 

to remove these artifacts from MEG data. We recorded MEG from 11 healthy participants while they 

pronounced various syllables in different loudness. Head positions/orientations were extracted during 

speech production to investigate its role in MEG distortions. Finally, we present an artifact rejection 

approach using the combination of regression analysis and signal space projection (SSP) in order to 

correct the induced artifact from MEG data. Our results show that louder speech leads to stronger head 

movements and stronger MEG distortions. Our proposed artifact rejection approach could successfully 

remove the speech-related artifact and retrieve the underlying neurophysiological signals. As the 

presented artifact rejection approach was shown to remove artifacts induced by overt speech in the MEG, 

it will facilitate research addressing the neural basis of speech production with MEG.  

 

Keywords: Speech production, MEG, Movement artifact, Head movement, Signal space projection, 

Regression analysis. 
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1. Introduction 

Our everyday life and especially social interactions are greatly affected by verbal communication and, 

consequently, the question of how our brain is able to produce and understand spoken language has been 

the focus of many studies in the field of cognitive neuroimaging. fMRI studies have the spatial resolution 

to potentially provide a spatially detailed account of brain areas involved in speech perception and 

production (Hickok, 2012; Hickok and Poeppel, 2016). However, scanner noise and sensitivity to head 

movements caused by overt speech make fMRI less than ideal - a limitation that is further aggravated by 

the limited temporal resolution of fMRI. Instead, magnetoencephalography (MEG) and 

electroencephalography (EEG) provide excellent temporal resolution and are completely silent recording 

techniques (Gross, 2019). This makes them ideal candidates to non-invasively study the dynamics of speech 

perception and production. However, particularly speech production studies are challenging due to the 

induced artifacts coming from several sources such as facial muscle activity, lip and eye movements, and 

head movements (Ewald et al., 2012). Therefore, earlier studies have avoided recording neurophysiological 

activities during speech production. Some tried to simply circumvent the induced artifacts by delaying 

continuous speech, using silent naming, or manual responses (Eulitz et al., 2000; Ewald et al., 2012; Schmitt 

et al., 2000). However, these approaches compromise our ability to directly investigate neural activity 

underlying speech production.  

Recently, some studies have used MEG and EEG to study speech production (Alexandrou et al., 2016; 

Bourguignon et al., 2020; De Vos et al., 2010; Ewald et al., 2012; Ganushchak et al., 2011; Llorens et al., 

2011; Masaki et al., 2001; Meyer, 2018; Munding et al., 2016). While EEG is less affected by head 

movement compared to MEG, source localisation is generally thought to be more precise with MEG (Gross, 

2019). 

Therefore, here we focus on the use of MEG for studying speech production. While artifacts are an obvious 

problem for these studies, they have so far not been carefully described. In this study, we seek to 

comprehensively characterise speech artifacts in MEG and evaluate the performance of correction 

techniques with the aim to optimise source localisation.  
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Several artifact correction approaches have been used to reduce speech artifacts in MEG signals. Temporal 

signal space separation (tSSS) uses expansions of spherical harmonic functions to separate MEG signal 

components originating inside the sensor array from those originating elsewhere (Taulu and Simola, 2006). 

While this is not suitable to remove facial muscle artifacts (which originate inside the sensor array), tSSS 

can be used to compensate for head movements and suppress external artifacts. However, tSSS was 

developed for a specific type of MEG system (Elekta) and is not available for other MEG systems.  

In addition, independent component analysis (ICA) has been used to remove speech-related artifacts from 

the recorded MEG data (Alexandrou et al., 2017; Bourguignon et al., 2020; Laaksonen et al., 2012; 

Liljeström et al., 2015b; Ruspantini et al., 2012). These studies used ICA to decompose data from the sensor 

level to the component level. Then, components related to artifacts were detected and removed from data. 

ICA is in principle also suitable for removing muscle artifacts but requires an accurate selection of 

artifactual components (Gross et al., 2013). 

Besides head movements and muscle artifacts, movements of the lower jaw are another prominent source 

of artifacts during speech production. Most participants have tooth fillings, retainers, or other dental work 

that often has residual magnetic activity even after demagnetization. This can lead to strong artifacts that 

are independent of head movements. Since head movements are tracked by coils attached to the scalp, lower 

jaw movements are not corrected by head movement correction methods.  

Here, we present an analysis pipeline that aims to correct these different types of artifacts using non-

commercial methods that are applicable to data from any MEG system. We start by characterising the 

dynamics of head movement and recorded facial EMG activity relative to the produced speech envelope 

and the corresponding artifacts in the MEG signal. Finally, we present and evaluate a system-independent 

approach to remove the artifacts. This approach uses regression analysis for head movement correction and 

signal space projection (SSP) for remaining artifacts such as those arising from lower jaw movements.  

To test this approach, we recorded MEG data from eleven participants who were instructed to pronounce 

different syllables in various loudnesses. We demonstrate that the head movement level is directly linked 
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to the loudness level and leads to MEG distortion. Our proposed artifact rejection scheme was able to 

remove the movement-related artifact from MEG and retrieve neurophysiological signals. 
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2. Method 

In this study, we analysed MEG data from two different experiments (EXP1 and EXP2). EXP1 was 

conducted in order to characterise movement-related artifacts induced during speech production and 

further to investigate the feasibility of removing these artifacts from the recorded MEG data. Moreover, 

we also analysed data from a larger experiment (EXP2) in order to evaluate if our artifact rejection 

approach removes neurophysiological information. 

2.1 Participants 

We recruited eleven healthy volunteers (6 males, mean age 25.4 +/- 2.7 y, median 25, range [22 31]) for 

EXP1 and 25 healthy volunteers (13 males, mean age 24.9 +/-2.8 y, median 25, range [21 32]) for EXP2 

from a local participant pool. The study was approved by the local ethics committee (University of Münster) 

and conducted in accordance with the Declaration of Helsinki. Prior written informed consent was obtained 

before the measurement and participants received monetary compensation after the experiment.  

2.2. Recording 

MEG, electromyogram (EMG), and speech signals were recorded simultaneously. A 275 whole-head sensor 

system (OMEGA 275, VSM Medtech Ltd., Vancouver, Canada) was used for all of the recordings with a 

sampling frequency of 1200 Hz, except the speech recording which had a sampling rate of 44,1 kHz. Audio 

data were captured with a microphone, which was placed at a distance of 155 cm from the participants’ 

mouth, in order not to cause any artifacts through the microphone itself. Three pairs of EMG surface 

electrodes were placed after tactile inspection to find the correct location to capture muscle activity from 

the m. genioglossus, m. orbicularis oris and m. zygomaticus major. One pair of electrodes was used for 

each muscle with about 1cm between electrodes. A low-pass online filter with a 300Hz cut-off was applied 

to the recorded MEG and EMG data. 

2.3. Paradigm 
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For both experiments participants were asked to sit relaxed while performing the given tasks and to keep 

their eyes focused on a white fixation cross. In EXP1 they were instructed to pronounce three different 

syllables (‘La’, ‘Du’, ‘Pa’) and each of them at three different volume levels: normal, loud, and without 

sound, meaning they should only perform the mouth movement. This makes nine conditions in total. 50 

trials were collected for each of them, consisting of 4s in which participants pronounced the syllable 

separately 3 to 4 times and 2s of rest in between trials. A color change from white to blue of the fixation 

cross indicated the beginning of the 4s in which participants should speak. After these 4s the color changed 

back to white, indicating that participants should stop speaking. 2s later the color would again change back 

to blue.  

In EXP2 participants listened to syllables and overt speech, which they generated themself in a previous 

recording. Overt speech was obtained by asking participants to answer fourteen questions, each of them for 

60 seconds. For the syllables, subjects were told to speak as they normally would, using only the given 

syllable (‘Du’,’La’,’Pa’) for three minutes each. As in EXP1 a color change of the fixation cross from white 

to blue indicated the beginning of the time period in which participants should speak and the end was 

marked by a color change back to white. 

2.4. Preprocessing and data analysis 

Prior to data analysis, MEG data were visually inspected for detecting jump artifacts and bad channels. A 

discrete Fourier transform (DFT) filter was applied to eliminate 50 Hz line noise from the continuous MEG 

and EMG data. Moreover, EMG data was highpass-filtered at 20 Hz and rectified. Continuous head center 

position and rotation were extracted from the fiducial coils placed at anatomical landmarks (nasion, left, 

and right ear canals) leading to six time-series representing the instantaneous location (X, Y, Z) and 

orientation (Ox, Oy, Oz) of the head. These time-series are in a 3-D Cartesian coordinate system defined 

relative to the dewar in which X, Y, and Z are from head center to anterior, left, and superior respectively 

and Ox, Oy, and Oz are the head rotation around X, Y, and Z-axis respectively. The wideband amplitude 

envelope of the speech signal was computed using the method presented in (Chandrasekaran et al., 2009). 
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Nine logarithmically spaced frequency bands between 100-10000 Hz were constructed by bandpass 

filtering (third-order, Butterworth filters). Then, we computed the amplitude envelope for each frequency 

band as the absolute value of the Hilbert transform and downsampled them to 1200 Hz. Finally, we averaged 

them across bands and used the computed wideband amplitude envelope for all the further analysis. We 

used speech envelope signals to extract syllable pronunciation onsets for further trial selection steps. First, 

the envelope signal was low-pass filtered at 5 Hz. Then, we computed the first derivative of the signal 

followed by z-scoring. Finally, we detected all the local peaks that have Z-value higher than 2. Our multi-

step preprocessing procedures are depicted in Fig. 1. 

MEG, EMG, speech envelope, and head movement signals were downsampled to 256 Hz and were 

segmented from -1s to 4s time-locked to speech onset identified as peaks of the first derivative of the speech 

envelope signal. In the preprocessing and data analysis steps, custom-made scripts in Matlab R2020 (The 

Mathworks, Natick, MA, USA) in combination with the Matlab-based FieldTrip toolbox (Oostenveld et al., 

2011) were used in accord with current MEG guidelines (Gross et al., 2013).  

2.5. Artifact rejection 

For removing the speech-related artifacts we applied the following procedure:  

(i) We tried to initially reduce head movement-related artifacts by incorporating the head position time-

series into the general linear model (GLM) using regression analysis (Stolk et al., 2013). We considered 

head movement time-series, its squares, cubes, and all their derivatives in the model in order to account for 

both the linear and non-linear effects of head movement on the signal. We performed this step twice: once 

with the original head movement time-series and the second time after removing slow trends from the head-

movement time-series using a third-order polynomial fit; (ii) To further remove the residual artifact, we 

used the SSP method implemented in the Fieldtrip toolbox (Uusitalo and Ilmoniemi, 1997). We estimated 

the spatial subspace containing the speech-related artifact from the MEG data using SSP. The singular value 

decomposition (SVD) approach was applied to the MEG data to decompose data into singular vectors 

(components). This method works well if it is applied to data where the artifact is maximised due to 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2020. ; https://doi.org/10.1101/2020.11.28.402008doi: bioRxiv preprint 

http://sciwheel.com/work/citation?ids=375848&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=375848&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=3887955&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=6049603&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=9742396&pre=&suf=&sa=0
https://doi.org/10.1101/2020.11.28.402008
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abbasi et al – page 9 
 

preprocessing or averaging. In our case, we averaged data time-locked to speech onset thereby enhancing 

the artifact in the averaged data. Therefore, the first SVD components are expected to reflect the artifact 

subspace. (iii) Artifactual components were detected and removed via visual inspections and mutual 

information (MI) analysis (Abbasi et al. 2016); (iv) finally, all remaining components were back-

transformed to the sensor level. The blue boxes in Fig. 1 depict MEG artifact rejection steps. 

Our conservative component selection consisted of three steps: First, visual inspection of components’ 

time-series: Artifactual components’ time-series were affected by movement patterns and were detectable. 

Second, visual inspection of the components weight distribution on the topographic maps: Components 

with major power distribution on temporal areas were marked as artifactual components. Third, 

computing mutual information between SVD components and head movement/orientation signals: MI 

was calculated between SVD components and each of the extracted head movement/orientation signals 

(X, Y, Z, OX, OY, and OZ). These MI values were subsequently averaged across all movement signals 

for each pair. Components with high MI values were detected as artifactual components. 
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Fig. 1. Preprocessing and artifact rejection steps. Dotted boxes indicate data input/output. Solid line boxes 

indicate processing steps. Blue boxes show the main steps of MEG artifact rejection. The gray box shows a 

complementary step for removing residual muscle artifacts according to previous studies. Red arrows indicate 

the second-time regression analysis after the detrending of head movement signals. 

 

2.6. Artifact level 

In order to quantify the level of artifact and be able to compare the level of residual artifact between different 

artifact rejection steps, we constructed a spatial filter from the SVD of the raw data covariance matrix in 

EXP1. We only took into account the artifactual SVD components detected in our artifact rejection steps 
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for every participant. Next, we applied the constructed filter on the data after every artifact rejection step. 

Finally, the artifact level was obtained from averaging the absolute values of the filtered data. 

Additionally, we evaluated to what extent the proposed artifact rejection approach removes 

neurophysiological information. For this aim, we used the spatial filters constructed from artifactual SVD 

components in the speech production condition to clean the artifact-free syllable perception dataset in 

EXP2. The amount of reduction in MEG components in the syllable perception condition indicates the 

removal of neurophysiological information since there are no speech-artifacts in the perception condition. 

2.7. Coherence analysis 

In order to quantify similarities between speech envelopes and EMG/MEG signals, we used coherence 

analysis. To this end, time-locked data were further segmented into short data segments (duration 2 s, 

overlap 0.5 s). Spectral power and cross-spectral density of these data were calculated using a multi-taper 

approach with a smoothing of 2 Hz (range 1 - 50 Hz). Coherence was computed for each participant between 

speech envelopes and EMG/MEG signals. These coherence values were subsequently averaged across all 

participants for each pair (EMG/MEG, Envelope) and each frequency. Finally, for each pair, the coherence 

values were averaged within the frequency range of 0-5 Hz.  

2.8. Statistical analysis 

In our statistical analysis, we aimed to investigate any significant effect of the speech loudness and syllables 

on head movement/orientation. To meet this purpose, we used linear mixed effect modeling (LMEM). We 

computed the averaged head movement/orientation in all directions (X, Y, Z) and orientations (Ox, Oy, Oz) 

for the first 4 seconds after the syllables pronunciation onset for each participant. All the average head 

movement/orientation values were entered into a fixed-effect model with loudness and syllable as factors. 

Moreover, we also investigated whether there are any significant effects of speech loudness, syllables, and 

EMG signal on the calculated coherence between the speech envelope and EMG signals using the LME 

method. In this case, the average coherence (1-5 Hz) between speech envelope and EMG signal was 
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calculated for each experimental condition (loudness and syllables) and entered into a fixed-effect model 

with loudness, syllable, and EMG as factors. 

2.9. Data availability  

The data used in the current study will be available from the corresponding author upon request based on a 

formal data sharing agreement with Prof. Joachim Gross. The Matlab code of the proposed artifact rejection 

approach is publicly accessible through the Open Science Framework (https://osf.io/uc8st/).  
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3. Results 

3.1. EXP1-Head movement analysis 

To investigate whether speech production causes head movement during MEG recording, we extracted 

continuous head localization information which was captured by fiducial coils. We extracted the 

head center movement information for different experimental conditions, i.e. different loudness: 

No-sound/Normal/ Loud as well as different syllables: Pa/Du/La. Fig. 2A illustrates the Z-axis 

grand averaged head movement during different syllables pronunciation. These results show that, 

independently for each syllable, the amount of head movements is directly linked to its loudness 

level. Next, we calculated the averaged head movement values for the first 4 seconds after the syllables 

pronunciation onset. We normalized the averaged value for every participant by subtracting the No-sound 

condition from other experimented loudness. Boxplots in Fig. 2B display that higher loudness caused 

larger Z-axis head movements. We tested for the effect of loudness and syllable on head movements/ 

orientations by performing a linear mixed-effect model. We computed the averaged head movement/ 

orientation in all directions (i.e. X/Y/Z/Ox/Oy/Oz) for the first 4 seconds after the syllables pronunciation 

onset.  All the average head movement/orientation values were entered into a fixed-effect linear model 

with loudness and syllable as factors. Our results show that the main effects of loudness were highly 

significant on the head movement in Z direction (t(98) = 5.9, p < .0001). Detailed results are presented in 

Table. 1.  

Head movements X Y Z 

Loudness t=1.7, p=0.07 t=-2.1, p=0.03 t=5.9, p= 4.632e-08 

Syllables t=0.8, p=0.39 t=0.4, p=0.63 t=0.1, p=0.9 

Head rotations Ox Oy Oz 

Loudness t=3.3, p=0.001 t=-0.02, p=0.9 t=-3.3, p=0.001 

Syllables t=0.9, p=0.35 t=0.2, p=0.8 t=-0.9, p=0.35 
Table. 1. Statistical analysis results. 
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Fig. 2. Grand averaged head movement modulated by different syllables and speech loudness. A) 

Head movement in the Z-axis direction is plotted for all three syllables: Pa (left panel), Du (middle panel), 

and La (right panel) with different loudness levels (No-sound (blue), normal (red) and loud (green)). The 

level of head movement is directly linked to the speech loudness. B)  Boxplots showing the distribution of 

averaged head movement, for the first four seconds after pronunciation onset, normalized by subtracting 

No-sound condition from other loudnesses. For all the three syllables, higher loudness caused the stronger 

head movement.   

3.2. EXP1-Speech envelope 

For further analysis, we calculated the speech signal envelope. We observed a strong temporal alignment 

of the speech envelope with head position time-series, MEG, and EMG signals recorded from the chin, 

lip, and cheek during syllables pronunciations (Fig. 3A). The strong temporal alignment between these 

signals shows that syllable pronunciation could cause head movement and subsequently MEG distortion. 

In the next step, we aimed to investigate the temporal relationship between the speech envelope and EMG 

signals to better understand how they both reflect speech production artifacts in MEG. We therefore 
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calculated coherence between both signals in order to identify the EMG signal showing speech-related 

information the best. We normalized the coherence value for every participant/syllable by subtracting the 

No-sound condition from other experimental conditions. Next, we averaged the normalized coherence 

values across syllables for every participant. We observed the strongest coherence between EMG Lip 

signal and speech envelope (Fig. 4A). Hence, further analysis in this study is done by using EMG Lip 

signals. We also expected delays between the movement of articulators and onset of speech because 

auditory and visual speech are temporally coupled (Chandrasekaran et al., 2009; Park et al., 2018, 2016) 

but typically mouth movements precede auditory speech (Schwartz et al., 2004). Therefore, we computed 

coherence between EMG and time-shifted speech envelope signal to identify the optimal delay. Fig. 4B 

illustrates the grand averaged coherence for delays between -333 and 333 ms. EMG and speech envelope 

showed the highest coherence at a negative delay of around -150 ms, indicating, as expected, that 

movement of articulators precedes auditory speech. Optimal temporal delays varied across participants 

(Fig. 4C). Therefore, for further analysis, the mean optimal temporal delay across the group (-150 ms) 

was taken into account and the coherence values were recalculated after shifting the speech envelope.  

The new coherence results illustrate high coherence in normal and loud speaking conditions (Fig. 4D). 

We tested for the effect of loudness, syllable, and EMG signal on coherence between EMG and time-

shifted speech envelope signal by performing a linear mixed-effect model. We computed the average 

coherence in the frequency range of 0-5 Hz.  All the average coherence values were entered into a mixed-

effect model with loudness, syllable, and EMG signal as factors. Our results show that the main effects of 

loudness and syllable were highly significant (Loudness: t(290) = 9.5, p < .001; Syllable: t(290) = -4.3, p 

< .001; EMG: t(290) = -1.2, p = 0.2).  
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Fig. 3. Temporal alignments between speech envelope and MEG. The first 25 seconds of an individual 

time-series from MEG, EMG, speech envelope, and head movements are illustrated for condition Pa/Loud. 

The strong temporal alignment between these signals shows that syllable pronunciation causes head 

movements and results in MEG distortion.  

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2020. ; https://doi.org/10.1101/2020.11.28.402008doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.28.402008
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abbasi et al – page 17 
 

 

Fig. 4. Coherence between recorded EMG and speech envelope. A) Boxplots showing the distribution 

of the coherence, between EMG signals and speech envelope, normalized by subtracting the No-sound 

condition from the loud condition and averaged across all syllables. EMG Lip signal displays the strongest 

coherence with the speech envelope signal. B) Coherence was computed for each participant between the 

EMG signals and time-shifted speech envelope. These coherence values were subsequently averaged across 

all participants for each pair (EMG, Envelope) and each frequency. Finally, for each pair, the coherence 

values were averaged within the frequency range 0-5 Hz. The group results show the optimal temporal 

delay in -150 ms. C) The distribution of optimal time-shifts leading to maximum coherence across 

participants. D) Boxplots display the distribution of coherence between the shifted speech envelope (-150 

ms) and EMG Lip for different syllables and loudness. For all the three syllables, normal and loud loudness 

caused stronger coherence in comparison to the No-sound condition.  
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3.3. EXP1-Recording MEG data during speech production 

Speech production caused head movement in all eleven participants. Subsequently, clear patterns of MEG 

distortion were observable for all the participants due to their head movement. We observed severe MEG 

distortion especially for participant #11 due to retainers (Fig. 5, first panel). Therefore, here we first report 

the results from this participant to study to what extent we can remove the artifact. A successful artifact 

correction should ideally lead to data where auditory evoked responses to speech onset can be seen. This 

is particularly challenging in our case where self-produced speech leads to attenuation of auditory evoked 

responses (Houde et al., 2002).   

Our initial artifact rejection step, the GLM-based approach, could reduce the confounding variance that 

was caused by head movement (Fig. 5, second panel). We tried to further remove the induced artifact 

from the recorded MEG data using both ICA and our proposed method. After decomposing MEG data to 

independent components (ICs), we observed that ICA could not successfully decompose the data due to 

the non-stationary nature of the induced artifact. Artifact patterns were observed in most of the 

components’ topographical maps and time-series. Therefore, we only removed the first four components 

(out of 20) containing the major part of the artifact. Although the neurophysiological pattern (auditory 

evoked response) was partly detectable shortly after the pronunciation onset, the residual artifact still 

significantly distorts the back-transformed MEG (Fig. 5, third panel). Next, we used our proposed method 

to remove the speech-related artifacts from the recorded MEG data. Only four components were classified 

as artifactual components based on our criteria. After removing artifactual SVD components, we observed 

a clear auditory evoked response for data recorded from participant #11 (Fig. 5, fourth panel).  
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Fig. 5. MEG recording during speech production. Averaged, time-locked data across trials of all MEG 

sensors from one representative individual (participant #11) recorded during syllables pronunciation before 

artifact rejection (first panel), after cleaning by our initial denoising step, i.e. GLM-based analysis (second 

panel), after cleaning by ICA (third panel), and after cleaning by SVD (fourth panel). The distribution of 

the averaged MEG amplitude for a time period between 50 to 60 ms is displayed on the topographical maps 

for different conditions. The first row illustrates strong MEG data distortion which is distributed mainly in 

the temporal areas. The third row shows that ICA could not successfully remove the artifact and signals of 
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interest are still not observable due to the residual artifacts. The fourth row, however, displays a clear 

pattern of neurophysiological activity after removing artifacts on the topoplot. Timepoint 0 s marks syllable 

pronunciation onset. The data shown here are from a participant with a retainer. 

We applied our proposed artifact rejection approach to clean all the recorded datasets in EXP1 

(participant #1 to #10). On average, 1.4±1.1 components were classified as artifactual (MI 

mean=0.16, MI SD=0.04, range=0.08-0.23) and 18.06±1.17 components (MI mean= 0.04, MI SD= 

0.02, range=0.01-0.13) were classified as components containing signal of interest. 

To evaluate if our artifact rejection approach could remove artifacts and retrieve neurophysiological 

information, we investigated if we could detect M100 activity before and after artifact rejection. 

Before any artifact rejection, it was not possible to detect M100 peak due to the data distortion around 

the syllables production onset (Fig. 6A, left panel). However, after artifact removal, 

neurophysiological activities were detectable 50 ms after the syllables production onset on the grand 

average data (Fig. 6A, right panel). The strongest MEG distortion was observed around the syllables 

pronunciation onset and our artifact rejection approach was capable of largely removing the artifact 

(Fig. 6B and C). Residual artifact level was computed for the group data after different cleaning steps, 

i.e. Raw, GLM, and GLM+SVD. First, we tested for the effect of different artifact correction on the 

residual artifact level by performing a linear mixed-effect model. We computed the level of the 

artifact by applying the constructed spatial filter on data.  All the artifact level values were entered 

into a fixed-effect model with method as factor. Our results show that the main effects of artifact 

corrections were highly significant (Methods: t(28) = -4.4, p =0.0001). Our results showed that our 

proposed approach could significantly remove the artifact from the recorded data (Fig. 6C, right 

panel). 
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Fig. 6. MEG artifact rejection. A) Average topographic distribution of MEG amplitude between 40 and 

50 ms for raw data (left column) and after cleaning data by our proposed method (right column). M100 

activity was masked before artifact rejection by speech related artifact. Color codes MEG amplitudes. B) 
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Absolute grand average of the time-series from all MEG sensors (left column) and sensors above the right 

parietal area (right column) from all the participants before (blue) and after (red) artifact rejection. Selected 

sensors are designated by a red rectangular C) Boxplots (left panel) showing the distribution of the average 

values of MEG amplitude between -100 and 100 ms across participants for raw and cleaned data. Right 

panel boxplots illustrate the distribution of artifact level after data cleaning by different approaches. Our 

proposed method could significantly remove artifacts from MEG data in comparison to other methods. 

Significant P values (after t-test analysis) are indicated. * P < 0.01. 

3.4. EXP2-Recording MEG data during syllable perception 

We also evaluated if the proposed artifact rejection approach partly removes neurophysiological 

information. We applied the spatial filters constructed from the speech production dataset to the syllables 

perception dataset in EXP2. Since there is no speech artifact in the perception condition an ideal artifact 

correction would leave the perception data unchanged. We observed severe MEG distortion for 

participant #9 due to retainers in the speech production condition. Six components were classified as 

artifactual for this dataset. We constructed a spatial filter from these six components and applied it to the 

syllables perception condition. We observed a clear M100 peak in response to syllable onset before (Fig. 

7A) and after (Fig. 7B) artifact correction steps. Importantly, the auditory topography was not attenuated 

or distorted after artifact correction. Instead, small artifacts in temporal and frontal areas were reduced 

leading to an overall cleaner topography. Next, we quantified the performance of our artifact correction at 

the group level. We constructed the SSP filters for every participant in EXP2 from the speech production 

dataset. After applying the constructed filter to syllable perception dataset, we observed that the proposed 

method leads to negligible changes of the M100 amplitude (median: 0%; 25th percentile: -5%; 75th 

percentile: 0.7%; Fig. 7C and D). 

In summary, this indicates that the SSP correction specifically targets the speech artifact and leaves the 

real neurophysiological signals of interest largely intact.  
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Fig. 7. MEG artifact rejection on syllables perception condition. Topographic distribution of MEG 

amplitude between -20 and 70 ms for raw data (A) and after cleaning data using spatial filters constructed 

from speech production dataset (B) for participant #9 of EXP2. Color codes MEG amplitudes. C) Grand 

average of the time-series from the MEG sensors, designated by a red rectangular, from participant #9 

before (blue) and after (red) artifact rejection. The proposed artifact rejection caused slight M100 amplitude 

removal. D) Boxplots showing the distribution of the relative change of individual M100 amplitudes after 

artifact rejection relative to before artifact rejection condition for all the participants in EXP2 (AR=artifact 

rejection).  
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4. Discussions 

In this study, we carefully characterize the effects of head movement on the recorded MEG data during 

speech production. We demonstrate that MEG data is distorted due to head movement and its severity is 

directly linked to the speech loudness level. We present an artifact rejection approach to remove artifacts 

caused by head movement from MEG data. Our approach is based on a combination of regression 

analysis and signal space projection (SSP). The proposed method was successfully applied to the MEG 

data recorded during pronouncing syllables with different loudness. 

Using the real-time head center positions extracted from the head localizers coils, we were able to 

accurately track head positions during different experimental conditions. We observed that the head 

movement level is directly linked to the loudness level of the pronunciation of the syllables. This 

loudness-level-dependent movement can easily distort the recorded MEG data during speech production 

studies. In addition to general head movement, the unique pattern of lower jaw movement and facial 

articulatory muscles, for producing every single word, add a complex artifact pattern to the recorded data 

especially when participants have some ferromagnetic implants in their mouth such as retainers. 

Moreover, we observed a strong connection between speech envelopes and the facial articulatory muscles 

involved in speech production. Taken together, there are several different sources that contribute to MEG 

distortion during speech production studies. One of the major sources is the head and lower jaw 

movement. In this study, we mainly focus on removing this type of artifact.   

A few earlier studies have investigated speech production using MEG. They used different strategies to 

either avoid or remove the speech-related artifacts. In the following, we discuss these approaches and 

compare them with our proposed artifact rejection approach. 

Earlier studies have avoided recording neurophysiological activities during speech production due to data 

distortion. Some tried to simply circumvent the induced artifacts by delaying continuous speech, silent 

naming, or manual responses (Eulitz et al., 2000; Ewald et al., 2012; Liljeström et al., 2008; Sahin et al., 

2009; Schmitt et al., 2000). However, these approaches could prevent us from directly investigating 

neural activities underlying speech production. In another study, (Saarinen et al., 2006) reported the 
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feasibility of investigating cortical oscillations around 20 Hz using MEG without artifact rejection. While 

they reported reliable observations, this approach might be only feasible for special cases such as 

extracting some features which are not affected by speech-related artifacts. Using EEG, other studies tried 

to investigate speech-related brain activity by removing artifactual epochs (Ewald et al., 2012) or by using 

heavy low-pass filtering (Masaki et al., 2001). While these approaches are transferable to MEG, they are 

not applicable when we record data during continuous speech tasks, which could be distorted by head 

movement continuously, especially in lower frequency bands. 

Temporal signal space separation (tSSS) (Taulu and Simola, 2006) is an MEG artifact rejection approach 

that has been used in several studies to reduce speech artifacts in MEG data. The basic idea behind this 

approach is to separate MEG signal components originating inside the sensor arrays from sources outside 

the brain using the sensor geometry and expansions of spherical harmonic functions. Several previous 

speech studies have shown that after correcting head movement and suppressing external disturbances by 

tSSS they could investigate corticomuscular coherence, cortical neural network connectivities as well as 

the connection between evoked responses and rhythmic activities during speech production (Laaksonen et 

al., 2012; Liljeström et al., 2015b, 2015a; Ruspantini et al., 2012). However, since most high amplitude 

speech-related artifacts come from sources such as facial muscle activity or lower jaw movement (which 

are inside the sensor array), tSSS could not completely clean the data. Therefore, several complementary 

strategies have been taken to further clean the data after applying tSSS. Ruspantini and colleagues trained 

their participants in order to produce small movements during speech production (Ruspantini et al., 2012). 

Liljeström and colleagues tried to avoid the residual artifact by selecting artifact-free time windows for 

studying cortical networks underlying preparation for speech production (Liljeström et al., 2015a). Finally, 

in recent studies, the combination of tSSS and independent component analysis (ICA) has been used to 

remove speech-related artifacts from the recorded MEG data (Alexandrou et al., 2017; Bourguignon et al., 

2020). In ICA, the spatial filters are derived by decomposing sensor data to the set of maximally temporally 

independent components (Delorme et al., 2007). Alexandrou and colleagues used ICA to remove artifacts 

induced by the movement of facial articulatory muscles during speech production. Their results showed 
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that they observed artifacts separated into several components (Alexandrou et al., 2017). This is in line with 

our observation when we tried to clean data by means of ICA. For participant #11, for instance, 

topographical maps for all of the components showed a noisy pattern. There are several reasons why ICA 

might not be optimal for speech-related artifact rejection. The movement artifact induced in MEG signals 

is non-stationary due to the different articulation depending on the word to articulate and the location of the 

source of the artifact (e.g. jaw) changes over time (De Vos et al., 2010). This violates the requirements for 

ICA and leads to a failure of ICA to clearly separate signals and artifacts. 

Taken together, different strategies/approaches have been used to study speech production using MEG. 

However, there is still a demand to further improve speech-related artifact removal approaches. The unique 

characteristic of our proposed approach is that it makes use of head movement information to initially 

reduce movement artifacts and then uses the signal space projection approach (SSP) to remove the residual 

artifacts. 

In the first step of our proposed artifact rejection pipeline, we used regression analysis to reduce the artifact 

level. We could successfully reduce the confounding variance caused by head movement by incorporation 

of the head position/orientation time-series into a general linear model. This approach has been previously 

applied on several MEG datasets recorded during visual attention, auditory expectation, as well as in 

somatosensory spatial attention tasks (Stolk et al., 2013). This step could play a vital role in improving the 

signal-to-noise ratio by removing a major part of the artifact. It should be noted that this step benefits from 

running twice. First, global head movements are corrected that occur across the duration of the 

measurement. Second, a third-order polynomial fit to the head movement traces is subtracted to optimise 

the representation of transient movements (such as movements associated with each syllable production).  

For two out of eleven participants this step was sufficient to clean data and proceed with further analysis. 

The effectiveness of this step depends on the distortion level (level of confounding variance) and the quality 

of the extracted head position/orientation time-series. 

To remove the residual artifact, we used the signal space projection (SSP) approach in the second step. 

Using SSP, we can separate signals into a signal subspace and an artifact subspace (Uusitalo and Ilmoniemi, 
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1997). Data is then linearly projected onto the signal subspace. This is an effective approach for separating 

artifacts from signals especially when the artifact has a constant spatial pattern. This approach has been 

previously used to remove different types of artifacts such as ocular artifacts from MEG data (Chang et al., 

2018; Pulvermüller and Shtyrov, 2009). During speech production, movement artifacts are represented in 

a distinct subspace (coming from either head movement or lower jaw movement) with varying amplitudes 

as a function of time. Therefore, SSP is an optimal approach for separating spatial subspaces containing 

movement artifacts. We used SVD to decompose MEG data into components. Movement-related 

components were selected by a conservative three-steps approach using components’ topographical maps 

and time-series as well as their mutual information with head position/orientation time-series. The 

advantage of the latter component selection step is that it makes explicit use of the available information 

on artifact characteristics.  

In this study, we demonstrated that our proposed approach was able to remove artifacts and retrieve 

neurophysiological information. Importantly, our approach could successfully clean MEG data strongly 

distorted due to implanted ferromagnetic dental retainers. Previous studies reported successful MEG 

measurements in the presence of implanted ferromagnetic stimulation hardware (Abbasi et al., 2016). 

Although the pre-measurement demagnetization step might reduce the artifact caused by retainers, any 

head/lower jaw movement can still induce strong artifacts in MEG sensors during measurement. Here we 

also showed the feasibility of recording participants with retainers.  This could be very important for 

recruiting participants not only for studying speech production but also when planning any MEG 

experiment.    

Another advantage of the proposed approach is that there is no need to perform any initial step such as 

defining epochs or frequency bands representing either artifact or neurophysiological signal. Moreover, this 

approach is system-independent and could be applied to any type of MEG data. 

Additionally, facial muscle activities have been reported as another source of artifact in MEG speech 

studies. The power of induced muscle artifact lies in frequencies higher than 20 Hz (Muthukumaraswamy, 

2013). In this study, we did not attempt to remove muscle artifact from MEG data. Previous studies used 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2020. ; https://doi.org/10.1101/2020.11.28.402008doi: bioRxiv preprint 

http://sciwheel.com/work/citation?ids=9742396&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=9743880,4462650&pre=&pre=&suf=&suf=&sa=0,0
http://sciwheel.com/work/citation?ids=9743880,4462650&pre=&pre=&suf=&suf=&sa=0,0
http://sciwheel.com/work/citation?ids=3805076&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=3901930&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=3901930&pre=&suf=&sa=0
https://doi.org/10.1101/2020.11.28.402008
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abbasi et al – page 28 
 

different strategies such as the ICA approach to remove muscle artifact (McMenamin et al., 2011; 

Muthukumaraswamy, 2013; Shackman et al., 2009). Generally, ICA shows better performance when data 

quality is higher. Therefore, in case muscle artifact removal is necessary, we recommend to improve the 

signal-to-noise ratio by means of our proposed approach and apply ICA as the final step. 

5. Conclusion 

Our newly presented artifact rejection approach could facilitate assessing speech production and perception 

mechanisms by MEG. The presented results revealed that it is also possible to remove complex patterns of 

artifact induced by implanted devices, while preserving essential neurophysiological information. Future 

applications might include MEG experiments during continuous speech production assessing the neural 

activity underlying speech production.   
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