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Abstract  

Magnetic resonance fingerprinting (MRF) is a novel quantitative MRI (qMRI) framework that 

provides simultaneous estimates of multiple relaxation parameters as well as metrics of field 

inhomogeneity in a single acquisition. However, current bottlenecks exist in the forms of (1) scan 

time; (2) need for custom image reconstruction; (3) large dictionary sizes; (4) long dictionary-

matching time. The aim of this study is to introduce a novel streamlined magnetic-resonance 

fingerprinting (sMRF) framework that is based on a single-shot echo-planar imaging (EPI) 

sequence to simultaneously estimate tissue T1, T2, and T2* with integrated B1+ correction. 

Encouraged by recent work on EPI-based MRF, we developed a method that combines spin-echo 

EPI with gradient-echo EPI to achieve T2 in addition to T1 and T2* quantification. To this design, 

we add simultaneous multi-slice (SMS) acceleration to enable full-brain coverage in a few 

minutes. Moreover, in the parameter-estimation step, we use deep learning to train a  deep neural 

network (DNN) to accelerate the estimation process by orders of magnitude. Notably, due to the 

high image quality of the EPI scans, the training process can rely simply on Bloch-simulated data. 

The DNN also removes the need for storing large dictionaries. Phantom scans along with in-vivo 

multi-slice scans from seven healthy volunteers were acquired with resolutions of 1.1x1.1x3 mm3 

and 1.7x1.7x3 mm3, and the results were validated against ground truth measurements. Excellent 

correspondence was found between our T1, T2, and T2* estimates and results obtained from 

standard approaches. In the phantom scan, a strong linear relationship (R=1-1.04, R2>0.96) was 

found for all parameter estimates, with a particularly high agreement for T2 estimation (R2>0.99). 

Similar findings are reported for the in-vivo human data for all of our parameter estimates. 

Incorporation of DNN results in a reduction of parameter estimation time on the order of 1000 x 

and a reduction in storage requirements on the order of 2500 x while achieving highly similar 

results as conventional dictionary matching (%differences of 7.4±0.4%, 3.6±0.3% and 6.0±0.4% 

error in T1, T2, and T2* estimation). Thus, sMRF has the potential to be the method of choice for 

future MRF studies by providing ease of implementation, fast whole-brain coverage, and ultra-fast 

T1/T2/T2* estimation.  
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1. Introduction 

Quantitative magnetic resonance imaging (qMRI) typically refers to the quantitative mapping of 

tissue parameters such as T1 and T2 (Cheng et al., 2012; Deoni, 2010; Keenan et al., 2019; Tofts, 

2005). Compared to the clinically dominant qualitative (e.g. T1- and T2-weighted) techniques, 

qMRI provides an important, objective alternative in clinical and research settings for effective 

detection and monitoring of different neurological pathologies (Cheng et al., 2012), including 

stroke (Bernarding et al., 2000), neurodegenerative diseases (Baudrexel et al., 2010; Rugg-Gunn 

et al., 2005; Townsend et al., 2004) and brain tumors (Just and Thelen, 1988; Kurki and Komu, 

1995). However, qMRI is typically limited by very long acquisition times, constituting a barrier 

for routine clinical practice (Cheng et al., 2012; Keenan et al., 2019; Tofts, 2005; Whittall et al., 

1997). Moreover, conventional methods suffer from high sensitivity to scanner imperfections (e.g. 

B1+ or B0 inhomogeneities), such that T1 and T2 estimates from different scanners and different 

methods may not be directly comparable (Stikov et al., 2015). As a result, there is a clear need for 

faster and more robust quantitative imaging approaches that can simultaneously estimate 

conventional tissue parameters (T1, T2, and T2*) as well as field-specific parameters (B0 and 

B1+). 

  Accelerated qMRI methods have been proposed to tackle certain parameters (Cunningham 

et al., 2006; Deoni et al., 2004; Ehses et al., 2013; Freeman et al., 1998; Heule et al., 2014), but 

most of them are incapable of estimating more than two tissue parameters at once. Moreover, these 

methods sometimes rely on separate B1 field mapping scans to increase accuracy. To meet these 

challenges, magnetic resonance fingerprinting (MRF) was proposed as a novel qMRI framework 

that provides simultaneous estimates of multiple relaxation parameters as well as metrics of field 

uniformity in a single acquisition (Cloos et al., 2016; Ma et al., 2013). In MRF, sequence 

parameters are varied dynamically in a pseudorandom fashion and the acquired signal time courses 

are matched to a pre-calculated dictionary (created using Bloch simulations) through a pattern-

matching algorithm. The matching identifies the dictionary entry and its corresponding set of 

predetermined qMRI parameters. So far, MRF has mostly provided quantification of T1 and T2 

relaxation times and is most commonly based on a spiral readout with a large undersampling factor 

to speed up acquisition (Bipin Mehta et al., 2018; Jiang et al., 2014; Ma et al., 2013; Poorman et 

al., 2019). The spiral readouts were chosen for their high sampling efficiency, and are rotated at 
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each TR to randomize undersampling artifacts and to provide spatial incoherence (Bipin Mehta et 

al., 2018). Despite MRF’s great promise, there remain several bottlenecks: 

1. Spiral acquisitions usually require an offline image reconstruction, including regridding and 

sampling density compensation and are more vulnerable to field imperfections as compared 

to Cartesian readouts.  Based on the latter, MRF using echo-planar imaging (EPI) was 

introduced recently (Hermann et al., 2020; Rieger et al., 2018, 2017), but so far can only 

provide T1 and T2* estimates.  

2. The original spiral-based MRF framework has the opposite issue --- it was designed for T1 

and T2 quantification but not T2*. The current spiral-based approaches that offer whole-

brain simultaneous T1, T2 and T2* estimation  (Hong et al., 2018; C. Y. Wang et al., 2019; 

Wyatt et al., 2018) require relatively lengthy acquisitions (typically about 1/2 minute per 

slice) by clinical standards.  

3. In the pattern matching step, the MRF estimates are quantized and the dictionary size grows 

very rapidly with the increasing number of parameters (dictionary dimensionality) and steps, 

easily reaching hundreds of gigabytes. This constitutes another barrier to the broad 

application of MRF (Hilbert et al., 2019; Hong et al., 2018; Körzdörfer et al., 2018; Wright 

et al., 2018). Recently, compressing the dictionary along the time dimension and utilization 

of the polynomial fitting on the parameter space have been suggested as possible ways to 

partly circumvent this issue. Yet, due to the growing dictionary size and dimensions, more 

effective approaches are still required (McGivney et al., 2014; Yang et al., 2018). 

4. The time needed for parameter matching is proportional to the total number of dictionary 

elements and depending on the hardware, can take up to several hours per slice (Hong et al., 

2018). Recently, accelerated matching has been proposed (Cauley et al., 2015), but as it still 

relies on pattern matching, the increase in parameter estimation speed cannot fully resolve 

the speed bottleneck in cases of high dictionary size and dimensionality. 

  

To address these limitations, we introduce a streamlined MRF (sMRF) framework that aims to 

facilitate the implementation and application of MRF by addressing the above-mentioned 

challenges. 

1. To facilitate the image acquisition, we replace the undersampled spiral readout with a 

single-shot EPI readout,  whereby in-plane acceleration is used to minimize image 
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distortions. EPI-based acquisitions in MRF have been proposed previously (Rieger et al., 

2017; Su et al., 2017), and allow for easy online reconstruction of images that are free from 

major undersampling artifacts.  

2. To overcome limitations in current EPI-based MRF, we introduce a modular extension 

based on spin-echo (SE) EPI that provides T2 sensitivity with B1+ correction. In this way, 

two different EPI stages of the technique work in sequence to estimate T1, T2* and then 

T2. We further capitalize on the blipped-CAIPI simultaneous multi-slice (SMS) method 

(Setsompop et al., 2012; Ye et al., 2016) to achieve fast whole-brain coverage (~ 3 

minutes). 

3. To eliminate the need for using a large dictionary, we utilize a deep neural network (DNN) 

(Cohen et al., 2018; Hoppe et al., 2017) for parameter estimation that can be sufficiently 

trained with simulated data alone. As a result of having the regression layer as the output, 

this DNN-based parameter estimation stage provides non-quantized estimates and requires 

much lower storage than a conventional dictionary (up to orders of magnitude lower).  

4. The use of DNN also allows for parameter estimation that is orders of magnitude faster 

than conventional dictionary matching, taking only a few minutes to compute whole-brain 

T1, T2, and T2*  maps on a typical desktop computer (single-core, 1.6 GHz CPU). 

 

Overall, this study is aimed at presenting an sMRF framework that is easy to implement, is fast 

in the data acquisition step as well as data reconstruction stage and is capable of producing 

estimates for all three main relaxation parameters of interest (T1, T2 and T2*) within a few 

minutes. We demonstrate the accuracy and robustness of the streamlined MRF technique in 

phantoms and in vivo human brains.  
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2. Methods 

A schematic overview of the streamlined MRF pipeline is shown in Figure 1.  

 

2.1. Addressing EPI-related challenges for T2 and T2* estimation 
As mentioned previously, when using EPI readouts, a unique challenge is to separate T2 from T2* 

effects. Our solution is to separate T2* and T2 estimation into two different stages of the sequence. 

Figure 1. Schematic of the streamlined MRF pipeline. Our streamlined MRF method has 3 

main components. Image acquisition: a new pulse sequence is designed that concatenates 

gradient- and spin-echo EPI for T1, T2 and T2* sensitivity. In the case of both, imaging 

parameters, including TR, TE and FA, are pseudo-randomly varied, and the images are 

reconstructed online, without substantial undersampling artifacts. Network training: as we use 

deep learning to replace the dictionary, a deep neural network is trained using simulated 

fingerprints alone, made possible due to its close resemblance to experimental data  that is 

devoid of major undersampling artifacts. This feature greatly extends the flexibility for training. 

Parameter estimation: This is performed using the same deep neural network, and is orders of 

magnitude faster than pattern-matching based estimation.  
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The first (GE) stage builds on the recent success of EPI-based MRF to provide B1+ corrected T1 

and T2* estimation (Rieger et al., 2018, 2017), while the second stage focuses on providing T2 

estimation by using the SE contrast mechanism. In this dual-stage manner, we expect to reduce 

the cross-talk between T2* and T2 estimation and consequently the possibility for error 

propagation between these two. Moreover, another challenge in MRF is the multi-dimensional 

nature of the dictionary, which can easily expand storage requirements to challenging levels and 

result in lengthy matching processes (reportedly up to several hours per slice (Hong et al., 2018; 

Zhang et al., 2020)). In this respect, our two-stage approach serves as a proof of concept for a 

modularized design for MRF, in which each module can be optimized in parameters and duration 

to the estimate of interest. In this way, we constrain the complexity of the dictionary-matching 

process, leading to potential gains in the acquisition and computational efficiency. These outcomes 

will be demonstrated in the following.  

 

2.2. Pulse sequence design 

Our sequence design derives from the work by Rieger et al. (Rieger et al., 2018, 2017), but with a 

major extension.  A schematic view of the sequence is shown in Figure 2. We acquire both 

gradient-echo (GE) and spin-echo (SE) EPI data in the same acquisition. This dual-stage design 

was inspired by recent work (Hong et al., 2018; C. Y. Wang et al., 2019) and motivated by the 

following considerations. First, as T1 and B1+ can both be quantified in the GE-EPI segment and 

then fed into the dictionary-matching process for the SE-EPI segment, it was found that even as 

few as 80 frames, less than half the number of frames in the GE segment (which was 200), were 

enough for accurate T2 estimation (see Appendix). Secondly, T2 and T2* estimations are 

performed from data acquired in separate (GE and SE) segments of the sequence, such that error 

in one estimate does not necessarily contaminate the other estimate. Lastly and importantly, such 

a design is advantageous over acquiring the SE-EPI and GE-EPI scans separately, as it minimizes 

confounding effects such as movement, time-dependent B0 inhomogeneity and possible 

systematic differences in auto-tuning.
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Figure 2. Schematic view of the sequence. (a) a Gradient Echo (GE) echo-planar imaging (EPI) stage is 

followed by a spin-echo (SE) stage. (b,c,d) The patterns of flip angle change, TE change and TR change, 

spanning the GE and SE stages (for a total of 280 frames). The red and blue dotted lines represent the GE 

and SE sections, respectively. 
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More specifically, the GE-EPI segment is similar to that proposed by Rieger et al. (Rieger 

et al., 2017), with only slight modifications (e.g. 200 instead of 160 frames). After a non-selective 

hyperbolic secant adiabatic inversion pulse, the GE-EPI segment begins (Fig. 2a): (1) the FA varies 

in accordance with five half periods of an amplitude-modulated sinusoidal variation (Fig. 2b), with 

FAs ranging from 0 to 60º; (2) TEs vary between 22-95 ms (Fig. 2c) while TR is the shortest 

possible for each TE as allowed by the slice-interleaved multi-slice acquisition (Fig. 2d, TR range 

= 300-920 ms); (3) in addition to fat saturation, both gradient and RF spoiling are implemented 

using crusher gradients before and after the fat saturation module (in x, y and z directions). After 

200 GE-EPI frames, the sequence transitions into SE-EPI for 80 frames. The number of frames 

was informed by simulation (see Appendix and Supplementary Figures). Crusher gradients are 

added before and after the refocusing pulse in all three directions to spoil the free induction decay 

that may originate from non-ideal refocusing. In the SE-EPI segment, two half-periods of a 

sinusoidal function are used for FA variation (with the sinusoidal maxima of 30 and 60 degrees, 

respectively). The TE range for the SE portion is 40-190 ms. Other sequence parameters common 

to both GE and SE segments are: matrix size = 192x192, field of view (FOV) = 220 x 220 mm, 

voxel size = 1.1x1.1x3 mm, slice gap=50%, parallel imaging with GRAPPA factor=3, #reference 

lines=96, partial Fourier=6/8, readout bandwidth (BW)/voxel=1302 Hz, total acquisition time per 

slice is 29 s. Each acquisition affords multi-slice (non-whole-brain) coverage and was achieved 

through a standard interleaved acquisition that also has the benefit of increasing the baseline signal 

by lengthening the effective TR. 

To enable accelerated whole-brain coverage, we further incorporated simultaneous 

multislice (SMS) acceleration. In the SMS implementation, we implemented blipped-CAIPI by 

replacing the RF excitation pulses with their SMS equivalents (excepting the initial inversion 

pulse, which is non-selective). The sequence parameters used for the SMS version are as follows: 

SMS-factor = 4, FOV shift factor = 2, matrix size =128x128, FOV= 220 x 220 mm, voxel size = 

1.7x1.7x3 mm, slice gap=50%, parallel imaging with GRAPPA acceleration factor = 2, #reference 

lines = 24, partial Fourier = 6/8, BW/Pixel = 1954 Hz, number of slices = 24, effective acquisition 

time = 7 sec/slice. In-plane acceleration of at least a factor of 2 was required to minimize T2*-

related image distortions.  
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2.3. Network training: Dictionary generation  

In this work, as was done by Rieger et al. (Rieger et al., 2017), each voxel is represented by one 

isochromat. The dictionary is generated using the discrete matrix form of the Bloch equations. The 

effect of RF pulses is assumed to be instantaneous, and the RF-slice profile is assumed to be ideal 

for simplicity. B1+ inhomogeneity is explicitly included in the model as a scaling factor applied to 

the nominal FAs. By showing the range as [min:step-size:max], the simulated ranges are: T1= 

[100:20:4000] ms, both T2 and T2* = [5:5:30 32:2:130, 135:5:200, 210:10:350] ms and the relative 

B1+ = [0.5:0.05:1.5]. The T1, T2, and T2* values are chosen to specifically target the brain-tissue 

range. Overall the dictionary has ~ 350,000 entries. Dictionary generation takes less than 15 

minutes on a desktop computer running on a 1.6 GHz CPU.  

 

2.4. Network training: Deep learning for parameter estimation 

To reduce the storage requirement and increase the parameter estimation speed in streamlined 

MRF, a deep learning approach was used. This stage was inspired by Cohen et al. (Cohen et al., 

2018) but with some changes in the network architecture, training algorithm, the number of nodes 

and the number of outputs. A deep neural network (DNN) with two hidden layers was designed 

(consisting of 128 and 64 neurons, respectively) in which the input layer gets the measured 

fingerprint time series for each voxel and the output layer produces B1+ corrected T1 and T2* 

estimates. The rectified linear unit (ReLu) function was used after each hidden layer. The adaptive 

moment estimation (Adam) optimizer was utilized to train the network using a constant learning 

rate of 0.001 and the minimum batch size of 1024. 100 epochs were used for training, which took 

15-20 min on a single CPU as described earlier. During the DNN training process, Gaussian white 

noise was added to each dictionary entry with a SNR ranging 16-40 dB. The DNN was 

implemented using MATLAB’s deep learning toolbox (version 12.1, Mathworks, Natick, MA, 

USA) using custom-written codes. Figure 3 shows a schematic view of the parameter estimation 

stage using DNN. The training stage produces the weights for the neurons (nodes) in the hidden 

layers. Note that we do not need to incorporate spatial information, and each voxel’s fingerprint is 

matched independently from those of others. 
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As our acquired images and hence the MRF time series are free from major under-sampling 

artifacts, we have the advantage of requiring simply the simulated dictionary data (instead of in-

vivo data) for training. As such, even apart from eliminating the need for separate lengthy scans 

to obtain training data, it is expected that our approach is more versatile and generalizable, as 

covering the whole reasonable range of parameters is difficult to achieve while using in-vivo data 

for training. 

 

2.5. Parameter estimation 

As mentioned previously, a two-step parameter estimation approach is followed. As described 

earlier, in the first step, the GE data are used to obtain estimates of T1, T2* (and B1+), whereas in 

the second step, the SE data is used only to match for T2. For validation testing, the DNN-based 

parameter estimates were compared to those produced by the conventional method. 

Figure 3. Schematic view of the DNN. The network consists of two fully connected hidden 

layers, with 128 nodes (neurons) and 64 nodes, respectively. The output layer produces T1 and 

T2* (as well as B1+) estimates using the GE-EPI data. The T1 and B1+ estimates then feed into 

the estimation of T2 based on the SE-EPI data. Note that the T2 estimation is performed by 

matching to a mini-dictionary generated using DNN-based T1 and B1+ results. Also, note that 

due to the use of the regression layer the T1 and B1+ estimates are continuous, although the 

dictionary used in the training process was based on quantized relaxation values.  
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● Conventional parameter estimation: this is done using the magnitude of the MR signal and 

the pre-calculated dictionary using a maximum dot product approach. Based on a 

simplifying assumption that T2* can be represented by a mono-exponential decay (Rieger 

et al., 2017), both T2 and T2* can be estimated using the same dictionary, without the need 

to include T2 and T2* as different dimensions of the dictionary.  

● DNN-based parameter estimation: as mentioned earlier, the input layer is fed the 

fingerprint time series for each voxel and the output layer produces B1+ corrected T1 and 

T2* estimates. To estimate T2 and based on these values, a mini-dictionary is constructed 

whereby only T2 varies between entries (here constituting 85 entries instead of the original 

350,000 entries). Due to the use of this mini-dictionary, the simplest way to estimate T2 is 

by using conventional dictionary matching, which yielded the results almost 

instantaneously.  

 

Note that the DNN-based T1 and B1+ estimates are fed into T2 estimation. This guarantees that as 

long as the T1 and B1+ estimates are accurate, errors in T2* estimation (also see Discussion) will 

not propagate into T2 estimation. Dictionary generation and data matching both were implemented 

in MATLAB R2019b (MathWorks, Natick, MA, USA) and C++ using custom-written codes. 

 

2.6. Image acquisition 

Imaging was performed on Siemens TIM Trio 3 T and Prisma 3 T systems (Erlangen, Germany) 

using a 32-channel receive-only head coil for the Trio and 64-channel head/neck coil for the 

Prisma. Specifically, the phantom and human validation scans were performed on the Trio, and 

the in vivo SMS-non-SMS comparison scans were performed on the Prisma. While this was driven 

by an institutional scanner upgrade, the Prisma system is nonetheless more appropriate for 

establishing the performance of state-of-the-art SMS.  

 

2.7. Phantom validation 

For validation, phantoms were built with varying aqueous concentrations of copper (II) sulfate 

(CuSO4) and agar (1-4% w/w). Seven small vials (15 mm in diameter) with different T1, T2, and 

T2* properties were placed inside a larger cylindrical plastic container filled with CuSO4 doped 
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distilled water. Our MRF estimates were compared to those obtained from standard relaxometry 

techniques, referred to as “ground truth”.  

Validation reference scans using “gold-standard” techniques were performed using the 

same spatial resolution as the single-band MRF acquisitions (1.1x1.1x3 mm3). To validate T1 

estimations, inversion recovery turbo SE (IR-TSE) was used with eight different inversion times 

(TI = 50, 100, 200, 400, 800, 1600, 3200, 6400 ms), TR=10 s, TE=9.5 ms, BW/pixel=200 Hz and 

turbo-factor=8. For T2 validation, a single echo TSE sequence was repeated with seven echo times 

(TE=19, 38, 57, 76, 95, 114, 132, 152 ms), TR=5 s, BW/Pixel=200 Hz, Turbo-factor=8. T2* was 

measured using a multi-echo GRE with 12 echo times (TE=2, 5, 9, 13, 17, 25, 30, 40, 50, 60, 70, 

80 ms) TR=1 s, BW/Pixel=390 Hz and FA=15°. B1+ maps were acquired using the double-angle 

method with a FLASH sequence, whereby FA1=60o and FA2=120o, TR/TE=5000/10 ms 

(Stollberger and Wach, 1996). Standard T1 fitting was done using complex data and the five-

parameter model described by Barral et al. (Barral et al., 2010). A two-parameter model (S=M0 

exp(TE/T2(*))) was used for both T2 and T2* by fitting a monoexponential curve to the data using 

a nonlinear (Levenberg-Marquardt) curve-fitting algorithm (MATLAB). Regions of interest 

(ROIs) were manually drawn around each of the small vials, excluding edge voxels. The mean and 

standard deviation of all the voxels in these ROIs were used for further comparisons. 

  

2.8. In vivo validation 

Following informed written consent, in accordance with the Institutional Research Ethics Board 

policy, in-vivo data from seven healthy human subjects (four males, mean±std: 27±6 years old) 

were acquired to complement the phantom validation. Three subjects were scanned on the Tim 

Trio scanner using only the single-band version of the sequence (1.1x1.1x3 mm3 voxels), and four 

subjects were scanned on the Prisma scanner with both single- and multi-band scans (1.7x1.7x3 

mm3 voxels). Sequences and scanner information were similar to those described under “Phantom 

Validation” and “Pulse Sequence”. As in the phantom validation testing, conventional “gold-

standard” scans were used to generate “ground-truth” parametric maps. In each subject, to avoid 

the prolonged acquisition time needed for “gold-standard” measurements (more than 30 minutes 

per slice for T1, T2, T2* and B1 validation scans), only one slice was acquired per subject for 

reference scans. Nevertheless, to probe the robustness of our technique, the slice position was 

varied across subjects to accommodate different levels of field homogeneity and anatomical 
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properties. Furthermore, the performance of single-band and multi-band implementations 

compared to in-vivo was evaluated. Manual ROIs were drawn in several regions of the brain to 

represent grey matter (GM) and white matter (WM) regions as well as different field 

inhomogeneity scenarios. These ROIs were used for subsequent comparisons between sMRF and 

ground truth measurements. 

 

2.9. Data and code availability 

Under our institution's ethics approval, the human data is not available for public sharing but the 

codes and phantom data are available upon request. 

 

3. Results 

As a demonstration of image quality, raw sMRF images from the phantom scan as well as one 

human scan are shown in Figures 4a and c. Compared to under-sampled spiral MRF images (Bipin 

Mehta et al., 2018), our images have visually higher SNR and minimal artifacts (in particular, no 

undersampling artifact). Also, despite a large matrix size (192x192), our use of GRAPPA 

acceleration with partial Fourier reconstruction appears successful in minimizing EPI-related 

image distortions. To demonstrate the quality of the single-voxel match between the dictionary 

entry and acquired data in our approach, we plot the conventional dictionary matched entry with 

our phantom and in-vivo data in Figures 4b and d, respectively, as a function of the frame number. 

Excellent correspondence between the sMRF data, the fitted dictionary element and the ground 

truth dictionary entry (simulated with Bloch equations using parameters determined by 

conventional relaxometry) can be seen, owing to the lack of the typically observed under-sampling 

artifact. As expected, the baseline signal level from the SE segment is lower than that from the GE 

segment, stemming from the lower baseline longitudinal magnetization that resulted from the 

continuous refocusing. Nonetheless, high overall T2 quantification accuracy is still achieved, 

likely since T2 is the only parameter estimated from this segment.  
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Figure 4. Quality of raw MRF images and the dictionary matching. (a) Raw sMRF image from 

the phantom scan (frame number=60, acquisition parameters listed in legend). (b) The quality of 

the match between the data, the selected dictionary entry and the ground truth dictionary element 

(created from ground-truth measurements), with the parameter estimates captioned on top for one 

voxel shown with a red square. (c) Raw sMRF image from the human scan (also frame number 

60). (d) The quality of the match and the estimated values for one voxel shown with red square. In 

both cases, excellent agreement is found between the selected and the ground-truth dictionary 

entries. Dotted vertical lines in (b) and (d) show the start of the SE section. 

igure 4. Quality of raw MRF images and the dictionary matching. (a) Raw sMRF image from 
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The parametric maps obtained from phantom acquisitions using sMRF are shown alongside 

the “ground-truth” measurements (ground truth) in Figure 5. Different color schemes have been 

chosen here for each parameter for better distinction and visibility of different relaxation 

parameters, as was recommended and used previously (Obmann et al., 2019; Wang et al., 2018). 

Excellent correspondence between estimated and expected values (high R2 values) is achieved for 

Figure 5. Phantom validation of sMRF approach based on gold-standard methods. 

(a,b,c) Strongly similar contrast was observed between our method and the validation scans 

that take ~30 min per slice. A high degree of quantitative agreement (R2 values and regression 

coefficients) in the parameter estimates is shown for all cases. Data are shown for the single-

band implementation (acquisition time = 29 s per slice). 
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all three relaxation parameters (T1, T2 and T2*). Particularly, for T2 quantification, which is one 

of the main novelties of our technique, the R2 is 0.996, the slope of the least square line is unity 

and the y-intercept is only 4 ms.  For T1, the R2 is 0.993 and the slope of the least square line is 

1.04. For T2*, R2 is 0.960 and the slope is 1.01.   

Validation of the single-band version of our in-vivo human sMRF results is shown in 

Figure 6, complete with three zoomed-in views of select regions. Their qualitative agreement with 

the standard measurements in terms of the image contrast is visible in this figure. As mentioned 

earlier, as the validation scans are lengthy, we acquired different slice positions, with each set of 

positions belonging to a different subject, resulting from our efforts to balance the number of slice 

positions and the length of scans per subject. Across all subjects and slice positions, similar 

contrast and range of estimated values can be observed. Moreover, good correspondence between 

our MRF-based B1+ maps and standard B1+ maps (double-angle method) is shown in 

Supplementary Figure 1 and is comparable with those shown in previous publications (Boudreau 

et al., 2017; Buonincontri and Sawiak, 2016; Körzdörfer et al., 2018). For voxels residing in the 

cerebral spinal fluid (CSF), a reduced agreement was observed between sMRF and ground-truth 

scans, which could be a result of pulsatile flow and the very long longitudinal relaxation time of 

CSF (see Discussion).
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Figure 6. In-vivo validation of sMRF estimates and ground truth measurements for T1, T2 and T2* for different 

subjects and slice positions. Each slice is taken from a different subject and chosen in a different location to represent a 

range of field-heterogeneity conditions. The sMRF and ground truth results are in close agreement, except in some areas 

where cerebrospinal fluid (CSF) predominates 
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In Figure 7, we show the correspondence between sMRF estimates and ground-truth 

measurements for multiple selected ROIs in the slices shown in Figure 6, covering cortical and 

subcortical GM and WM. The values were taken from 3 different subjects, and averages taken for 

GM and WM separately. The means for both tissue types fall within the expected range and agree 

well with ground-truth measurements. Of particular interest is ROI 3 in Fig 7c. In this ROI, 

although the MRF T2* estimate is lower than the ground-truth value, likely as a result of through-

plane field inhomogeneity (see Discussion), the T2 values seem to be unaffected, attesting to the 

decoupling between T2 and T2* estimates in our approach and the feasibility of estimating T2 

using EPI-based MRF. 
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Figure 7. Correspondence between sMRF estimates and ground-truth measurements for multiple ROIs. Data are taken 

from 3 different subjects (one slice each). There is a good agreement between sMRF and ground truth estimates in different ROIs 

located in different GM and WM regions. The ROI means and standard deviations of the estimates are included in the bar graphs, 

with the error bars representing the standard deviation across the ROI. Asterisks indicate statistically different results (t-test, 

p<0.01), which is the case in only two cases (ROI 2 for T2 in (b) and ROI 3 for T2* in (c)). In this figure, the images are raw 

sMRF data from frame 60. 
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Both qualitative and quantitative comparison between the single-band and multiband 

(SMS-factor=4) versions of our method are shown in Figure 8. The comparison is shown visually 

for one subject as well as in the table for all the subjects and for two manually drawn ROIs in white 

and grey matter. Despite small differences, this figure indicates that comparable estimates can be 

obtained using either the single band or the multiband version of our sMRF method. Due to the 

rapid repetition of SMS pulses, especially in the form of refocusing pulses (the SE stage), we were 

sensitized to the specific absorption rate (SAR) levels. However, we found the SAR level reported 

by the scanner to be always well below the safety limits in all of our scans (at 16-19% of the 

maximum allowed SAR, depending on the subject). 

 

 

Figure 8. Comparison between the single-band (SB) and SMS (MB) versions of sMRF for 

multiple subjects. There is a good agreement between these two, both qualitatively , as can be 

seen in the parametric maps from one subject (a,b and c), and quantitatively, as can be seen in 

the table (d) summarizing the parameter estimates for white matter (ROI 1) and grey matter 

(ROI 2).  The difference (“Diff”) between SB and MB estimates are shown as a percentage.  
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In Figure 9 we show the results of the DNN parameter estimation and its comparison with 

conventional dictionary matching. The quality of SMS acquisitions is demonstrated in slices with 

varying degrees of susceptibility effects (acquired using SMS option in the sequence). Parametric 

maps and difference maps are shown for one representative subject while the table shows the mean 

absolute differences (in percent) for all the subjects, which we assume to represent estimation 

errors by the DNN. The mean errors for T1, T2 and T2* are 7.4%, 3.6% and 6.0%, respectively, 

with a maximum error of 8% (in T1 for subject 2). Note that although simulated data alone was 

used for training the DNN here, the results compare well with a recent spiral DNN-MRF study 

(Fang et al., 2019a) which reported ~ 5% and 9% difference in T1 and T2 parameter estimates, 

respectively, in which in-vivo data was required for DNN training. 

While running on a single PC (single-core 1.6 GHz, 16 GB of RAM) and using CPU, our 

DNN parameter estimation stage gave us estimates in almost 5 sec/slice, in stark contrast to around 

5000 sec/slice in conventional dictionary matching; that is, the use of the DNN constitutes a ~ 

1000 times acceleration. In terms of storage requirements, the size of the DNN was ~360 KB while 

the conventional dictionary was ~900 MB,  so the DNN leads to a ~2500 times reduction in storage 

requirements. It should be noted that these exact values pertain to our own dictionary 

configuration, DNN architecture and hardware specifications, but similar factors of acceleration 

and storage savings should be expected in general
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Figure 9. Comparison between DNN and the dictionary matching to obtain sMRF 

relaxation parameter estimates. The results are shown for 3 representative slices in one of the 

subjects (a-i). Moreover, a summary of the results for other subjects is provided (j) in terms of 

mean absolute error (%). The data presented were acquired using an SMS factor of 4 (voxel 

size = 1.7x1.7x3 mm3). 
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4. Discussion 

In this work, an sMRF framework was introduced that extends and facilitates the application of 

MRF in multiple aspects. The following novelties contribute to the streamlining of MRF. First, T2 

estimation was added to the previously introduced EPI-based MRF, making it possible to estimate 

all three main relaxation parameters in a single scan (T1, T2, and T2*). As also noted in previous 

work (Hermann et al., 2020; Rieger et al., 2018, 2017), EPI-based acquisitions make use of online 

instantaneous image reconstruction and produce images without noticeable under-sampling 

artifacts. Second, the utilization of simultaneous multi-slice (SMS) acceleration combined with 

slice interleaving makes this method capable of acquiring each slice in a few seconds, consequently 

enabling whole-brain coverage in just a few minutes (3 minutes here with SMS factor of 4). 

Thirdly, to reduce storage requirements and accelerate parameter estimation, a DNN was trained 

successfully, using simulated data alone, for in-vivo parameter estimation. It leads to orders of 

magnitude increase in speed of parameter estimation and similar degrees of reduction in storage 

requirements compared to when using conventional dictionary matching. In what follows, various 

aspects of the sMRF approach are discussed in more detail with respect to pertinent literature, and 

in the context of the results that were shown in Figs. 4-9. 

 

4.1. EPI readout for MRF 

The advantages of spiral imaging are well known and have been discussed earlier (Glover, 2012; 

Ma et al., 2013). It has been further shown that spiral MRF may provide benefits in terms of 

reduced estimation error as compared to Cartesian MRF while under-sampling is implemented 

(Stolk and Sbrizzi, 2019). Nonetheless, the practical feasibility of using an EPI readout for MRF 

is being increasingly recognized (Buonincontri and Sawiak, 2016; Rieger et al., 2017; Su et al., 

2017), and will not be repeated here. As discussed previously, in this work, we capitalize on the 

fact that the EPI readout is readily available on commercial systems, which is complemented by 

fast online reconstruction with manufacturer-provided approaches for correcting gradient delays, 

imperfections, and nonlinearities. In addition, due to the absence of under-sampling artifacts in 

EPI images, we were able to use far fewer imaging frames for accurate parameter estimation than 

in the case of spiral MRF (Cohen and Rosen, 2017; Rieger et al., 2017). This leads to lower data 
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sizes, faster dictionary generation (for DNN training), lower storage requirements and faster 

parameter estimation. As a case in point, our results show that the acquired signal in EPI-based 

MRF has high similarity with the matched noiseless dictionary entries generated by Bloch equation 

simulations (see Figure 4), owing to the absence of under-sampling artifacts. The high image 

quality of our approach facilitates the use of DNN parameter estimation (Cohen et al., 2018; Fang 

et al., 2019b). As the measured signals resemble the simulated ones, we were able to simplify the 

training process by not needing to acquire a large sample of undersampled data for realism of 

training. Furthermore, as motion correction has been recently raised as a means to improve MRF 

accuracy, the absence of undersampling artifacts in EPI images facilitates image-domain motion 

correction (Hermann et al., 2020). The high image quality also lends itself to possibly more 

accurate partial volume estimation through solving the inverse problem (Deshmane et al., 2019; 

Fang et al., 2019b). 

 

4.2. EPI-based T2 estimation 

For T1 and T2 MRF, spiral readouts are by far the most common, partly due to their ability to 

achieve very short TEs (Ma et al., 2013). However, in the case of EPI MRF, specifically, when 

using GE EPI, only T1 and T2* could be reliably estimated so far. Several groups have attempted 

to achieve T2 contrast by minimizing the TE (Cohen et al., 2018; Cohen and Rosen, 2017; Yang 

et al., 2019) as a way to suppress the T2* contamination. Yet, even with high in-plane acceleration 

factors and low partial Fourier factors, it is difficult to achieve an echo time of less than ~10ms for 

matrix sizes of 128x128 and above. Consequently, in these methods, T2* contamination is 

unavoidable and limited accuracy has been reported for T2 estimation, especially as compared to 

the case of T1 (Cohen and Rosen, 2017). 

Here, we not only used a SE refocusing pulse to enhance T2 contrast but also merged this 

with a GE-EPI stage to afford T1, T2 and T2* estimation with B1+ correction using a single 

sequence. One may raise the alternative of implementing a single-stage SE-EPI MRF for T1/T2 

estimation, but in reality, this option is much less promising. The main reason is the saturation of 

the longitudinal magnetization by the repeated refocusing pulses, which suppresses the signal,  

reduces the image SNR and leads to unreliable estimates (see Suppl. Figure. S2). This effect is 

conceptually similar to SNR loss in SE functional MRI while using very short TRs (Setsompop et 

al., 2012). Increasing the number of slices per TR (evenly distributed across the TR) is an intuitive 
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way to increase the effective TR and consequently the baseline signal level, but it comes at the 

cost of losing a fraction of the T1 sensitivity due to the resultant sparser sampling of the inversion 

recovery curve. Our solution to this problem is to fit for T2 alone in the second stage of the 

sequence, a process that incorporates the T1 and B1+ information derived from the first (GE) stage. 

This approach is validated by our results, as the accuracy of our method for T2 estimation was 

found to be high (R2> 0.99, regression coefficient ~= 1, when compared to “ground-truth” 

measurements) in our phantom data as well as in in-vivo scans. The general principles and 

advantages of a multi-stage acquisition and fitting process are further discussed in a later section. 

Nonetheless, reduced accuracy in regions with abundant CSF was observed, likely due to pulsatile 

flow effects in the ventricles, but also due to the fact that our current approach is not optimized for 

covering extreme T2 values. Similar limitations for CSF-related parameter estimation have been 

found in other MRF studies as well (Bipin Mehta et al., 2018; Deshmane et al., 2019; Jiang et al., 

2017; Ma et al., 2013), and can be partly addressed by extending the range of sensitivity in both 

acquisition and in dictionary construction (and consequently acquisition/matching times), if need 

be.  

 

4.3. Comparison with alternative methods 

Table 1 provides a systematic comparison of our method with selected existing qMRI approaches. 

Both MRF based and non-MRF based methods are covered in this table, with the former covered 

more comprehensively. The table gives a quick overview of where streamlined MRF (sMRF) 

stands. As shown in this table, no single method overtakes other methods in all aspects, and there 

are tradeoffs with all methods. sMRF is neither the highest in resolution nor the fastest in speed, 

but it combines ease of acquisition and estimation into a single method.   

Notably, there are three other published MRF papers that report simultaneous T1, T2 and 

T2* estimation using a spiral readout. In the work of Hong et al. (Hong et al., 2018), the acquisition 

time is 40 sec/slice for 1x1x3 mm3 resolution acquired over 800 frames in a multi-slice scheme 

(13 slices). In the work by Wang et al. (Wang et al., 2018), the acquisition time is 35 sec/slice for 

1.2x1.2x5 mm3 resolution using 3000 frames in a single-slice acquisition scheme. Finally, Wyatt 

et al. (Wyatt et al., 2018) offer 19 sec/slice acquisition time for 1.1x1.1x5 mm3 resolution using 

1000 shots (frames) in a single-slice acquisition scheme. In our work, our sMRF implementation 

calls for an acquisition time of 29 sec/slice for 1.1x1.1x3 resolution, and 7 sec/slice for 1.7x1.7x3 
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resolution with SMS-factor=4. However, our approach provides flexibility for the user to trade off 

spatial resolution for speed. Moreover, one advantage is that in both cases, we only needed to 

acquire 280 frames. Furthermore, sMRF also provides the possibility of using online image 

reconstruction and a DNN for parameter estimation that can be trained with simple Bloch 

simulations. As a result, we believe the sMRF pipeline is a strongly viable alternative to the spiral 

based approaches to simultaneously measure T1, T2, and T2*.  

 

Table 1. Comparison of some existing multiparametric relaxometry techniques with MRF 

techniques, including the proposed streamlined MRF. This table highlights the persisting 

challenges in the rapidly growing field of qMRI and MRF, as well as the pros and cons of the 

incipient EPI-based MRF techniques. It should be noted that acquisition is not the only bottleneck 

in clinical MRF, as lengthy dictionary matching also has been cited as a main challenge. 
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4.4. Multi-slice and SMS implementations 

In the current implementation of our technique, multi-slice coverage comes with multiple 

tradeoffs. First, it increases the effective TR, thereby reducing the sampling rate of the T1 recovery 

curve. This may negatively impact T1 accuracy (Bipin Mehta et al., 2018), although our T1 

estimation accuracy is high in reference to the gold-standard method (R2 = 0.993). On the other 

hand, the increase in effective TR increases the baseline signal, hence SNR, allowing for more 

accurate parameter estimations in general. Another tradeoff pertains to the baseline signal level in 

the SE-EPI stage. A short effective TR, while beneficial for T1 estimation, results in near saturation 

of the longitudinal magnetization, particularly due to the repeated application of refocusing pulses. 

This leads to low image SNR (see supporting information Supplementary Figure 2). Acquiring 

multiple slices, thereby increasing the effective TR to at least ~300 ms, alleviates this problem. 

Considering all these tradeoffs, in the single-band version of our sequence, 4-6 slices are deemed 

feasible. This is extended to the SMS case, in which the use of 4-6 slice groups would be optimal.  

In our study, we did not notice any significant deleterious effect of imperfect slice profile, 

at our current slice gap of 50% (of the slice thickness). That is, our current implementation does 

not necessitate the customization of the commercially available RF pulse for improved pulse 

profile.  Should smaller slice gaps ever be required, an alternative to pulse customization is to 

account for the slice profile effect in the dictionary. 

Compared to the single-band case (resolution =  1.1x1.1x1.3 mm3), the reduced spatial 

resolution of the SMS version (1.7x1.7x1.3 mm3) stems from the limitations of GRAPPA and SMS 

when used in combination. Such limitations are well documented (Seidel et al., 2020; Setsompop 

et al., 2012), preventing us from using GRAPPA > 2 when high SMS acceleration is used 

concurrently. Nonetheless, if we reduced the SMS factor, at the expense of longer acquisition time, 

we would be able to achieve the resolution of 1.1x1.1x1.3 mm3, although in that case, multiple 

iterations of SMS would be needed for whole-brain coverage. 

 

4.5. Two-stage approach 

Sequences consisting of multiple stages with different sensitivities to specific parameters at each 

stage have been proposed in the MRF context in several previous instances (Buonincontri and 
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Sawiak, 2016; Hong et al., 2018; Körzdörfer et al., 2018; Wang et al., 2018; Wyatt et al., 2018; 

Yang et al., 2019). Likewise, we use a two-stage approach to additionally estimate T2 (beyond T1 

and T2*). Unique to our technique, as compared to other alternatives (such as using very short TEs 

(Yang et al., 2019)), the use of a refocusing pulse for T2 estimation guarantees better suppression 

of remaining T2* effects, as demonstrated by the high accuracy in the T2 estimates. Finally, In our 

approach, aside from the two-stage acquisition consisting of the GE and SE stages, the parameter 

estimation is also dual-stage, as the T2 estimation using the SE stage data incorporates T1 and B1+ 

information obtained from the GE section. By adding a second stage, the acquisition time increases 

by 40% (assuming 200 shots for the GE stage) compared to a single-stage scheme for T1/T2*/B1+ 

estimation. Thus, a main strength of a two-stage scheme comes from its high efficiency, in the 

sense that while a SE stage is indispensable (due to its T2 weighting), we use the T1 and B1+ 

values estimated from the first (GE) stage to reduce the complexity and data requirement for the 

T2 fitting. An associated strength of such an approach, particularly in the case of an EPI-based 

acquisition, is that we are able to, as proven by our results, prevent crosstalk between T2* and T2 

estimates. These strengths may well generalize to a multi-stage design in which sensitivity to even 

more parameters is added in a semi-modular fashion. That is, certain stages may make use of 

estimates obtained from other stages to alleviate the challenge of the multi-parametric fitting.  

 

4.6. Parameter estimate by deep learning 

Deep learning has recently been suggested for parameter estimation in the MRF framework with 

success (Chen et al., 2019; Cohen et al., 2018; Fang et al., 2019a; Hoppe et al., 2017; Zhang et al., 

2020). Deep learning-based parameter estimation allows much faster estimation and much lower 

storage requirements, as only the weights for the neurons (instead of the whole dictionary) need to 

be stored. As a result, the use of DNN removes the pattern-matching stage through direct 

estimation of parameters based on the input time series. However, as the under-sampled spiral data 

do not resemble simulated data, in vivo data or an estimation of empirical noise given the 

undersampling artifact are typically required for training (Virtue et al., 2018). This limits the 

quality of the training process or makes it more challenging, as the extent to which the DNN can 

represent different types of tissues and pathologies is limited by the availability of such 

experimental data. Without the training set that covers the whole parameter-space (Chen et al., 
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2019; Fang et al., 2019a), the resulting DNN-based estimates may understandably be limited in 

accuracy, which is a concern, especially in disease conditions.  

 In our method, due to the absence of significant artifacts, there is a strong similarity 

between Bloch simulations and the acquired data, as was also the case in EPI-based arterial-spin 

labeling MRF (Zhang et al., 2020). As such, we found a dictionary generated using Bloch 

simulations with just added Gusaaian noise sufficient for neural-network training, implying that 

we can generate potentially unlimited training data from a wide parameter space. Moreover, the 

use of DNN allows us to increase the dimensionality of our initial dictionary, thereby more 

thoroughly embodying the benefits of the MRF framework. Of course, it is understood that added 

sensitivity to extreme parameter values also entails modifications to the sequence. 

Furthermore, our sMRF T2 estimation uses a simple dictionary matching process informed 

by DNN. This is because, having obtained the T1 and B1+ from the first stage, only a very small 

dictionary (mini-T2 dictionary) that covers the range of T2 values for a given T1 and B1+ is 

required. This dictionary is so small that the matching is almost instantaneous, precluding the need 

for a DNN at this stage. Of course, increasing dimensionality of the dictionary may necessitate the 

adoption of our DNN with expanded complexity.  

 

4.7. Limitations and future work 

While we showed strong evidence supporting the feasibility of using a streamlined dual-stage EPI-

based MRF to rapidly estimate T2 in addition to T1 and T2*, we are mindful of the following 

limitations. 

One limitation of our method is obviously the geometrical distortions due to the presence 

of B0 inhomogeneities that is common with EPI readouts. By using a combination of parallel 

imaging, partial Fourier acquisition and gradient and RF spoiling, we suppressed this effect to 

some extent, as shown in our results. Yet, it can still be a source of error in regions close to air 

cavities that suffer from high susceptibility differences (e.g. in Fig 6). For these reasons, some very 

recent qMRI studies that aimed to benefit from the efficiency of EPI have resorted to accelerated 

multi-shot approaches (Benjamin et al., 2019; Bilgic et al., 2019; F. Wang et al., 2019). Of course, 

this may come at the cost of more complex reconstruction and the need for phase navigator or 

data-driven approaches to deal with shot-to-shot motion.  
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Another limitation of our method comes from the representation of T2* as a mono-

exponential decay (like T2), by assuming a Lorentzian distribution for the off-resonance values. 

The challenge arises in regions with high (mostly through-plane) field inhomogeneities, in which 

this assumption may not hold. Figures 5 and 6 show examples of this scenario,  in which our MRF 

approach underestimates T2* in the frontal lobe. In such cases, aside from explicitly estimating 

B0 (Hong et al., 2018; C. Y. Wang et al., 2019), a reduction of slice thickness and more advanced 

iterative shimming or z-shimming (Nam et al., 2012; Yang et al., 1998) schemes can be considered 

as possible solutions. 

Moreover, while we have mostly shown the applicability and accuracy of our approach in 

a relevant range for brain tissue T1, T2 and T2* estimation, values that are far above and below 

this range can present challenges. In particular, to accurately estimate very short T2 (<30 ms), we 

should shorten the minimum TE in the SE stage using higher acceleration factors or partial Fourier 

reductions. Also, estimating very short T1 (~<300 ms) is equally challenging due to our sampling 

rate of the T1-decay curve. These attributes will be investigated in our future work. 

Finally, a more ambitious but important goal is to eventually optimize the pattern of TR, 

TE and FA such that our approach can be sped up (with the number of frames reduced) without 

sacrificing accuracy. In this case, several metrics need to be accounted for, including the baseline 

signal level (which affects image and temporal-SNR), the separability of the dictionary elements 

based on temporal and spatial noise distributions, slice-profile imperfections, and magnetization 

transfer effects, to name a few. Hardware limitations are also likely to sway the optimization for 

each scanner type. Therefore, finding a globally optimized pattern for EPI MRF (or MRF in 

general) is non-trivial and outside the scope of the current work. 

 

5. Conclusion 

In this work, we present a streamlined MRF method (sMRF) to estimate T2, T1 and T2* 

simultaneously with B1+ correction. The use of an EPI readout provides ease of implementation 

of this approach as well as allows the adoption of simultaneous multi-slice acceleration for fast 

whole-brain coverage. Furthermore, a deep-learning based matching stage that can be trained with 

simple Bloch simulations allows estimation of parameters in only a few seconds per slice, with 

low percent differences compared to conventional dictionary matching. Overall, this approach 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 28, 2020. ; https://doi.org/10.1101/2020.11.28.400846doi: bioRxiv preprint 

https://paperpile.com/c/D91XjD/a3Qp+lxklJ
https://paperpile.com/c/D91XjD/cd0qP+wMlPo
https://doi.org/10.1101/2020.11.28.400846


 

31 

introduces a novel framework that merges a number of novel techniques to pave the way for the 

broader adaptation of MRF. 

 

Appendix 

To estimate the minimum number of frames required for the SE-EPI segment, we first obtained a 

rough estimate of the data SNR. Then, the number of required SE frames was determined through 

Monte Carlo simulations. We generated a small dictionary with T1 ranging from 500 ms to 1500 

ms and T2 ranging from 50 ms to 150 ms (~1200 entries) while assuming homogeneous B1+. 

Subsequently, Gaussian white noise (based on the estimated experimental SNR) was added to the 

dictionary. Pattern matching was done and the mean relative error of T2 estimation was calculated 

to investigate the relationship between T2 error and the number of acquired SE frames. Based on 

this, we found that 80 SE frames leads to less than 2% error in T2 estimation and seems a 

reasonable choice by balancing acquisition time and accuracy (See Suppl. Figure S3). 
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Suppl. Figure S1. Correspondence between MRF B1+ maps and the ground truth method 

(double angle) for the 3 slices shown in Fig 6. There is a reasonable agreement between these 

two methods as is evident from the visual comparison and also the scatter plots. Scatter plots 

contain all the voxels in the represented slice. Gaussian smoothing has been applied as is standard 

in the B1 mapping literature based on (Boudreau et al., 2017).  
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Suppl. Figure S2. Exploring the effect of increasing longitudinal-recovery time on the 

baseline signal level. In each case, the recovery time is controlled by varying the effective TR by 

the number of slices acquired per TR. The relationship between the longitudinal/transverse 

magnetization and the recovery time is explored using Bloch simulations for a representative tissue 

with T1 of 800 ms and T2 values ranging between 50-150 ms. (a) single slice per TR with recovery 

time > 75 ms. (b) 4 slices per TR with recovery time > 300 ms. (c) 8 slices per TR with a recovery 

time > 600 ms. The shaded region represents the SE segment. Increasing the recovery time clearly 

leads to increased baseline signal in the SE segment (as well as the GE section). 
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Suppl. Figure 3. Error (%) in T2 estimation based on the number of frames used for the SE 

segment. The knee of the curve is at approximately 80 frames, which was used as a reasonable 

compromise between acquisition time and accuracy. 
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