
Predicting Brain Regions Related to Alzheimer's Disease Based on Global 

Feature 

Qi Wang1,2, Siwei Chen3, He Wang4, Luzeng Chen5, Yongan Sun3,*, Guiying Yan1,2,* 
1Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 

Beijing, China. 
2School of Mathematical Sciences, University of Chinese Academy of Sciences, 

Beijing, China. 
3Department of Neurology, Peking University First Hospital, Beijing, China. 
4Department of Medical imaging, Peking University First Hospital, Beijing, China. 
5Department of Ultrasound, Peking University First Hospital, Beijing, China. 

The first two authors contributed equally to this paper 

 

Abstract 

Alzheimer's disease (AD) is a common neurodegenerative disease in the elderly, early diagnosis 

and timely treatment are very important to delay the course of the disease. In the past, most of 

the brain regions related to AD were identified based on the imaging method, which can only 

identify some atrophic brain regions. In this work, we used mathematical models to find out the 

potential brain regions related to AD. First, diffusion tensor imaging (DTI) was used to 

construct the brain structural network. Next, we set a new local feature index 2hop-connectivity 

to measure the correlation among different areas. And for this, we proposed a novel algorithm 

named 2hopRWR to measure 2hop-connectivity. At last, we proposed a new index GFS (Global 

Feature Score) based on global feature by combing 5 local features: degree centrality, 

betweenness centrality, closeness centrality, the number of maximal cliques, and 2hop-

connectivity, to judge which brain regions are likely related to Alzheimer's Disease. As a result, 

all the top ten brain regions in GFS scoring difference between the AD group and the non-AD 

group were related to AD by literature verification. Finally, the results of the canonical 

correlation analysis showed that the GFS was significantly correlated with the scores of the 

mini-mental state examination (MMSE) scale and montreal cognitive assessment (MoCA) scale. 

So, we believe the GFS can also be used as a new index to assist in diagnosis and objective 

monitoring of disease progression. Besides, the method proposed in this paper can be used as a 

differential network analysis method in other areas of network analysis. 

Keywords: Alzheimer's disease, diffusion tensor imaging, brain structural network, 2hop-

connectivity, global feature score, differential network analysis 

 

1. Introduction 

Alzheimer's disease (AD) is a common neurodegenerative disease in the elderly. It is a continuous 

process from the pre-clinical stage, mild cognitive impairment (MCI) to dementia. Effective 

intervention in the pre-dementia stage or MCI stage may delay or reverse the process of the disease. 

Therefore, early identification of AD patients in the pre-dementia stage or MCI stage, as well as 

early and timely intervention, are very important for the prognosis of patients. With the development 

of imaging technology, the detection of AD is not limited to the phenomenon of abnormal protein 

deposition. It may be an effective method for early diagnosis and monitoring of disease progression 

to analyze brain structural network information, such as brain connectome analysis (Fan et al., 2016).  

A previous study (Liu et al., 2017) have shown that the change of topological feature of the brain 
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structural network is a marker of many kinds of neuropsychiatric diseases. At present, there are 

some analysis and research work on brain structural networks based on graph theory (Sanz-Arigita 

et al., 2010; John et al., 2016). The common method is to analyze some local properties such as the 

degree centrality of nodes, clustering coefficient, and shortest path length of the brain structural 

network and so on. Local features are difficult to reveal the whole characteristics of the network. In 

fact, global property by combining local properties can reveal the topological characteristics of the 

network more effectively, but it is never easy for choosing which local indexes. In this paper, we 

first defined a new local feature index 2hop-connectivity of the network to analyze the brain network 

more completely. 

In this work, 20 AD patients and 13 pre-dementia stages (non-AD) were recorded. We collected 

demographic data and clinical data, completed neuropsychological scale evaluation, and DTI scans. 

After image preprocessing, the brain structural network was constructed based on the number of 

fibers between different brain regions. The data of the AD group and the non-AD group were 

analyzed to get the local topological features of the brain structural network. At the same time, we 

designed an algorithm named 2hopRWR to get the local feature index 2hop-connectivity, and then 

we proposed a new index GFS by combing four classical local features and 2hop-connectivity. As 

a result, we predicted and analyzed the top 10 brain regions according to GFS scoring difference 

between the AD group and the non-AD group. Then, we analyzed the correlation between the GFS 

and the cognitive scale scores by canonical correlation analysis (CCA). Finally, we discussed the 

strengths and limitations of our work and its prospects. 

 

2.  Materials and methods 

2.1 Data collection and pre-processing 

In this research, 20 AD patients and 13 healthy control (non-AD) were recorded. We collected 

demographic data and clinical data, completed neuropsychological scale evaluation 

(Supplementary materials table 1) and DTI scans. After image preprocessing, the deterministic 

fiber tracking FACT method was used to construct the brain structural network. We use AAL brain 

atlas to divide each subject's brain into 45 left and right symmetrical brain regions, 90 brain regions 

in total. Each node represents a brain region in the brain structural network. The fiber connection 

between any two brain regions is represented by an edge, and the edge weight represents the fiber 

number. The fiber number (FN) matrix of 90 brain regions was obtained by PANDA (Pipeline for 

Analyzing BraiN Diffusion imAges) (Cui et al., 2013).  

Mathematically, we regarded 90 brain regions and its fiber connection as a weighted graph 

𝐺(𝑉, 𝐸, 𝑊), and 𝑉 = {𝑣1, 𝑣2, … , 𝑣90}, 𝐸 = {𝑒𝑣𝑖𝑣𝑗
, 𝑣𝑖 ≠ 𝑣𝑗}, 𝑊 = {𝑤𝑣𝑖𝑣𝑗

}, where 𝑣𝑖 denotes the 

i-th brain region, 𝑒𝑣𝑖𝑣𝑗
 is the edge if there are fibers connection between brain region 𝑣𝑖  and 𝑣𝑗, 

and 𝑤𝑣𝑖𝑣𝑗
  is the edge weight which is the fiber number between brain region 𝑣𝑖  and 𝑣𝑗 . The 

average value of the FN matrix of AD is calculated by adding the FN matrix of each AD patient and 

divided it by the number of AD patients. Similarly, we take the average value of the FN matrix of 

all normal controls to the FN matrix of the non-AD group. 

 

2.2 Local features 

2.2.1 Degree Centrality 

Let 𝑑(𝑣𝑖) denote the degree of a node 𝑣𝑖 , which is the number of nodes associated with 𝑣𝑖. And 

the degree centrality of a node 𝑣𝑖 as follows: 
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𝐶𝐷(𝑣𝑖) =
𝑑(𝑣𝑖)

𝑛−1
                               (1) 

2.2.2 Betweenness centrality 

Betweenness centrality 𝑐𝐵 of a node 𝑣𝑖 is the sum of the fraction of all-pairs shortest paths that 

pass through 𝑣𝑖: 

𝑐𝐵(𝑣𝑖) = ∑
𝜎(𝑣𝑠,𝑣𝑡|𝑣𝑖)

𝜎(𝑣𝑠,𝑣𝑡)𝑣𝑠,𝑣𝑡∈𝑉                          (2) 

where 𝜎(𝑣𝑠, 𝑣𝑡) is the number of the shortest paths between 𝑣𝑠 and 𝑣𝑡, and 𝜎(𝑣𝑠, 𝑣𝑡|𝑣𝑖) is the 

number of the shortest paths passing through the node 𝑣𝑖. If 𝑠 = 𝑡, 𝜎(𝑣𝑠, 𝑣𝑡) = 1, and if 𝑖 = 𝑠 

or 𝑖 = 𝑡, 𝜎(𝑣𝑠, 𝑣𝑡|𝑣𝑖) = 0. 

In short, if the shortest path between many nodes in the network passes through a point 𝑣, then 

𝑣 has a high degree of betweenness centrality. That is to say, this node is on the shortcut between 

other node pairs.  

2.2.3 Closeness centrality 

Closeness centrality 𝐶𝑐 of a node 𝑣𝑖 is the reciprocal of the sum of the shortest path distances 

from 𝑣𝑖 to all 𝑛 − 1 other nodes. Since the sum of distances depends on the number of nodes in 

the graph, closeness is normalized by 𝑛 − 1. 

𝐶𝑐(𝑣𝑖) = (𝑛 − 1) ∑ 𝑑(𝑣𝑗 , 𝑣𝑖)𝑛
𝑗=1
𝑗≠𝑖

⁄                       (3) 

where 𝑑(𝑣𝑗 , 𝑣𝑖) is the shortest path distance between 𝑣𝑗 and 𝑣𝑖, and 𝑛 is the number of nodes 

in the graph. 

Closeness centrality is the sum of the distance from a node to all other nodes. The smaller the 

sum is, the shorter the path from this node to all other nodes is, and the closer the node is to all 

other nodes. It reflects the proximity between a node and other nodes. 

2.2.4 Number of maximal cliques 

In graph theory, the clique of graph 𝐺 is a complete subgraph 𝐻 of 𝐺. 𝐻 is a maximal clique of 

graph 𝐺 if it is not included by any other clique. The number of maximal cliques of a node can 

reflect the closeness between the node and other nodes. Only when multiple nodes are all connected 

can they be considered as maximal cliques. In this paper, we use 𝑁𝑀𝐶(𝑣𝑖) to represent the number 

of maximal cliques for node 𝑣𝑖. 

 

2.2.5 2hop-connectivity 

When examining the correlation of any two nodes in the network, most network analysis methods 

only consider whether there is an edge connection between two nodes, that is, if there is an edge, 

the correlation is high, and if there is no connection, the correlation is very weak. In this case, if the 

edge of the graph is missing due to the disturbance, the result may have a large deviation. For 

example, for the general random walk (RW) algorithm, the state transition probability is determined 

by the adjacency matrix of the network. If the adjacency matrix is disturbed, its steady-state 

probability will change. Generally, when analyzing the correlation of network nodes, the correlation 

of unconnected nodes in the network will be very low, which is difficult to find the potential 

characteristics of the network. For any different two nodes in the network, to describe the correlation 

more accurately, this work not only considers the first-order neighbors between nodes, but also the 

second-order neighbors between nodes, and we propose an algorithm named 2hopRWR. Finally, 

each node can get a novel local feature index 2hop-connectivity, which numerical size is 

represented by local feature score 𝑆2−ℎ𝑜𝑝. The importance of nodes can be judged based on 𝑆2−ℎ𝑜𝑝, 

the larger the 𝑆2−ℎ𝑜𝑝, the more important the node is. 
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2.2.5.1 2-hop random walk with restart algorithm 

The general random walk on the graph is a transition process by moving from a given node to 

a randomly selected neighboring node for each step. Consequently, we also regard the node-set 

{𝑣1, 𝑣2, … , 𝑣𝑛} as a set of states {𝑠1, 𝑠2, … , 𝑠𝑛} in a finite Markov chain ℳ. The transition 

probability of ℳ is a conditional probability defined as 𝑃(𝑣𝑗, 𝑣𝑖) = 𝑃𝑟𝑜𝑏(𝑠𝑡+1 = 𝑣𝑖|𝑠𝑡 = 𝑣𝑗) 

which means that the ℳ will be at 𝑣𝑖 at time 𝑡 + 1 given that it was at 𝑣𝑗 at time 𝑡. ℳ is 

homogeneous because the transition probability from one state to another is independent of 

time 𝑡 . What is more, for any 𝑣𝑗  of 𝑉  we have ∑ 𝑃(𝑣𝑗, 𝑣𝑖)𝑣𝑖∈𝑉   = 1. Note that ℳ  is 

memoryless, therefore, we can define a transition matrix 𝑃 ∈ ℝ|𝑉|×|𝑉| of ℳ. 

Generally, define transition probability 𝑃(𝑣𝑗, 𝑣𝑖) as follows:  

𝑃(𝑣𝑗, 𝑣𝑖) =
1

𝑑(𝑣𝑗)
,                              (4) 

Denote 𝐷𝐺 = 𝑑𝑖𝑎𝑔{𝑑1, 𝑑2, … , 𝑑𝑛} be the diagonal matrix, where 𝑑𝑖 = ∑ 𝑤𝑣𝑖𝑣𝑗

𝑛
𝑗=1 . Thus, 𝑃 

can be rewritten in matrix notation as follows: 

𝑃 = 𝐷𝐺
−1𝑊.                                (5) 

Define 𝑟𝑡 ∈ ℝ|𝑉|×1  as a vector in which the 𝑖 -th element represents the probability of 

discovering the random walk at node 𝑣𝑖 at step 𝑡, so the probability 𝑟𝑡+1 can be calculated 

iteratively by: 

𝑟𝑡+1 = 𝑃𝑇𝑟𝑡.                               (6) 

For the random walk with restart (RWR) algorithm (Tong et al., 2006 - 2006), there is an 

additional restart item compared to the above algorithm. The probability 𝑟𝑡+1  can be 

calculated iteratively by the following expression: 

𝑟𝑡+1 = 𝑐𝑃𝑇𝑟𝑡 + (1 − 𝑐)𝑟0.                           (7) 

Define initial probability 𝑟0 ∈ ℝ|𝑉|×1 as a vector in which the 𝑖-th element is equal to one, while 

other elements are zeros. And 1 − 𝑐 is the restart probability (0 ≤ 𝑐 ≤ 1).  

But RW and RWR algorithms are all based on the 1-hop neighbor relationship, that is, random 

walk is based on the existing edge of the graph. If some edges of the graph are missing, the 

corresponding points cannot be directly transferred, which will lead to a large deviation of the 

steady-state probability. Therefore, the effectiveness of these algorithms is too much dependent on 

the integrity of the graph structure. Therefore, in this work, besides the 1-hop neighbor relationship, 

we also consider the 2-hop neighbors and propose a novel random walk algorithm named 

2hopRWR. 

The probability 𝑟𝑡+1 can be calculated iteratively by: 

𝑟𝑡+1 = 𝑐(𝛼1𝑃𝑇 + 𝛼2(𝑃2)𝑇)𝑟𝑡 + (1 − 𝑐)𝑟0.                   (8) 

where 𝛼1  and 𝛼2  are the percentage of choosing 1-hop neighbors and 2-hop neighbors, 

respectively. Specifically, for each point 𝑣𝑖 ∈ 𝑉, 𝛼1 is the ratio of the number of 1-hop neighbors 

to the total number of 1-hop and 2-hop neighbors, 𝛼2 is the ratio of the number of 2-hop neighbors 

to the total number of 1-hop and 2-hop neighbors. Therefore, 𝛼1 + 𝛼2 = 1. 
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Fig.1 A schematic diagram of 1-hop and 2-hop neighbors 

At the beginning of the 2hopRWR, we choose a starting node 𝑣𝑖, then it would have a probability 

of 𝑐 to walk to other nodes and also have a probability of 1 − 𝑐 to stay in place. Specifically, 

when the process of walk reaches the node 𝑣𝑗, it has a probability of 𝛼1𝑐 to walk based on existing 

edges to 1-hop neighbors and has a probability of 𝛼2𝑐 to walk to 2-hop neighbors, and it also has 

a probability of 1 − 𝑐 to restart the walk, that is, to go back to the node 𝑣𝑖. 

After some steps, the RWR will be stable, that is, when 𝑡 tends to infinity, 𝑟𝑡+1 = 𝑟𝑡. The proof 

is given in Section 2.2.5.2. When the RWR is stable, stable probability between node 𝑣𝑖 and node 

𝑣𝑗 is defined as the 𝑗-th element of 𝑟𝑡 corresponding to the starting node is 𝑣𝑖. 

 

Fig.2 2hopRWR algorithm framework 

2.2.5.2 Proof of convergence 

Here we will prove that the random walk with restart algorithm is convergent, that is, for equation 

(8) when 𝑡 tends to infinity, 𝑟𝑡+1 = 𝑟𝑡. 

Define  

               𝛭 = 𝑐(𝛼1𝑃𝑇 + 𝛼2(𝑃2)𝑇),                                                      (9)

𝛮 = (1 − 𝑐)(𝐼 − 𝑐(𝛼1𝑃𝑇 + 𝛼2(𝑃2)𝑇))−1 .                                       (10)
 

Thus, using (9) and (10) we get 

𝑟𝑡+1 − 𝛮𝑟0 = 𝛭(𝑟𝑡 − 𝛮𝑟0).                          (11) 

Define  

𝐵𝑡 = 𝑟𝑡 − 𝛮𝑟0.                              (12) 

Then 

𝐵𝑡+1 = 𝛭𝐵𝑡.                               (13) 

By (13), when t = 0, we have 𝐵0 = (𝐼 − 𝛮)𝑟0, thus 

𝐵𝑡 = 𝛭𝑡(𝐼 − 𝛮)𝑟0,                             (14) 

𝑟𝑡 = [𝛮 + 𝛭𝑡(𝐼 − 𝛮)]𝑟0.                          (15) 

Since lim
t→∞

𝛭𝑡 = 0, we have  

lim
t→∞

𝑟𝑡 = 𝛮𝑟0 = (1 − 𝑐)(𝐼 − 𝑐(𝛼1𝑃𝑇 + 𝛼2(𝑃2)𝑇))−1𝑟0.            (16) 

Hence, 

lim
t→∞

𝑟𝑡+1 − 𝑟𝑡 = 0,                             (17) 

 

 

 

 

 

 

                     𝑣𝑖’ 1-hop neighbors: 

𝑣𝑖’ 2-hop neighbors: 

Input: The weighted adjacency matrix 𝑊 = {𝑤𝑣𝑖𝑣𝑗
}, the 

restart probability 1 − 𝑐, and the starting vector 𝑟0 

Output: The ranking vector lim
t→∞

𝑟𝑡 

Step1: Define 𝐷𝐺 = 𝑑𝑖𝑎𝑔{𝑑1, 𝑑2, … , 𝑑𝑛}, 𝑑𝑖 = ∑ 𝑤𝑣𝑖𝑣𝑗

𝑛
𝑗=1 .  

Step2: Compute and store transition matrix 𝑃 = 𝐷𝐺
−1𝑊.  

Step3: Define 𝛼1 and 𝛼2. Compute and store 𝛼1 and 𝛼2. 

Step4: Output lim
t→∞

𝑟𝑡 = (1 − 𝑐)(𝐼 − 𝑐(𝛼1𝑃𝑇 + 𝛼2(𝑃2)𝑇))−1𝑟0. 

𝑣𝑖 
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which implies the convergence of the algorithm is proved. 

2.2.5.3 2hop-connectivity feature score  

Any two nodes can be ranked twice according to 2hopRWR. Define Π = {𝜋𝑖𝑗}|𝑉|×|𝑉| be the stable 

probability matrix where 𝜋𝑖𝑗 indicates the stable probability between node 𝑣𝑖 and node 𝑣𝑗, that 

is, 2hopRWR starts from node 𝑣𝑖 and the probability of reaching node 𝑣𝑗 when the process is 

stable. Briefly speaking, the value of 𝜋𝑖𝑗  is the 𝑗 -th element of steady-state probability lim
t→∞

𝑟𝑡 

when the 𝑖-th element of 𝑟0 is 1. Therefore, define a local feature score 𝑆2−ℎ𝑜𝑝 for node 𝑣𝑖 as 

follows:  

𝑆2−ℎ𝑜𝑝(𝑣𝑖) = ∑ 𝜋𝑖𝑗
|𝑉|
𝑗=1                             (18) 

2.3 Global feature 

In this paper, we consider integrating local features to get a new network index: global feature.  

 

Fig.3 Workflow of our approach. 

We normalized the component of different feature scores to [0, 1]. The normalized features are 

recorded as 𝑁𝐶𝐷, 𝑁𝐶𝐵, 𝑁𝐶𝐶, 𝑁𝑁𝑀𝐶, and 𝑁𝑆2−ℎ𝑜𝑝. 

Then, define global feature score 𝐺𝐹𝑆 for node 𝑣𝑖 as follows: 

𝐺𝐹𝑆(𝑣𝑖) =
1

5
[𝑁𝐶𝐷(𝑣𝑖) + 𝑁𝐶𝐵(𝑣𝑖) + 𝑁𝐶𝐶(𝑣𝑖) + 𝑁𝑁𝑀𝐶(𝑣𝑖) + 𝑁𝑆2−ℎ𝑜𝑝(𝑣𝑖)]      (19) 

 If the 𝐺𝐹𝑆 of a node is relatively high, it means that the node plays a key role in the network. 

 

3. Results 

3.1 Top 10 brain regions for literature verification 

By comparing the GFS of the non-AD group with that of the AD group, we got the top ten brain 

regions in GFS scoring difference (that is, 𝐺𝐹𝑆𝑛𝑜𝑛−𝐴𝐷(𝑣𝑖) − 𝐺𝐹𝑆𝐴𝐷(𝑣𝑖) ). Then, literature 

verification was carried out to find out whether these brain regions are related to AD, and the 
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construction

• FACT method

• AAL brain atlas

Differential 
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results are as follows: 

Table 1 Top ten brain regions in GFS scoring difference between AD and non-AD groups. 

Rank Region ID AAL regions Evidence 

1 40 ParaHippocampal_R (van Hoesen et al., 2000) 

2 3 Frontal_Sup_L (Perri et al., 2005) 

3 37 Hippocampus_L (Du et al., 2001) 

4 42 Amygdala_R (Tsuchiya and Kosaka, 1990) 

5 22 Olfactory_R (Wilson et al., 2009) 

6 78 Thalamus_R (Ryan et al., 2013) 

7 15 Frontal_Inf_Orb_L (Salat et al., 2001) 

8 9 Frontal_Mid_Orb_L (Salat et al., 2001) 

9 68 Precuneus_R (Karas et al., 2007) 

10 38 Hippocampus_R (Du et al., 2001) 

For the brain structure network of AD group and non-AD group, the visualization results 

(Manning et al., 2014) show that the top 10 brain regions are relatively concentrated, as shown 

in Fig. 4 and Fig. 5. 

 

Fig.4 Brain structural network of AD group. 
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Fig.5 Brain structural network of non-AD group. 

3.2 Canonical correlation analysis 

In this section, we analyzed whether the GFS for Top 10 brain regions is related to the results 

of MMSE and MoCA. It can analyze whether there is a correlation between two groups of 

variables. Because some of the people were illiterate, they could not complete the MoCA test, 

so we took all the people who completed the two scales, a total of 29 people (19 AD and 10 

non-AD). At this time, the canonical correlation analysis can be used. Its basic principle is: to 

grasp the correlation between the two groups of variables as a whole, two composite variables 

U and V (linear combination of each variable in the two groups) are extracted from the two 

groups of variables respectively, and the correlation between the two composite variables is 

used to reflect the overall correlation between the two groups of variables.  

The results of the canonical correlation analysis showed that the correlation coefficient 

between the typical variable pair 1 is 0.7136, which means that there is a very close correlation 

between GFS and MMSE/MOCA scale information. 

 

4. Discussion 

In this paper, we set a new local feature index 2hop-connectivity to measure the correlation among 

different areas. And for this, a novel random walk algorithm, 2hopRWR, is proposed, which can 

compute the local feature index 2hop-connectivity. At the same time, the proof of convergence is 

given. If there is a lack of edge in the network, it may be more reasonable to use 2hopRWR to 

analyze the associations between nodes. Next, this paper used the idea of combining 5 local 

properties to obtain the global feature score (GFS), which is more persuasive than using a single 

network parameter to describe the importance of network nodes. Then, the results of literature 
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verification and canonical correlation analysis also validate the reasonableness and effectiveness of 

the proposed method. Therefore, GFS can be used to distinguish DTI images of the AD group and 

the non-AD group. Finally, all the top ten brain regions in the GFS scoring difference predicted in 

this paper have been verified by literature. 

Despite the effectiveness of our work, it also has several limitations. First of all, the mechanism 

of combining local features is relatively simple. For formula (19), we simply think that the weight 

of each property is the same, if we can combine more effective information, we can use more 

reasonable weight distribution to have a deeper understanding of the structure and function network 

of the brain. Secondly, the brain network constructed in this paper is a structural network, which 

should be combined with structure and function in the future. For example, if we combine the fMRI 

data with the existing data to analyze the differences of different brain regions in different tasks, we 

may get more results. 

In brief, GFS is expected to be an important and useful index for identifying the difference 

between network nodes and detecting the changes in information transmission between brain 

regions in Alzheimer's disease patients. Moreover, it may provide useful insights into the underlying 

mechanisms of Alzheimer's disease. Finally, GFS can be used as a differential network analysis 

method (Lichtblau et al., 2017) in other areas of network analysis. We also look forward to the 

application of the 2hopRWR algorithm in traditional network analysis tasks, such as node 

classification, link prediction, graph classification. 
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