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Abstract  

Barcode-based tracking of individuals revolutionizes the study of animal behaviour, but further 

progress hinges on whether specific behaviours can be monitored. We achieve this goal by 

combining information obtained from the barcodes with image analysis through convolutional 

neural networks. Applying this novel approach to a challenging test case, the honeybee hive, we 

reveal that food exchange among bees generates two distinct social networks with qualitatively 

different transmission capabilities. 

Main text 

Barcode-based tracking makes it possible to automatically identify hundreds of individuals in 

digital videos, and to record their location and heading direction over long time periods at a high 

spatiotemporal resolution1–4. It generates a wealth of individualized data that transforms how 

ethologists study the behaviour of animals, especially for species that naturally interact in large 

collectives, such as ants and honeybees4–8. However, in addition to knowing where individuals are 

located, it is often necessary to also know what they are doing, in order to understand individual 

or group-level behaviour and its neural and molecular underpinnings.  

With the exception of locomotion, barcodes are unable to automatically generate behavioural 

information directly. When studying the behaviour of barcoded individuals, researchers therefore 

resort to proxies that infer coarse-grained behavioural states from changes in the location and 

orientation of an individual’s barcode, and social interactions from the relative position of 

individuals to each other2–7,9 (but see refs. 1,8 for two notable exceptions). Such proxies have a 

limited capacity for distinguishing specific behaviours10 and may thus result in high error rates for 

a particular behaviour of interest.  

Convolutional neural networks (CNNs) are a promising technology for developing detectors for 

specific behaviours. They can be trained to accurately identify digital images that show a particular 

object, and learn independently which features of the object are most diagnostic11. To date, CNNs 

have been used for animal pose estimation12–14 and for detecting behaviours performed in isolation 

or in small groups. However, localizing behaviour occurrences in an image showing hundreds of 

individuals continues to be a challenge, especially if the image regions showing the behaviour of 
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interest are small, animals are densely crowded together, or individuals partially occlude each 

other15.  

We present a method that combines CNNs with barcode-based tracking to accurately identify 

specific behaviours in large animal collectives. Our key innovation lies in combining information 

obtained from an animal’s barcode, such as its location and orientation, with domain knowledge 

about the behaviour of interest to perform a precise yet computationally inexpensive region 

proposal that acts as an attention mechanism for the CNN. In addition, we leverage barcode 

information to simplify the behaviour classification task by rotating the proposed image regions to 

correspond to a predefined reference frame. Using this approach, we designed barcode-and-CNN-

based detectors for two honeybee behaviours, trophallaxis and egg-laying, to demonstrate the 

power of the method and to show that it can be applied to very different behaviours.  

Honeybee trophallaxis is an important social behaviour during which two bees touch each other 

with their antennae while orally transferring liquid food16 and signalling molecules17. This 

behaviour is challenging to detect automatically because honeybee colonies consist of tens of 

thousands of individuals, and even small experimental colonies still contain hundreds of 

individuals densely crowded together (Fig. 1a). Moreover, owing to the small size of the honeybee, 

the detector needs to focus on millimetre-sized body parts, like the mouthparts, to distinguish 

trophallaxis from visually similar behaviours, such as antennation. 

Our trophallaxis detector partitions recognizing the occurrence of this behaviour into four tasks: 

region proposal, preprocessing, visual verification, and post-processing (see Methods). Region 

proposal first selects pairs of bees that are in the proper position relative to each other to orally 

exchange liquid food (Supplementary Fig. 1). It then precisely estimates the image region that 

shows the mouthparts, proboscis (“tongue”), and head of the potential trophallaxis partners (Fig. 

1a,b). These two steps exclude 97.9±1.0% (mean ± standard deviation, n=300) of an image from 

automatic visual examination, which increases the detector’s computational efficiency and reduces 

its false positive rate. Each proposed region is then preprocessed and scored with a CNN that has 

been trained to estimate the probability that the region shows bees engaging in trophallaxis 

(Supplementary Table 1 and Fig. 1c).  
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Performance measurements showed that our barcode-and-CNN-based trophallaxis detector 

significantly outperforms the state of the art (Supplementary Table 2). Its Matthews correlation 

coefficient (MCC) is 0.89, and thus 0.28 higher than that of the best automatic trophallaxis detector 

so far8. Most of this improvement is due to a 67% higher sensitivity and an 11% higher positive 

predictive value, which means that our detector identifies more trophallaxis interactions and 

generates fewer false positives. Unlike existing automatic trophallaxis detectors8,9, it is also able 

to accurately score interactions between workers and the queen, even though social interactions 

with the queen differ from worker-worker interactions in that she is constantly antennated and 

groomed16. Moreover, at 57.7 megapixel/s our trophallaxis detector processes digital images 16.7 

times faster than the reference detector8, enabling larger-scale experiments. 

When studying social behaviour, it is often important to know the role played by each individual, 

i.e., who is the “donor” and who is the “recipient” of a particular behavioural interaction. To obtain 

this information for trophallaxis, we trained a second CNN (Supplementary Table 1 and Fig. 1d) 

to identify the liquid recipient, and operated it in parallel with the CNN that detects the occurrence 

of trophallaxis. Previously described automatic trophallaxis detectors did not attempt to determine 

the direction of liquid flow8,9, which involves distinguishing the individual that has only opened 

her mouthparts (donor) from the one that has also extended her proboscis (recipient). When applied 

to automatically identified trophallaxis partners, our recipient detector has a MCC of 0.97. 

To verify that our trophallaxis detector generates plausible results, we used it to monitor 

trophallaxis in three honeybee colonies, consisting of up to 1,050 barcoded individuals, at 1 

frame/s for five consecutive days. We then employed an epidemiological model to perform 

bidirectional spreading simulations on the trophallaxis networks of these colonies (Supplementary 

Table 3). As these simulations ignore the direction of liquid flow, they can be used to study 

information and disease transmission via physical contacts that take place during trophallaxis, but 

not how liquid flows through the trophallaxis network. Consistent with previous results8, we 

observed that bidirectional spreading through the observed trophallaxis networks was faster than 

through their temporally randomized counterparts (Fig. 2, Supplementary Figs. 2 and 3), 

confirming that physical contacts during trophallaxis have the ability to accelerate the transmission 

of information or disease. 
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Automatic identification of the recipient allowed us for the first time to also simulate unidirectional 

spreading dynamics. These simulations take into account that liquid gets transferred from the 

donor to the recipient (see Methods), and thus model the flow of liquid through the trophallaxis 

network. By comparing unidirectional spreading dynamics between the observed trophallaxis 

networks and directionally randomized reference networks, we discovered that the simulated 

liquid flow is slower than expected by chance (Fig. 2, Supplementary Figs. 2 and 3). This result 

suggests that the directional nature of trophallaxis serves to inhibit the transmission of liquids and 

the compounds they contain. It furthermore suggests that even though the network of physical 

contacts during trophallaxis and the network of actual liquid transfers result from the same 

behaviour, they are distinct entities with qualitatively different transmission properties, which may 

have important implications for the function and organisation of honeybee colonies.  

To show that our approach to automatic behaviour detection generalizes to other behaviours, we 

developed a barcode-and-CNN-based detector for egg-laying (see Methods), a solitary behaviour 

performed by worker honeybees when the colony has lost its primary reproductive, the queen, and 

is unable to replace her. Because we included no proxy for identifying bees that are likely to lay 

an egg in the region proposal procedure for this detector, it is applied to all bees in an image and 

therefore generated more false positives. We addressed this problem by adding to this detector a 

second CNN that was trained to identify and weed out false positives generated by the first CNN. 

This approach increased the detector’s MCC from 0.64 to 0.76 (see Supplementary Table 2 for 

additional performance values), demonstrating that barcode-and-CNN based detectors can identify 

visually very different behaviours. 

Automatically detecting animal behaviour is difficult. We showed that barcode-and-CNN-based 

detectors can accomplish this task even under challenging conditions, if domain knowledge and 

information obtained from an individual’s barcode are used to simplify the behaviour classification 

task. Our approach can be applied to all animals that perform visually recognizable behaviours, 

and to which a trackable marker can be affixed. We therefore envision that barcode-and-CNN-

based detectors will make it possible to monitor behaviour in a variety of species, and thus pave 

the road for automatic, high-resolution behavioural studies that address a broad range of previously 

intractable questions in ethology, neuroscience, and molecular biology through quantitative 

analysis of specific behaviours.  
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Methods 

Honeybee tracking. Colonies were established as in ref. 8. Briefly, up to 1,370 one day old 

honeybee workers were individually outfitted with a barcode by chilling them until they stopped 

moving and then gluing a bCode barcode to their thorax. For recording trophallaxis interactions, 

we also barcoded an unrelated, naturally mated queen. 

All barcoded bees passing quality control were moved into an observation hive, which was placed 

in a dark, climate-controlled room and connected to the outside environment via a plastic tube to 

enable normal foraging. The observation hive held a 348 mm × 232 mm white plastic honeycomb, 

one side of which was inaccessible to the bees. The other side was provisioned with enough honey 

and pollen for the duration of the experiment, and covered by an exchangeable glass window. The 

distance between this window and the honeycomb was short enough to ensure that the bees formed 

a monolayer, which does not affect their behaviour8 and prevents them from obscuring their 

barcodes.  

Trophallaxis interactions and egg-laying events were monitored with the tracking systems 

described in ref. 18 (Supplementary Fig. 4) and ref. 8, respectively. Video of the honeycomb was 

captured for up to 7 consecutive days at a frequency of 1 frame/s with a computer-controlled 29 

megapixel monochrome machine vision camera under infrared light, invisible to the bees, and 

stored on hard drives for later processing. Barcode detection and decoding was performed on a 

compute cluster, using the software and procedures described in ref. 8. 

Ground truth. To create a ground truth for the trophallaxis detector, we manually annotated 

images of pairs of bees that were in the proper position to perform this behaviour. For each image 

we recorded whether the two bees were engaged in trophallaxis and, if so, which bee was the 

recipient. 

The first set of images consisted of the image library L1 described in ref. 8. These images show 

random bee pairs that were selected solely based on whether they were within reach. To determine 

if two bees are within reach, the coordinate of their mouthparts was estimated by translating the 

barcode centre of each bee by a fixed distance in the direction of her barcode orientation vector, 

which was assumed to be parallel to her anteroposterior axis (Supplementary Fig. 1). If the distance 
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between these coordinates was shorter than 7 mm, which is the maximum proboscis length of a 

honeybee19, the image was annotated. An image was considered to show trophallaxis if the 

proboscis of one bee touched the head of the other bee close to her mouthparts (Fig. 1b). Otherwise 

it was annotated as not showing trophallaxis. 

Examination of the images in library L1 revealed that only approximately 1 in 40 images showed 

trophallaxis. Because CNNs learn to classify images better if the number of positive and negative 

examples is more balanced20, and manual annotation is labour intensive, additional images were 

selected by also requiring that bees needed to face each other. Whether two bees faced each other 

was established similar to ref. 8: We calculated the angle between the barcode orientation vector 

of each bee and a line through the mouthpart location of both bees (Supplementary Fig. 1). If the 

sum of the two resulting angles was less than 104 degrees, the image was annotated. This criterion 

captures 95% of the trophallaxis contacts in L1. Using this filter as a proxy for identifying 

trophallaxis, we annotated an additional 6045 random bee pair images. 

To evaluate the performance of the trophallaxis detector when its predictions are integrated over 

time, we furthermore used the trophallaxis proxy to annotate all bee pairs in 600 random triples of 

successively recorded images of the entire observation hive. Each bee pair was annotated by 3 

annotators to be able to reduce annotation errors. Consensus among the 3 annotators was reached 

through majority voting. A subset of the resulting annotations were previously published as image 

library L28. 

The ground truth for the egg-laying detector was created by manually annotating 1323 random 

images of the entire hive. Bees that either had inserted their abdomen into a honeycomb cell 

(Supplementary Fig. 5) or appeared to be in the process of doing so were called egg-layers. All 

other bees were annotated as having laid no egg. In addition we annotated each egg layer in up to 

two images that were recorded before and after the “focal” hive image.  

The final trophallaxis and egg-laying ground truths consisted of 142,182 images of bee pairs and 

723,995 images of individual bees, respectively. Both ground truths were split into disjunct 

training, calibration, and test data sets as shown in Supplementary Table 6.  
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Region proposal. To identify image regions that are likely to show bees engaged in trophallaxis, 

we leveraged the trophallaxis proxy described earlier (Supplementary Fig. 1). For each pair of 

potential trophallaxis partners identified by this proxy, we extracted the region showing the heads 

of both bees by translating the barcode centre of each bee by a fixed distance in the direction of 

her barcode orientation vector. The midpoint of the line segment defined by these two coordinates 

was used as the centre point of a 96 px × 160 px region of which the longer sides were parallel to 

the aforementioned line segment (Fig. 1b). The top edge of this rectangle was defined to be the 

short edge closest to the head of the bee with the bigger ID.  

For detecting egg-layers, the image region focusing on the abdomen of a bee was extracted by 

translating the centre of a bee’s barcode by a fixed distance in the opposite direction of her barcode 

orientation vector. The resulting coordinate was used as the midpoint of one edge of a 130 px × 

130 px region of which the top edge was parallel and closest to the lower edge of the bee’s barcode 

(Supplementary Fig. 5a). The image region showing the entire bee as well as her immediate 

surroundings was obtained by first translating the centre of a bee’s barcode by a fixed distance in 

the direction of her barcode orientation vector. The resulting coordinate was then used as the top-

right corner of a 256 px × 256 px region of which the diagonal between the top-right corner and 

the bottom-left corner passed through the barcode centre (Supplementary Fig. 5b).  

Image preprocessing. CNN input images were created by extracting the proposed image region 

and rotating it “upright”, so its top edge was on the x-axis of the image coordinate system. Pixel 

intensities were then clamped at a value of 200 to remove bright details in the background that we 

did not expect to provide information about the behaviour of interest, such as the honeycomb 

structure and specular reflections in the honeycomb cell contents (Fig. 1c). For trophallaxis 

detection, we furthermore filled the bounding box of the focal bees’ barcode with a uniform colour 

to prevent the CNN from associating parts of the barcode pattern with a behaviour (Fig. 1c). 

Finally, pixel intensities where mean-centred and scaled to [-1, 1] to provide a consistent input 

range for the CNNs.  

CNN architecture and training. Images of potential trophallaxis partners and egg-layers were 

classified with two CNNs, each. While the exact details of these CNNs varied, they had a similar 

architecture, consisting of 2 or 3 convolutional layers, max-pooling layers, and 2 fully connected 
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layers (Supplementary Tables 1, 4, and 5). The output of convolutional layers was standardized 

with batch normalization before being passed to a rectified linear unit activation function, and the 

output of the final activation function was transformed by a softmax function, so it can be 

interpreted as the probability of the input image showing the behaviour of interest.  

CNN training consisted of initializing the weights of the network to values drawn from a normal 

distribution with a mean of 0 and a standard deviation of 1, truncated at 2 standard deviations. 

Network weights were then optimized for 10,000 iterations, using the Adam algorithm, which was 

configured as recommended by its authors (alpha=0.001, beta1=0.9, beta2=0.999, 

epsilon=0.0000001)21, with a cross-entropy loss function. We used batches of 256 images, which 

were augmented as shown in Supplementary Table 7 and normalized to mean zero and unit 

variance. To avoid overfitting, we applied a L2 weight decay of 0.005 and a dropout of 0.5 in the 

first fully connected layer. 

The CNNs for detecting the occurrence of trophallaxis and whether a bees’ abdomen was inserted 

into a honeycomb cell were trained on all positive examples and a matching number of random 

negative examples from the trophallaxis and egg-laying training data set, respectively. For training 

the CNN that identifies the recipient, we used all positive examples of the trophallaxis training 

data set and a corresponding number of random negative examples. The CNN that uses an image 

of the entire bee to identify false positives was trained on the 4044 false positives generated by the 

CNN that checks for the visual absence of a bee’s abdomen and a matching number of random 

positive examples from the egg-laying training data set. 

Behaviour detection. To detect trophallaxis or egg-laying in individual images, we first 

performed the corresponding region proposal to obtain image regions that potentially show the 

behaviour of interest. Each of these regions was extracted, preprocessed as described above, and 

independently scored by the two CNNs that had been trained to detect the behaviour. This approach 

is computationally less efficient than a strictly serial operation where, for example, the CNN for 

identifying the recipient processes the input image only if the score for the occurrence of 

trophallaxis exceeds a specified threshold. It was nevertheless chosen because it makes it possible 

to store both CNN scores in a file, which can later be post-processed to yield behaviour predictions 

of varying stringency without having to process the video again.  
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Successive per-image trophallaxis and egg-laying detections were thresholded and linked together 

to yield behaviour predictions that are easier to analyse. Linked predictions were filtered to 

improve their quality. For trophallaxis, this procedure is identical to the post-processing steps 

described in ref. 8. Briefly, detections between the same two individuals were concatenated if they 

occurred in successive video frames. Concatenated detections shorter than 3 s were discarded, 

because such short trophallaxis interactions may not always result in the transfer of liquid22. The 

remaining interactions were merged if they were less than 60 s apart, and discarded if their total 

duration exceeded 180 s.  

For egg-laying, linking and filtering consisted of concatenating the thresholded detections from 

successive video frames into egg-laying events. Concatenated egg-laying events shorter than 3 s 

were discarded. The remaining events were merged if they involved the same bee, occurred within 

10 s of each other, and the distance of the average position of the events was shorter than 11.2 mm 

(the width of two honeycomb cells). These conditions ensured that egg-laying predictions were 

only merged if they appeared to belong to the same real event.  

Detector calibration. The trophallaxis detector and egg-laying detectors each have free 

parameters. For the trophallaxis detector, these parameters are the minimum and maximum 

distance between a pair of bees, the maximum sum of the angle between the bees’ orientation 

vector and a line through their estimated mouthparts location, a threshold for the output of the 

CNN that determines which scores correspond to the occurrence of trophallaxis, and a threshold 

for the output of the CNN that identifies the recipient. For the egg-laying detector, free parameters 

are the CNN thresholds that determine which output scores identify a (potential) egg layer.  

To fix the free parameters of each behaviour detector, we applied it to the calibration data set of 

its ground truth. We then performed a grid search on the parameter space of the detector, and chose 

the parameter combination that maximized the product of the detector’s sensitivity and positive 

predictive value.  

Evaluation. We estimated the fraction of an image that the trophallaxis detector’s region proposal 

procedure excludes from automatic visual inspection by applying it to the “centre” image of all 

300 observation hive image triples from which the detector’s test data set was created. We then 
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added the number of pixels inside the proposed image regions and divided the total by the number 

of pixels per image and by the number of observation hive images.  

To test if the CNNs for detecting the occurrence of trophallaxis and for identifying the recipient 

are sensitive to salient features of the behaviour, we performed an occlusion sensitivity analysis23. 

More specifically, we systematically moved a 41 px × 41 px big grey square (occluder) over the 

CNN input image, restricting the occluder centre to pixels inside the image. For each occluder 

position, we processed the altered input image with the respective CNN and recorded the CNN’s 

output. CNN outputs were then spatially coarse-grained into 12 × 20 square bins by averaging over 

all outputs inside a bin. Bins with a low mean score represent occluder positions that lead to a 

misclassification of the altered input image. 

Detector performance was evaluated by applying each detector to its respective test data set, using 

the parameters we had obtained during detector calibration. This results in an estimate of a 

detector’s performance on images of the entire hive, since the prevalence of trophallaxis and egg-

laying in the respective test data sets is the same as in hive images. These performance estimates 

are conservative, because the test data sets consist of 3 s long segments of behaviour occurrences 

that likely lasted longer. Longer behaviour occurrences consist of multiple such segments and are 

therefore more likely to be detected. Moreover, due to the high positive predictive value of both 

detectors on individual images, the probability of a spurious detection decreases sharply as the 

duration of the detected behaviour increases. 

Image processing time was measured by averaging detector runtime across the 900 (545) hive 

images from which the trophallaxis (egg-laying) test data set was created. These measurements 

were performed on a cluster with 2.9 GHz Intel Core i9-7920X CPUs and a RAID 6 storage array 

consisting of 6 HGST H3IKNAS800012872SWW hard drives. During runtime measurements, 

both detectors were restricted to a single hardware thread and had access to 2 GB RAM.  

Spreading simulations. To simulate the transmission of information, pathogens, and liquid, we 

employed a temporally explicit version of the deterministic susceptible-infected model24. This 

model assumes that individuals are in one of two states, “susceptible” or “infected”. Simulations 

begin by setting all bees to susceptible, choosing a trophallaxis interaction uniformly at random, 

and “infecting” the two bees involved in this interaction. Spreading dynamics were then simulated 
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over an 8 h time window. During this time, an infected donor “infects” a susceptible recipient with 

a probability of 1 when they engage in trophallaxis (unidirectional transmission). For models of 

bidirectional transmission, the trophallactic role of individuals was ignored, which means 

recipients were also able to infect donors.  

For each simulation, we recorded the fraction of infected individuals f(t)=i(t)/S(t), where i(t) is the 

number of infected bees alive at time t after the first infection, and S(t) is the colony size at time t, 

both of which are subject to mortality. To obtain a more robust estimate of fraction of infected 

individuals, we averaged the fraction of infected individuals over R=1,000 simulation runs and 

calculated the prevalence 𝑝𝑝(𝑡𝑡) = ∑ 𝑓𝑓𝑟𝑟(𝑡𝑡)𝑅𝑅
𝑟𝑟=1 /𝑅𝑅.  

To establish whether the prevalence for an observed interaction sequence, p̂(t), is greater than 

expected by chance, we compared it to the prevalence for N=10 randomized interaction sequences. 

For bidirectional spreading simulations, randomized interaction sequences were created with the 

PTN null model25, which shuffles the contact times among the observed interactions without 

artificially prolonging an individual’s life. For unidirectional spreading simulations, interaction 

sequences were randomized by reversing the direction of trophallaxis with a probability of 0.5. 

Spreading dynamics where characterized by calculating the spreading speedup s(t)=(p(̂t)-

p̄(t))/min(p̂(t),p̄(t)), where �̅�𝑝(𝑡𝑡) = ∑ 𝑝𝑝𝑛𝑛(𝑡𝑡)/𝑁𝑁𝑁𝑁
𝑛𝑛=1  is the mean prevalence across the N randomized 

interaction sequences. 
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Figures 

 

Figure 1 | Automatic trophallaxis detection and recipient identification. a, Typical image 

captured by the honeybee tracking rig, showing barcoded bees inside the observation hive. 

Rectangles outline image regions identified by our barcode-based region proposal procedure for 

trophallaxis. b, Zoom-in on the magenta region proposal in a, which shows the head, forelegs and 

part of the thorax of two bees that engage in trophallaxis. c, CNN input image created from the 

region proposal in b, superimposed with a map of the output of the CNN for detecting the 

occurrence of trophallaxis, as a function of the position of a grey square that occludes some pixels 

(see Methods). The input image is more likely to be misclassified (low probability of trophallaxis) 

if pixels corresponding to the mouthparts and proboscis are obscured. This result indicates that the 

CNN is able to distinguish salient features of trophallaxis from the background. d, The same input 

image as in c, but superimposed with a map of the correct class probability for recipient 

identification. This map suggests that the CNN for identifying the recipient relies on visual cues 

obtained from the mouthparts of the recipient, which, unlike those of the donor, are always visible 

and closely aligned with the proboscis.  
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Figure 2 | Simulated spreading though honeybee trophallaxis networks. Panels show data from 

Trial 1; see Supplementary Figs. 2 and 3 for Trial 2 and 3, respectively, which yielded similar 

results. Top row: bidirectional spreading results, modelling to transmission via physical contacts 

during trophallaxis; bottom row: unidirectional spreading results, modelling liquid transfer. a, 

Average fraction of “infected” bees (prevalence) as a function of spreading duration. Solid line: 

prevalence in the empirical trophallaxis network; dashed line: mean prevalence, averaged across 

10 randomized reference networks; grey band: point-wise 95% confidence interval. Simulation 

results indicate that the temporal pattern of trophallaxis accelerates bidirectional spreading, and 

that the directional nature of trophallaxis inhibits unidirectional spreading. b, Spreading speedup, 

corresponding to the normalized difference between the prevalence in the empirical network and 

the mean prevalence across the 10 randomized reference networks, as a function of spreading 

duration. The spreading speedup is positive if the prevalence in the empirical trophallaxis network 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.27.401760doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.27.401760
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

is higher than in the randomized reference networks, zero if there is no difference, and negative if 

it is lower. Inset: Spreading speedup as a function of spreading duration until, like for bidirectional 

spreading, almost all bees are “infected”, showing that the spreading speedup remains negative.  
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Supplementary Figure 1 | Spatial proxy for identifying pairs of bees that might be engaged 

in trophallaxis. Points Bi and Bj are the barcode centres of bee i and j, respectively. Arrows 

represent the barcode orientation vectors oi and oj that correspond to the heading direction of a 

bee. Points Mi and Mj are the estimated mouthparts locations of the two bees, and dij is the distance 

between these points. If dij was shorter than the proboscis length of a honeybee and the sum of the 

angles αi and αj is smaller than a specified threshold, bees i and j were called potential trophallaxis 

partners.   
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Supplementary Figure 2 | Simulated spreading in honeybee trophallaxis networks. Panels 

show data from Trial 2. Top row: bidirectional spreading results, modelling to transmission via 

physical contacts during trophallaxis; bottom row: unidirectional spreading results, modelling 

liquid transfer. a, Prevalence as a function of spreading duration. Solid line: prevalence in the 

empirical trophallaxis network; dashed line: mean prevalence, averaged across 10 randomized 

reference networks; grey band: point-wise 95% confidence interval. b, Spreading speedup as a 

function of spreading duration. Inset: Spreading speedup as a function of spreading duration until, 

like for bidirectional spreading, almost all bees are “infected”.  
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Supplementary Figure 3 | Simulated spreading in honeybee trophallaxis networks. Panels 

show data from Trial 3. Top row: bidirectional spreading results, modelling to transmission via 

physical contacts during trophallaxis; bottom row: unidirectional spreading results, modelling 

liquid transfer. a, Prevalence as a function of spreading duration. Solid line: prevalence in the 

empirical trophallaxis network; dashed line: mean prevalence, averaged across 10 randomized 

reference networks; grey band: point-wise 95% confidence interval. b, Spreading speedup as a 

function of spreading duration. Inset: Spreading speedup as a function of spreading duration until, 

like for bidirectional spreading, almost all bees are “infected”.  
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Supplementary Figure 4 | Setup for tracking barcoded honeybees and automatically 

monitoring their behavior. Barcoded bees were housed in an observation hive (A) that was 

connected to the outdoors via an entrance tube (B). The hive held a glass-covered, one-sided plastic 

honeycomb (C), which was front-lit with four infrared LED lights mounted on an aluminum frame 

(D) and backlit with an array of infrared lights mounted behind the hive (E, hidden). A computer-

controlled high-resolution monochrome camera (F) recorded the hive, triggering the infrared lights 

via a breakout board (G).   
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Supplementary Figure 5 | Region proposals for the egg-laying detector. Proposed image 

regions are shown as magenta rectangles. a, Image region focusing on the bee’s abdomen, which 

is invisible because the bee has inserted it into a honeycomb cell to position an egg. This region 

was used to identify potential egg-layers. b, Image region of an entire bee. This region was used 

to classify potential egg-layers into true egg-layers and false positives.   
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Tables 

Layer Layer type Kernel size  Stride Output dimensions 

0 I - - 36 × 60 × 1 

1 C 5 × 5 1 36 × 60 × 8 

2 MP 2 × 2 2 18 × 30 × 8 

3 C 3 × 3 1 18 × 30 × 16 

4 MP 2 × 2 2 9 × 15 × 16 

5 F - - 1 × 1 × 32 

6 F - - 1 × 1 × 2 

Supplementary Table 1 | Architecture of the CNN for predicting the occurrence of 

trophallaxis and of the CNN for identifying the recipient. I: input layer; C: convolutional layer; 

MP: max-pooling layer; F: fully connected layer. Layer output dimensions are W × H × D.  
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Detector  Sensitivity Specificity Positive 
predictive value 

Negative 
predictive value 

Speed 
(s/image) 

Trophallaxis 0.89 1.00 0.90 1.00 0.52 

Egg-laying 0.63 1.00 0.93 1.00 1.38 

Supplementary Table 2 | Detailed detection and runtime performance estimates. Note that 

the runtime estimate for trophallaxis detection includes detecting the occurrence of trophallaxis as 

well as identifying the recipient.  
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Trial Nodes Edges Interactions 

1 1,050 115,269 150,859 

2 902 97,591 132,591 

3 815 60,540 84,164 

Supplementary Table 3 | Trophallaxis network properties.  
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Layer Layer type Kernel size Stride Output dimensions 

0 I - - 32 × 32 × 1 

1 C 3 × 3 1 32 × 32 × 32 

2 MP 2 × 2 2 16 × 16 × 32 

3 C 5 × 5 1 16 × 16 × 64 

4 MP 2 × 2 2 8 × 8 × 64 

5 F - - 1 × 1 × 256 

6 F - - 1 × 1 × 2 

Supplementary Table 4 | Architecture of the CNN for predicting whether a bee has inserted 

her abdomen into a honeycomb cell. I: input layer; C: convolutional layer; MP: max-pooling 

layer; F: fully connected layer. Layer output dimensions are W × H × D.  
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Layer Layer type Kernel size Stride Output dimensions 

0 I - - 64 × 64 × 1 

1 C 5 × 5 1 64 × 64 × 32 

2 MP 2 × 2 2 32 × 32 × 32 

3 C 3 × 3 1 32 × 32 × 64 

4 MP 2 × 2 2 16 × 16 × 64 

5 C 3 × 3 1 16 × 16 × 128 

6 MP 2 × 2 2 8 × 8 × 128 

7 F - - 1 × 1 × 256 

8 F - - 1 × 1 × 2 

Supplementary Table 5 | Architecture of the CNN for classifying the predictions generated 

by the CNN shown in Supplementary Table 4 into true egg-layers and false positives. I: input 

layer; C: convolutional layer; MP: max-pooling layer; F: fully connected layer. Layer output 

dimensions are W × H × D.  
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Behaviour Image subset Annotators 
per image 

Successive 
time points 

Positive 
examples 

Negative 
examples 

Trophallaxis 

Training 1 1 2090 43828 

Calibration 3 3 993 38832 

Test 3 3 1581 54858 

Egg-laying 

Training 1 5 5539 319078 

Calibration 1 3 639 201888 

Test 1 3 729 196122 

Supplementary Table 6 | Overview of the trophallaxis and egg-laying gold standards. The 

number of successive time points indicates if image sequences were annotated, and how long these 

sequences were. The number of positive and negative examples shows the number of images per 

subset. The number of annotations per subset is therefore higher than the number of images per 

subset if multiple annotators scored each image.   
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Technique Probability 
Trophallaxis  Egg-laying  

Trophallaxis 
detection 

Recipient 
identification  

Abdomen 
detection 

Pose 
examination 

Adjust brightness 1 + + + + 

Adjust contrast 1 + + + + 

Jitter  1 + + + + 

Flip vertical 0.5 + + + - 

Flip horizontal 0.5 + + - - 

Flip diagonal 0.5 - - - + 

Supplementary Table 7 | Overview of the data augmentation techniques used to increase the 

diversity of the data sets for training the two CNNs employed by the trophallaxis detector 

and the egg-laying detector. A technique was applied to each example image with the specified 

probability if the corresponding table cell shows a plus sign; otherwise the technique was not used.  
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