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Abstract

A key problem in systems neuroscience is to understand how neural populations integrate
relevant sensory inputs during decision-making. Here, we address this problem by train-
ing a structured recurrent neural network to reproduce both psychophysical behavior and
neural responses recorded from monkey prefrontal cortex during a context-dependent per-
ceptual decision-making task. Our approach yields a one-to-one mapping of model neu-
rons to recorded neurons, and explicitly incorporates sensory noise governing the animal’s
performance as a function of stimulus strength. We then analyze the dynamics of the
resulting model in order to understand how the network computes context-dependent de-
cisions. We find that network dynamics preserve both relevant and irrelevant stimulus in-
formation, and exhibit a grid of fixed points for different stimulus conditions as opposed to
a one-dimensional line attractor. Our work provides new insights into context-dependent
decision-making and offers a powerful framework for linking cognitive function with neural
activity within an artificial model.

1 Introduction

One’s daily experiences are rich with sensory information. Interaction with this volume of data
is often guided by a context, an abstract collection of goals, memories and external signifiers
that inform appropriate behavioral responses to certain stimuli [1]. Primates in particular pos-
sess a remarkable ability to contextually modify behavioral responses to the same stimuli [1–
4], demonstrating an ability to flexibly discriminate between relevant and irrelevant information
when reasoning about and responding to the external stimuli. Prefrontal cortex (PFC)—a brain
area implicated in executive functioning [1], executive control [5], and a wide range of abstract,
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high-level reasoning tasks [3, 6–8]—is thought to play a central role in context-dependent per-
ceptual reasoning [1–3, 8, 9]. The exact mechanism underlying PFC’s contribution to such
reasoning, however, remains an open question [4, 10–12].

Artificial cognitive neural network models allow researchers to generate testable hypotheses
concerning the functional neural mechanisms underlying complex behaviors [4, 13–18]. Re-
cent work has employed artificial network models to try and understand the neural mechanisms
underlying context-dependent perceptual reasoning [4, 13]. This work is largely task oriented:
The dynamics of neurons from a network trained to simulate a task of interest are studied in
order to gain insight into how the brain may solve the same task [4, 13]. Task-based method-
ology affords a hypothesis of how the brain performs some computation [4, 13, 14, 19], but
leaves open a critical question of whether or not the trained artificial neurons accomplish the
task of interest using the same—or even similar—computational techniques as those employed
by their supposed biological analogues.

Here, we considered two hypotheses. The first asks if it is feasible to constrain the internal
dynamics of a computational model to approximate those recorded in neurological data in ad-
dition to training the model to solve a context-dependent perceptual discrimination task. To test
this hypothesis, we trained a recurrent neural network (RNN) to solve a context-dependent per-
ceptual discrimination task while simultaneously training the internal dynamics of the network
to simulate those observed in experimental recordings of rhesus monkeys trained on the same
task. We found that it is possible to train artificial models to achieve both near-perfect and more
biologically realistic performance on perceptual discrimination tasks when the internal dynam-
ics of the network are set such that there is a one-to-one correspondence between network
neurons and neurons from experimental recordings.

The second hypothesis asks if models with dynamics constrained to fit biological data compute
a perceptual choice in a manner that is similar to that employed by networks trained without
such constraints. To test the second hypothesis, we “reverse-engineered” [20] the network
model to understand how it simulates observed neural dynamics and how these dynamics sub-
serve context-sensitive behavior. We then compared our results to those obtained using similar
methodology on a task-based network. We identified a notable difference between the compu-
tational mechanism employed by our model and that employed by task-based models in solving
the perceptual discrimination task. Previous task-based models of flexible perceptual discrim-
ination have hypothesized that irrelevant information is dynamically suppressed in neocortical
circuits in converging upon a perceptual decision, and that relevant information is integrated
along a line attractor [4]. In our model, by contrast, both relevant and irrelevant information
are persistently represented and integrated across a planar manifold in the neural state space
throughout the course of making a perceptual decision. This suggests that a more complex
computation than previously hypothesized underlies flexible perceptual reasoning.

Our results challenge past mechanistic models of context-dependent perceptual decision-making.
Still, our results prove to be more consistent with more recent work aimed at understanding the
computational mechanism employed by PFC in performing context-dependent perceptual rea-
soning [21]. Our findings suggest that the addition of dynamical constraints helped our model
identify a biologically realistic solution to context-dependent perceptual decision-making.
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Figure 1: Perceptual discrimination task and model schematic. a. A time course of the dot-
discrimination task, with each phase labeled. In the original task, the monkeys were presented with
a rendering of randomized dots on a display, which, in each trial, had some motion (drifting to the left
or right) and color (primarily red or green) coherence. In each trial, the monkeys were presented with
a context cue, instructing them to focus on and later report with a saccade either the color or motion
coherence of the dots. During this task, neural recordings were taken from the FEF. These recordings
were taken at the population level of neurons in the FEF. b. A set of possible color and motion coherence
combinations of the dots on any trial along with the corresponding task variables used by our model. c.
A schematic of our model. The network is split into observed neurons, whose dynamics are constrained
by experimental data, and hidden neurons. The observed state of the network is the firing rate of each
neuron in the observed population. A behavioral node (z in the schematic) integrates the firing rates
of each neuron and reports a behavioral task variable (either reporting +1 or −1 depending on the
coherence values of the relevant input stimuli).

2 Results

The model that we use is a randomly initialized neural network that is comprised of two dis-
tinct populations, which we term “hidden” and “observed” populations (described in detail in
Appendix C). Observed neurons are recurrently connected and are trained (Appendix C.2) to
simulate experimental neurological recordings associated with some contextually coded set of
stimuli. These stimuli are introduced to the network via the hidden population. The hidden pop-
ulation connects to the observed population by unmodified feed-forward connections. Inputs
are applied to the hidden population. The observed population receives input by internal recur-
rent connections and from the input population. The hidden population amplifies and low-pass
filters the inputs, and then conveys them to the recurrent population. The hidden population
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can be thought of as a simplified abstraction of upstream brain areas, like primary visual cor-
tex, through which external information is first encoded into neural signals [22] before reaching
downstream cortices, like PFC (which the observed population is designed to model).

Critically, we constrain the dynamics of the observed population by training it to simulate exper-
imental recordings of FEF of rhesus monkeys taken while these monkeys performed a percep-
tual discrimination task (schematized in Figure 1.a,b, data from Mante et al. [4]). The readout of
any neuron in the observed population is its firing rate at any time t (Figure 1.c), and this read-
out is trained to continuously match the instantaneous firing rate of its corresponding “neuron”
from experimental recordings. In other words, each observed neuron is mapped one-to-one to
a single experimental neuron (Appendix C).

We modeled the task variables by coding all possible combinations of stimulus coherence val-
ues used in the discrimination task with a binary representation of a “context”, indicating to
which sensory stream the network should attend. A final readout neuron indicates the behav-
ioral choice made by the network. The behavioral node’s readout is the weighted sum of the
instantaneous firing rates of the neurons in the network at each time step. When the coherence
value of the relevant stimulus (as indicated by the context cue) is positive, the behavioral node
is trained to tend towards a positive value. The converse is true when the relevant stimulus
takes on a negative value.

2.1 Recurrent network model dynamics can be constrained to fit contextual
neural activity

We verified that the network’s observed population accurately captures experimentally recorded
neural dynamics on a per-condition basis (i.e., the network’s observed neurons exhibit the same
trajectories as experimentally recorded neurons when the monkey and the network are pre-
sented with the same stimuli).

After training, observed neurons in our model follow trajectories that qualitatively resemble tar-
get experimental recordings, even when strong noise is injected onto the input stimulus to
which these experimental recordings are associated (Figure 2.a and Figure 2.b, top rows of
each panel). Across the strengths of the irrelevant stimulus, neural trajectories in a context
are separable according to the corresponding choice. The network captures this pattern, while
demonstrating the ability to capture the relatively small but crucial differences between neural
trajectories within the same choice but driven by different relevant stimulus strengths.

We use the R2
condition and R2

neuron statistics (Appendix D) to quantify the network’s accuracy in
simulating recorded dynamics. We relate this metric to the mean firing rate of a neuron over
the course of a trial. Figure 2.d shows several plots that relate R2

neuron to noise injected on the
stimulus and the mean firing rate of neurons in the model. There exists a weak positive corre-
lation (r2 = 0.1437, P = 3.55× 10−5) between neuron firing rate and its R2

neuron for simulations
that do not involve stimulus corruption.
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Figure 2: Result of simulating experimental data using our model. a. The top row shows the target
PSTH, the second row shows the model PSTH on trials in which the network correctly reported the di-
rection of the relevant stimulus. Each subgraph on a row depicts a single neuron’s response, averaged
over all irrelevant color stimulus values for each motion coherence value. Gold indicates positive motion
coherence, cyan indicates negative coherence; opacity is proportional to the coherence strength. b.
The same as a. but in the color context. Blue indicates “positive” color coherence, red indicates “nega-
tive” color coherence. Annotations on the trace indicate the associated behavioral choice of the stimulus
driving a particular neural response; choice 1 indicates a positive coherence response, and choice 2 indi-
cates a negative coherence response. In experiments here, motion and color signals were corrupted by
Gaussian noise drawn i.i.d from N (0, 0.5). Responses are averaged over 150 trials. Neural responses
of the network when only presented with the context cue that precede these traces are not shown. c.
Psychophysical performance of the network, presented alongside the psychophysical performance of
monkey A from [4] to demonstrate the similarity in behavior. The top panel presents discrimination in the
motion context, and the bottom panel demonstrates discrimination in the color context. Performances
was measured over 17, 280 trials, and the results here are the result of inference decisions made by the
network when the stimulus signal was corrupted with Gaussian noise with variance σ2 = 0.5. Increas-
ing the stochastic noise that corrupts the stimulus signal negatively impacts the R2

condition and R2
neuron

statistics, as expected. Noise more strongly degrades performance of neurons in the network simulat-
ing experimental neurons whose mean firing rate is less than 0.5, while neurons with mean firing rates
greater than 0.7 remain consistent under higher degrees of noise corruption. At the highest levels of
noise, some neurons in the population demonstrate complete anti-correlation with their respective target
functions. Still, the average R2

neuron across all neurons decreases modestly across different noise values.
d. The mean firing rate of observed population neurons is plotted against R2

neuron. As the variance of
the Gaussian noise corrupting the input stimulus. σ2, increases, R2

neuron across neurons decreases.

2.2 Models constrained with experimental data exhibit biologically realistic be-
havior

Our model links the psychophysical response in the experimental regime with the neural codes
that underpin it. Figure 2.c shows that the model is able to achieve the psychophysical perfor-
mance of the monkey from which the neural and behavior data is taken, matching the behav-
ioral curve that demonstrates preferential selectivity for the relevant stimulus in some respective
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contextual regime (top-left and bottom-right panels) as well as indifference to markers indicating
response variables from the irrelevant sensory stream (the bottom-left panel and the top-right
panel).

The psychophysical response demonstrates a key aspect of a realistic form of stimulus inte-
gration: When the relevant stimulus has a high coherence value, we expect an integrator to
be able to reliably report salient information about the signal, even in the presence of noise.
As the signal decreases in coherence, we expect the integrator to make more mistakes; as
the mean coherence reaches zero, particularly when noise is applied to the signal, it becomes
more difficult to accurately report the sign of the mean coherence value.

The psychophysical behavior demonstrated in Figure 2.c is induced only in trials in which the
stimulus is corrupted by noise. In trials with no stimulus corruption, the network is able to
perfectly discriminate sensory evidence, even at low coherence values (Appendix B.1). The
behavior of the network in this case is largely consistent with previous results that examine
network simulation of only the behavioral response [4].

Particularly in networks with a large number of hidden neurons, high noise corruption shaped
the psychophysical response of the network to generate biologically realistic feature selection
without severely impairing the ability of the observed population to reliably simulate experimen-
tal recordings. Previous iterations of our work either did not employ hidden filtering neurons,
or treated hidden and observed neurons entirely the same (Appendix A). Both of these prior
approaches failed to simultaneously simulate the target biological characteristics in both the
neurological and behavioral modalities. Of course, simulating experimental psychophysical be-
havior at the expense of the ability to simulate observed biological neural dynamics defeats
the purpose that opens the explorations in this work in the first place. Conversely, simulating
just neurological dynamics at the expense of associated target behavior tells us only about
the dynamics of neural circuits alone, and less how those dynamics give rise to behaviors of
interest.

2.3 Hidden population dynamics

Much of the accuracy achieved by the model in representing both behavioral and neuronal
targets can be attributed to the model structure; in particular, the way in which information
is input into the network via the hidden population (see Appendix C and Figure 3). Beyond
helping the network in accomplishing the context-dependent perceptual integration task and
in filtering out noise, additional hidden units increase R2

neuron, R2
condition across simulations, and

also increase the model’s resistance to noise corruption, both applied directly to the neurons
(see Equation 3.1) and to the color and motion stimuli, as demonstrated in Figure 3.d.

The dynamics of the hidden neurons follow a surprisingly simple schematic. A significant por-
tion of neurons in the hidden population saturate at the tails of the sigmoid nonlinearity (r(·)),
tending towards and staying at either 0 or 1 for the majority of the trial. The ones that do not
saturate appear to deflect from the mean firing rate of the neuron across trials at a magnitude
proportional to the strength of the input stimulus over the first 10-20 ms of the trial. For the
remainder of the trial, the firing rates of these neurons remain steady, as demonstrated in Fig-
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Figure 3: a. PSTHs of sampled hidden neurons from the model population. The top row displays
responses in the color context, and the bottom row displays responses in the color context. The color
coding used here is the same as that used in Figure 2. b. PSTHs from sample neurons in the hidden
population recorded on trials in which the network reported the incorrect value of the relevant stimulus
coherence. The solid lines indicate the response PSTH on trials in which the network reported the
incorrect coherence value, and the dotted lines indicate the response PSTH of the same neuron on
trials of correct discrimination in the color context (top row) and motion context (bottom row). The color
scheme used here is the same of that used in Figure 2. c. The synaptic weight distribution between
neurons exclusively in the hidden population (blue), and between neurons projecting from the hidden
population to the observed population (red). d. The strength of stimulus noise corruption—quantified by
the variance of the Gaussian distribution from which the noise was sampled, σ2—against the median
R2

condition across all conditions for networks with different numbers of hidden neurons in the population.
The dotted line with triangles represents these measurements with one of the networks not used in this
study: the alternative network model in which the input stimulus is projected onto the whole population
(we term this network “dense” because of the density property of the input matrix used by the network).

ure 3. This behavior of the hidden neurons would suggest the existence of several attractors
towards which the hidden population quickly travels within the state space of the network. The
long-term behavior of the network in each trial suggests that these attractors are stable, and
that the gradients around these attractors are quite steep.

The neurons in the observed population do not receive direct projections of the stimuli; in fact,
they are only “aware” of fluctuations within the dynamics of other observed neurons and hidden
neurons. This would suggest that the hidden neuron population’s contribution to solving the
task involves steadily representing the input stimulus over the course of the trial. Replicating
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the exact value of the stimulus is not necessary, as there need only exist a relative difference
between all coherence value representations in order for the network to be able to complete
the task (recurrent weights and weights presynaptic to the readout node can have positive or
negative sign of varying magnitude).

Figure 3.c shows a histogram of the magnitude of synaptic weights between neurons in the
observed population and between neurons in the observed and hidden populations1. The mean
strengths of these two subsets of synaptic weights are both 0, but the variance is much wider
over the weights projecting from the hidden population to the observed population. In other
words, any given neuron in the observed population receives a stronger driving force from the
hidden population than from other neurons in the observed population. Put differently, one can
think of each observed neuron as, at least on an individual basis, preferentially strengthening
its connection with any given hidden neuron, on average, as opposed to any given observed
neuron. Persistent representation of a given stimulus in the observed population, then, relies at
least in part on the representation of that stimulus in the hidden population.

The PSTHs of the hidden neurons on trials in which the network reported the incorrect choice
variable also help in characterizing the role of hidden neurons in representing task variables.
Figure 3.a depicts PSTHs from the first two neurons in Figure 3.b on failed trials. On failed
trials, the magnitude of the deflection of the PSTH away from the mean firing rate of a neuron
at the start of the trial is nowhere near the strength of the corresponding deflection on trials in
which the network correctly solved the behavioral portion of the task. Beyond that, the PSTH
for any given stimulus strength tends to drift back and forth in firing rate space, concentrating
towards the end of the trial somewhere near the mean firing rate of the neuron across different
stimulus strengths in correct trials. This would suggest that incorrect discrimination is a result
of the hidden population being unable to represent stimulus information correctly insofar as the
network is trained to expect over the course of a trial.

These observations collectively point towards a relatively simple characterization of how hidden
neurons help promote correct simulation of target PSTHs and associated behavioral variables.
The task of correctly representing contextual information involves learning recurrent connec-
tions within the network that give rise to context- and stimulus coherence-specific attractors
within the state space spanned by the network. Stimulus inputs drive the hidden population to-
wards the respective attractors learned during training that correspond to the coherence value
and sign of the relevant and irrelevant stimuli.

2.4 Tracing stimulus-driven network trajectories in lower dimensions

In order to understand how our model solves the context-dependent perceptual discrimination
task when its internal dynamics are trained to simulate experimental data, we turned to “reverse-
engineering” [20] our network. This methodology (Appendix C.5) involves identifying fixed and
slow points in the phase space spanned by the optimized network, and characterizing—both
quantitatively and qualitatively—local dynamics in the neighborhoods of these fixed points. Fea-
tures of local attractor dynamics of the network, from the spatial organization of fixed points to

1Because the weights within the hidden population are not modified during training, we omit these in this figure.
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Figure 4: a. Stimulus- and cue-driven fixed points in the state space of the network. We use the top
three principal components from sampled activations of the network here to visualize the state space in
3 dimensions. Magenta crosses are stimulus-driven fixed points in the motion context and pink crosses
are stimulus-driven fixed points in the color context. Clustered points at the center of these planes are
the respective context-cue driven points. b. Eigenspectra of fixed points in our model network (left side,
top and bottom) and of another model trained to perform just the perceptual discrimination task (right
side, top and bottom). See Appendix C.3 for details on the structure and training method used for this
model. See Figure 9 in extended figures for representations of the population activity of the network
trained to perform just the perceptual reasoning task within the state space as defined in [4]. c. Network
trajectories in the color context. For the trajectories in the top row, the color coherence of the stimulus
presented to the network is held constant, and the coherence value of the motion stimulus is varied
over all 6 possible values and for the trajectories in the bottom row, the motion coherence value is held
constant while the coherence value of the color stimulus is varied over all 6 possible values. d. The
same as c, but in the motion context.

the stereotyped trajectories of the network around stable points in response to certain inputs,
can offer global insight into how the network solves tasks of interest.
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We found two different sets of fixed points in our model’s state space. One set was found by
identifying regions of stable dynamics while driving the network with only the contextual cue
as input, and the other set was found by driving the network with the contextual cue as well
as one of the 36 possible combinations of color and motion stimuli as input on any given run
of the optimization routine (Figure 4.a). The spectral qualities of the Jacobian of the network
at a given fixed point can offer a quantitative perspective of network activity when in the fixed
point region [4, 16, 23, 24], and so we performed an eigendecomposition of the Jacobian of our
network at the fixed points in its phase space (Figure 4.b left panel).

The eigenspectra of the Jacobian of the network at the fixed points we identified all followed a
common schematic (Figure 4.b, left panel). The largest real part of the eigenvalues is at or close
to 0. The remaining eigenvalues descend in magnitude fairly slowly—the real parts of 86% of
the eigenvalues, on average, are greater than -1. In general, between two and five eigenvalues
have significantly larger real parts, typically between -4 and -12. This suggests that in regions
of stability in the state space, local perturbations of the network induced by external inputs
evolve slowly over many hundreds of dimensions. In other words, information is integrated and
represented by the network across hundreds of dimensions of the state space—the distributed
integration of this information is a critical component of the network’s ability to both simulate
experimental neural dynamics in addition to simulating the expected behavioral sensitivities to
context when discriminating relevant and irrelevant stimuli.

The fixed point eigenspectra we identified are fairly different than those of task-based network
models. Networks trained to solve just the perceptual discrimination task by reporting the sign
of the relevant stimulus, for example, reveal a common spectral organization [4] (see Figure
4.b, right panel for the eigenspectrum of a network we trained to solve just the discrimination
task, and Appendix C.3 for more information about that network). The eigenspectrum of the
Jacobian of the network at any of the fixed points in the state space has a unitary eigenvalue,
which corresponds to the dimension along which inputs are both projected and persist within the
network’s phase space [4]. The remaining eigenvalues have fairly large negative real parts, and
inputs projected along the dimensions corresponding to these non-unitary eigenvalues quickly
decay out of the system.

The discrepancy in the eigenspectra of fixed points in our network and in task-based networks
suggest that these two networks are accomplishing the same context-dependent perceptual dis-
crimination task differently. Whereas in task-based networks, input integration happens along a
drastically simplified subspace (a line attractor, for example) of the larger network state space,
our model represents information in a significantly higher-dimensional fashion over the course
of a trial.

Previous work using task-based networks took advantage of the lower-dimensional nature of
the network’s solution to the task, projecting network activity in response to experimental stimuli
into a subspace spanned, in part, by the dominant axis associated with the expected unitary
eigenvalue [4]. Observing the network’s dynamics in this reduced (and human-visible) sub-
space offers intuition for how the network operates in a higher-dimensional sense.

In lieu of estimating a projection subspace using the unitary integration axis, we projected the
fixed points we found into the subspace spanned by the top 3 principal components over a
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collection of recorded activations. This method of lower-dimensional analysis is common in the
reverse-engineering literature [16, 18, 19]. In our case, 99% of the variance in network trajec-
tories is accounted for in the top three principal components. We found that the fixed points are
organized in a very specific structure (Figure 4.a). The fixed points found by driving the network
with the stimulus clamped on are organized in what appear to be two plane attractors that are
separable by context. Each contextual plane embeds 36 fixed points, one for each possible
combination of color and motion coherence values. The space between each fixed point in
principal component space is proportional to the magnitude of both the relevant and irrelevant
stimulus.

Fixed points that were found by driving the network with just a context cue are also separable
by context within the state space. They are the center of the planes along which the stimulus-
driven fixed points lie for their respective contexts.

While examining the fixed points within the state space spanned by the network provides intu-
ition for how the network solves the task of context-dependent feature selection, this tells only
a small portion of the story. We proceed to further characterize the computations performed
by our network model by projecting recorded activations of network neurons from simulations
across all stimulus conditions. We map how the network represents its state, and thus, the
information it has integrated, via its location in the state space.

A trial of context-dependent perceptual inference follows a fairly simple schematic, which is
illustrated in Figure 4.c-d. When the network is presented with a context cue informing it of
which oncoming stream it should attend to, the network state quickly drifts in the state space
towards the set of fixed cue-fixed points embedded within the attractor plane corresponding to
the relevant feature (determined by the context cue). The network stays in this area until the
“dots” (the sensory information corresponding to color and motion) come on, and the network
state quickly moves in the direction of the stimulus-driven fixed point on the attractor plane cor-
responding to the combination of coherence values of both the relevant and irrelevant sensory
stream presented on that trial. Over the course of the trial (as long as the input is clamped
on), the network stays tightly bound to the stimulus-driven fixed point. When the stimulus turns
off, the network returns to resting state, drifting back in the state space to the point at which it
began the trial.

The trajectories of the network in this subspace, as well as the existence of fixed points on ei-
ther context plane corresponding to all permutations of relevant and irrelevant cues, are telling.
The behavior of the network, specifically its coordinated projection that is sensitive to both the
relevant and irrelevant data for a given trial, suggests that no information, neither relevant or
irrelevant, is dynamically deleted during the process of input integration. In both contexts, the
network represents input information along something like a plane manifold (although, we could
easily imagine that if there were, say, three inputs to integrate, integration would take place
along a higher-dimensional manifold) with orthogonal planar axes representing color and mo-
tion coherence values. The context-sensitive response of the network is a result of a highly
separable state space according to context, with trajectories in either context represented by
location along a contextual attractor manifold. Because these manifolds are separable along a
context, location on either manifold can represent different context-dependent neural trajecto-
ries, while not requiring that only relevant sensory data drive the network to some position on

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.27.401539doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.27.401539
http://creativecommons.org/licenses/by-nc-nd/4.0/


the manifold.

3 Discussion / Conclusion

In this work, we show that an artificial recurrent neural network can be trained to solve a
context-dependent perceptual discrimination task when its internal dynamics are constrained
to fit electrophysiological data recorded from live subjects performing the same type of feature
discrimination.

Other work has employed artificial models to simulate neural data [25, 26]. A distinguishing
feature of our model is that the readout of any neuron is simply the firing rate of that neuron at
any time, rather than a weighted summation of the firing rates of neurons presynaptic to it [25].
This is a subtle but important distinction: it means that, at least in the observed population, the
dynamics of each neuron in closely mimic those of experimental data. A deeper consequence
of this is that our model offers direct insight into how each neuron in the population contributes
to the computations that constitute contextual sensitivity to stimuli.

In contrast to work from [25, 26], we saw that simple recurrent connections within the observed
population are insufficient in giving rise to the observed neural firing patterns from data, and that
a hidden population whose dynamics are not fixed to a target function are necessary in helping
the network generate the appropriate target dynamics. This is likely a result of enforcing a direct
correspondence between neurons in the artificial population and those in the recorded neural
circuits.

Other work has trained networks to solve tasks while also training its internal dynamics during
training [27]. This direction is fairly new, and, at least in the example cited here, relies on simu-
lated neurological data as a target for the trained dynamics of artificial models. In contrast, the
model we present here uses live recorded neurological data as the target set of dynamics of ob-
served artificial neurons, drawing a direct computational correspondence between experimental
neurological data and observed behaviors associated with that data.

Simulation of neural activities recorded in experimental settings provides insight into how the
codes themselves are generated, but it leaves unresolved the connection between neural ac-
tivity and the associated observed behavioral activity. We resolve that link by incorporating a
behavioral node within our model whose dynamics are similar to that of an ordinary neuron
in the population. This node integrates the information simulated by the observed and hidden
populations to generate a target behavioral choice. The node responsible for reporting the
coherence of the relevant sensory stream makes a choice regarding the stimulus using only
information as the network represents it.

The computational mechanism governing our optimized network complicates the schemes pro-
posed in related work that employs task-based computational models [4, 13, 19]. The spectral
distributions of the network around fixed points, unlike the corresponding distributions of task-
based networks, suggest that when artificial neurons are held to simulate experimental ones,
integration of input information in the network state space necessarily evolves along hundreds
of dimensions. Investigating a lower-dimensional subspace spanned by the axes along which
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maximal variance of the network response is captured shows that while the integration manifold
may span several hundred dimensions, it can be approximated in only two dimensions spanned
by axes corresponding to the relative coherence strengths of both motion and color stimuli.
Movement along this plane during integration of sensory evidence demonstrates that the sys-
tem retains information about both the relevant and irrelevant streams, rather than dynamically
deleting irrelevant data from the state space.

It is perhaps not surprising that the integration of stimuli in our model follows a higher-dimensional,
more complex scheme. The target function for the observed population, while highly correlated
between neurons in the population, maintains distinct target functions for all permutations of
relevant and irrelevant sensory data. Therefore, it is absolutely necessary for the network to
find a way to represent both relevant and irrelevant sensory data, even if the corresponding
choice is not driven by the irrelevant data.

The very existence of distinct PSTHs for varying coherence values of an irrelevant stimulus
when the relevant stimulus coherence value is held fixed is some indication that irrelevant sen-
sory information is in fact encoded within the hypothetical state space in which actual neu-
rons compute information. Recent work that proposes alternative schemes for reducing the
dimensionality of the same dataset used by Mante et al. [4] has effectively demonstrated that
irrelevant sensory data is certainly encoded in recorded neural activity [21]. In fact, this work
demonstrates that both the relevant and irrelevant sensory data can be decoded from the PSTH
for trials of both correct and incorrect discrimination [21]. These findings are far more consistent
the activity of our network than the model from [4], as, in making any behavioral choice, ours
must represent both the relevant and irrelevant sensory data in the state space.

One possible critique of the set-up and conclusions drawn here rests on the number of degrees
of freedom in constructing artificial models, from choosing a non-linearity to tuning the spar-
sity of recurrent connections between neurons [19]. Recent work, however, has demonstrated
at least partial universality in the ways in which RNNs learn to simulate complex dynamics
in spite of respective differences in training methods and other internal features [19]. Thus,
we might conclude that the mechanistic aspects uncovered by our “reverse-engineering”—how
the network implements a solution to the task—may generalize beyond the variety of possible
parameters we can tune, and hints at a deeper computational mechanism shared by circuits
of neurons in the brain and ensembles of artificial neurons trained to the dynamics of these
circuits.

In increasing the complexity of the task performed by the model network, and in increasing
the biological realism of the model (up to an asymptotic degree imposed by the very type of
model we used), we saw that the low-dimensional characterization of the functional mechanism
underlying context-driven feature integration and selection also grew in complexity. Still, through
use of techniques similar to those employed in studies collectively used by this investigation as
a starting point, we were able to surmise a coherent, semi-quantitative description of a possible
mechanism underlying context-dependent computation in artificial circuits.
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A Alternative network structures

Figure 5: a. A network model without hidden neurons. b. is the psychophysical performance of the
network alternative in a. when the evidence stimulus is corrupted by noise drawn i.i.d from N (0, 0.35).
The top row of c. is the target output of neurons 1-5 in the motion context, and the bottom row is the
output of the network when the evidence stimulus is corrupted by noise drawn i.i.d from N (0, 0.35). d.
is the same as c., but in the color context. e. and f. depict the relationship between the mean firing rate
of neurons sampled from the network population and an individual neuron’s R2

neuron i in the motion and
color contexts, respectively.

Our model design treats hidden and observed neurons quite differently. Not only do observed
neurons have a target function, but the structure of the network is largely centered around a
meaningful differentiation between the two sets of neurons: Input stimuli are only projected
onto the hidden neurons, and synapses presynaptic to the hidden population are never modi-
fied, while all synapses (both from observed and hidden neurons) presynaptic to the observed
population are modified during training. This model design is largely a result of several explo-
rations of other model designs which achieved significantly worse performance than the model
that is the main focus of this work. In justifying our model structure, we compare our model of
choice and two others built and surveyed in the course of this work. One has no hidden neurons
in the population (Figure 5.a), and in another, inputs are projected onto the entire population
(Figure 6.a). These comparisons also point to crucial ingredients in our model for generating
flexible neural dynamics.

Figures 5 and 6 show both the model structures of the two alternatives, as well as two sample
PSTHs recorded from simulating the respective models. The model without any hidden neurons
demonstrates a poor ability to capture the the dynamics of the neurons in the population beyond
the discriminability of the PSTHs of the recorded population at the level of behavioral choice.
The psychophysical performance of this model is also not on par with that of the model that is
the focus of this paper, with behavioral choices showing limited correlation with the strength of
a stimulus in its respective contextual regime (Figure 5.b). The inputs to the behavioral node
are simply the neurons presynaptic to it in the network, and therefore its dynamics are solely
driven by the dynamics of the observed neurons. The poor psychophysical performance of this
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model, then, appears to be a natural extension of the model’s poor performance in simulating
neural trajectories.

Figure 6: a. A network model in which stimuli and context cues are projected to the entire population, and
hidden neurons are recurrently connected both to themselves and to the observed population. b. The
psychophysical performance of the network alternative in a. when the evidence stimulus is corrupted by
noise drawn i.i.d from N (0, 0.35). The top row of c. is the target output of neurons 1-5 in the motion
context, and the bottom row is the output of the network when the evidence stimulus is corrupted by
noise drawn i.i.d from N (0, 0.35). d. is the same as c., but in the color context. e. and f. depict
the relationship between the mean firing rate of neurons sampled from the network population and an
individual neuron’s R2

neuron i in the motion and color contexts, respectively.

At high levels (σ2 ≥ 0.25) of stimulus corruption with stochastic noise, distinction of the neural
trajectories based on choice completely degrades in the model with no hidden neurons. Un-
like the model with no hidden neurons, a model with hidden neurons, but in which the input
stimulus is equally projected onto the whole population, shows a strong ability to capture neu-
ral dynamics across conditions beyond just discrimination at the level of choice. This would
suggest that despite the fact that hidden neurons are not designed to approximate a target
function, optimizing the recurrent weights of the network relies on the long-term steady state
of hidden neurons; weights presynaptic to the observed population from the hidden population
are adjusted accordingly, and the hidden population largely facilitates the observed population
in simulating target trajectories. Further, this suggests simple recurrent connectivity between
only the observed neurons from the experimental data cannot give rise to the dynamics ob-
served in the recordings that comprise the target dataset in this work. Likely, other circuits of
neurons in the brain are critical in producing the trajectories observed in experimental data, and
also in generating the associated target behavior.

While the model with hidden neurons mixed in the population is capable of capturing neural
dynamics on trials in which the stimulus is not corrupted by noise, injecting strong stochastic
noise into the stimulus dramatically impairs performance. We might be satisfied with this type
of result, as it seems like the logical consequence of our methodology. These results, however,
pose two issues: First, variance on the noise of an incoming sensory signal into the brain have
little to no effect on the amount of noise in the PSTHs of cortical neurons. In attempting to model

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.27.401539doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.27.401539
http://creativecommons.org/licenses/by-nc-nd/4.0/


neural circuits with as much realism as possible, the behavior of the model when presented with
noisy stimuli would be a major barrier. The psychophysical response of the network is perfect—
and thus, not biologically realistic—in experiments with no signal corruption, but more closely
approximates experimental psychophysical response of the monkey. This points to the second
issue: In this model, there exists only a tenuous link between PSTHs of the observed neurons
and the behavioral output of the network. We suppose by design that the trajectories of the
population largely (if not entirely) motivate the selection of the appropriate behavioral variable.
In particular, we suppose that the neural recordings from our target dataset specifically are
the neural representations of test stimuli and that they give rise directly to the psychophysical
response of the monkey. A model that matches psychophysical response, but whose observed
trajectories bear little likeness to the target trajectories, would not be particularly useful in de-
termining the underlying nature of the link between neurological and psychophysical activity in
context-dependent tasks.

The primary model we use in this work is free of these issues. In fact, even in the trials with no
stimulus corruption, it achieves a higher R2

neuron, R2
condition than the either of the other models.

This is likely because observed neurons in both of the models not used in this work must
integrate both the direct projection of the stimulus in addition to the firing rates of all other
neurons in the network at each time step.

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.27.401539doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.27.401539
http://creativecommons.org/licenses/by-nc-nd/4.0/


B Additional Figures

B.1 Network models are perfect integrators without noise on the signal

Figure 7: Model PSTHs with different levels of noise corruption. Recorded PSTHs in this figure are
taken in the motion context, with the same color scheme as that in Figure 2. Noise corruption does impair
general simulation performance, but not nearly to the degree that it does in other candidate models, as
seen in Figure 5.
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B.2 Psychophysical response of candidate models with and without noise cor-
ruption of the stimulus

Figure 8: Psychophysical response of candidate models with and without noise corruption of the
stimulus. a. The model that is the main focus of this paper is able to perform perfect discrimination on
trials of all coherence values, which is inconsistent with the behavioral response we see in live subjects
engaged in the same perceptual discrimination task. The model also demonstrates perfect “indifference”
to the coherence values of the irrelevant stimulus in any given context. This, too, is inconsistent with bi-
ological behavior, which shows evidence of extremely minor—but nonetheless existent—preference for
stronger coherence values of the irrelevant stimulus. b. Figure from the main text. c. The psychophysical
response of the candidate comparison model with no hidden neurons when the stimulus is not corrupted
with noise, and d. is the psychophysical response of the same model when the stimulus has the same
level of corruption as in b. e. The psychophysical response of the candidate comparison model with hid-
den neurons but in which the input stimulus is projected to the entire population when the stimulus is not
corrupted with noise, and e. is the psychophysical response of the same model when the stimulus has
the same level of corruption as in b, d. The psychophysical performance for the second candidate model
closely approximates the behavior of the monkey, but because the PSTHs of the observed population
bear little likeness to the target experimental dataset, we opted not to use this model.
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B.3 State space dynamics of model trained only to solve the behavioral task

Figure 9: State space dynamics of model trained only to solve the behavioral task. Using the model
described in Appendix A, we trained a network to solve the same discrimination task that our model
network is trained to solve, except that we did not require the network to reproduce experimental data,
as well. We did this in order to confirm that the low-dimensional schematic governing input integration
in our model network—particularly its difference to that propose in [4]— was not simply a result of using
a different training method (back propagation through time, as in [4], versus our adapted FORCE/RLS
rule). The dynamics of this model are not identical to those of the model used in [4], although they do
follow a similar low-dimensional process, governed by a context sensitive line attractor and associated
selection vectors. The dynamics shown here are the result of training a network with 800 neurons. The
top row displays dynamics in the color context along the line attractor spanned by slow points in the
state space, rotated, and then sorted by the coherence of the irrelevant stimulus value. The bottom row
shows the same thing, but in the motion context. Colors used here correspond to those used in Figure 2,
with corresponding behavioral choices labeled. The axes of the state space are as defined in Chapter 4
(using the right-zero eigenvector to define the choice axis, and using the color and motion filter weights
of the input matrix to the network as the color and motion axes, respectively).
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C Methods

C.1 Primary network architecture

For all experiments, we start with a randomly initialized, strongly recurrent neural network
(schematic in Figure 1). The activities of neurons in the network are described by:

τẋ = −x + Jr(x) + J Ib + ε (1)

where τ is a time constant, xi is the activity of neuron i, J is a recurrent weight matrix such
that Jij describes the strength of connection between neurons i and j, neuron i is presynaptic
to neuron j, and Jij ∼ N (0, g2/N), where g is a hyperparamter, the magnitude of which
determines the strength of connections between neurons in the network, and N is the number
of neurons in the network. At each time step, the activity of the network from the previous time
step is introduced to the network via a nonlinear function r(·). In order to restrict neural activity
between a plausible firing rate range of r(·) ∈ [0, 1], we use the non-linear activation function
r(x) = 1/1 + e−x applied element-wise to x. The magnitude of the stimuli introduced to neuron i
is determined by (J Ib)i, and J I

i ∼ U([0, 1]). Finally, ε is a vector of stochastic noise introduced
directly onto each neuron, and εi ∼ N (0, ρ2). For most experiments, we used ρ2 ∈ [0, 1].

The model population can be partitioned into two subsets: hidden and observed neurons. Ob-
served neurons are trained (the procedure is described in detail below) to represent a target
function, while hidden neurons have no associated target function. Inputs to the network are
restricted to a sparse subset of the hidden population. If there are N observed neurons, M
hidden neurons, and P inputs to the network, we can think of J I as the concatenation of two
matrices: an N × P matrix of all zeros, and an M× P matrix, a fraction of whose entries are
0; the rest of which are as defined above. In this structure, inputs largely drive the hidden
population, which then in turn drives the observed population via a transformation of the input
signal. As stated in the text, the hidden population maintains a feed-forward connection into the
observed population, is not itself recurrently connected, and has no associated target function.

For each network simulation, we solved the above network equation over some time interval δt
using Euler integration:

x(t + δt)− x(t)/δt = −x(t) + Jr(x(t)) + J Ib + ε

x(t + δt)− x(t) = δt(−x(t) + Jr(x(t)) + J Ib + ε)

x(t + δt) = (1− δt)x(t) + δtJr(x(t)) + δtJ Ib + δtε

for time t ∈ [0, T) for some predetermined time interval size T. The readout at each time step
is simply r(x(t)). In other words, the readout of the network at any time step is the firing rate
of each neuron. This allows the observed state of the network to be the direct firing patterns of
each neuron in the network, rather than a linear transformation of the network activities over an
external set of learned weights.

For modeling the output of both neural data and the target behavioral task variable, we define
a final node in the network, which we denoted as z, that is virtually external, but still within the
network. This node is defined as

τż = −z + Jzr(x)
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and is trivially solved, like above, as z(t + δt) = (1− δt)z(t) + δtJzr(x(t)). Here, Jz is the
set of weights representing the presynaptic strength of each neuron in the network onto the
readout neuron, indexed with z. Effectively, the behavioral node’s readout is the weighted sum
of the non-linear activations of the nodes in the network at each time step, but its dynamics are
not explicitly reintroduced into the other nodes in the network at each time step. In other words,
the behavioral node is “aware” of other nodes’ readouts in the network, but other nodes are
unaware of its state.

In order to model context-dependent feature integration task outlined in [4], we used stimulus
vectors b = (cc mc ac am ret)T, where cc, mc ∈ {−0.5,−0.17,−0.05, 0.05, 0.17, 0.5}, and
ac = 1, am = 0 in the color context, and ac = 0, am = 1 in the motion context. ret is set to
zero during stimulus presentation, and is set to 1 to indicate to the network when a trial has
ended. The target behavior includes reporting the sign of the relevant stimulus. For example, if
am = 1, and mc = 0.5, we would expect the network to report that it has integrated “positive”
motion coherence, by reporting z = 1.

In some trials, we corrupt the input stimulus with stochastic noise in order to simulate the noisy
nature of both the stimuli in the experimental setting and corruption of stimuli hitting the retina
of an experimental subject (due to a variety of factors including the refraction of light by retinal
fluids, etc.). For trials in which the input stimulus is corrupted by stochastic noise, the stimulus
values become time-varying functions:

mc(t) = µmc + ηm(t)
cc(t) = µcc + ηc(t)

where µmc, µmc ∈ {−0.5,−0.17,−0.05, 0.05, 0.17, 0.5} and ηm(t), ηc(t) ∼ N (0, σ2). Then,
mc(t) ∼ N (µmc, σ2) and cc(t) ∼ N (µcc, σ2). The input vector then becomes b = (cc(t) mc(t) ac am ret)T.
For experiments, we typically restricted the variance of the stochastic noise to σ2 ∈ [0, 1.5].

We use this model structure for several reasons. Principally, this model has very few “built-in”
features, which allows it to act as a general model of population-level neural computation. The
network is not designed for any one specific task, and thus, like the brain, is able to perform
a wide range of tasks that are mutually unrelated. Ultimately, we are looking to deduce the
underlying structure of how context-dependent information is represented in the brain: the re-
current weights of the RNN simulate recurrent connectivity between neurons in the biological
brain, allowing neurons in one area of the network to communicate with other ones, particularly
over time.

C.2 Training procedure

The FORCE [28] training technique attempts to minimize a weighted linear least squares cost
function with respect to some target function f (t). Here, f (t) is a column vector in which the
i-th entry describes the firing rate of neuron i in the population of recorded neural data at some
time t. For our purposes, we define the cost function as:

C = 1
T

T

∑
t=1
‖r(x(t))− f (t)‖2 (2)
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=
1
T

T

∑
t=1
‖r
(
(1− δt)x(t− 1) + δtJr(x(t− 1)) + δtJ Ib + δtε

)
− f (t)‖2

where ‖·‖ is the 2-norm. The task, then, is to train individual neurons in the network to match
their activities such that the firing rates are as close as possible to the target firing rates from
the recorded neural activities. The FORCE algorithm accomplishes this by learning the optimal
weights of J , the recurrent connectivity matrix, using the recursive least-squares filter (RLS).
RLS, however, would appear unfit for the task of learning weights to minimize C, as RLS is
a training procedure for learning weights to minimize a linear least squares objective function
(the network readout, by definition, is a non-linear function of the neuron activities). The use
of FORCE/RLS is preferred, mainly for computational efficiency, and so we rewrite the cost
function in equivalent linear terms:

C∗ = 1
T

T

∑
t=1
‖x(t)− f−1(t)‖2 (3)

=
1
T

T

∑
t=1
‖(1− δt)x(t− 1) + δtJr(x(t− 1)) + δtJ Ib + δtε− f−1(t)‖2

where f−1(t) := r−1( f (t)), or the target function passed through the inverse of the non-
linear activation function applied to the neurons at each readout step. In this case, r−1(x) =
ln(x/1− x), which is applied element-wise to the target vector. Observe that this objective is
certainly a weighted linear least squares function; the only other difference, then, between C
and C∗ is that C∗ describes a loss between the activities of each neuron (rather than the firing
rates) and the target function passed through the inverse of the activation function (from which
we surmise the firing rates of neurons in the network) rather than between the firing rates of
each neuron and the corresponding target function. If we compose both components of the cost
function (x(t) and f−1(t)) with the non-linear activation function, r(·), we recover the original
cost function. The filter seeks to elect weights for J that minimize C∗ (and, hence, also C),
which is done by first calculating the error signal e(t) between the transformed target function
f−1(t) and activities each neuron in the network x(t),

e(t) = x(t)− f−1(t)

updating the cross-correlation matrix of the firing rates, P (t),

P (t) = P (t− δt)− P (t− δt)r(x(t))r(x(t))TP (t− δt)
1 + r(x(t))TP (t− δt)r(x(t))

and finally adjusting weights of the recurrent connectivity matrix J :

J(t) = J(t− δt)− e(t)(P (t)r(x))T

1 + r(x(t))TP (t)r(x(t))

For these experiments, P (0) = 1
αI, where α is considered the approximate learning rate of the

FORCE procedure (we typically used an α� N, the number of neurons in the network, usually
using α = 1). For each update to the recurrent weight matrix, we restricted modifications to

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.27.401539doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.27.401539
http://creativecommons.org/licenses/by-nc-nd/4.0/


connections presynaptic to the pinned neurons in the network, or the neurons which had a direct
target neuron on which its output was trained. The weights presynaptic to hidden neurons in
the population whose firing rates were not recorded were not modified.

The error signal, which is reintroduced into the network via the recurrent weight update, is kept
relatively small throughout the training procedure (the mathematical basis for this phenomenon
is described in [28]). This fact is important for two reasons: (1) such an error control allows for
fast convergence in the task of learning optimal recurrent weights J , which is important when
approximating high-dimensional target functions that carry with them high computational costs
in modeling, and (2) because the error signal re-introduced to the network does not induce
chaotic behavior in the RNN, which is often a challenge one must surmount in training RNNs to
perform complex, temporally dependent tasks.

C.3 Task-based network architecture

The model structure is similar to that used in this paper. The activities of neurons in the network
are described by:

τẋ = −x + Jr(x) + J Ib + ε (4)

where τ is a time constant, xi is the activity of neuron i, J is a recurrent weight matrix such
that Jij describes the strength of connection between neurons i and j, neuron i is presynaptic
to neuron j, and Jij ∼ N (0, g2/N), where g is a hyperparamter, the magnitude of which
determines the strength of connections between neurons in the network, and N is the number
of neurons in the network. At each time step, the activity of the network from the previous
time step is introduced to the network via a nonlinear function r(·). We require no restriction
on the firing rate range of a neuron (as all neurons are effectively hidden), and so we use the
non-linear activation function r(x) = tanh(x) applied element-wise to x. The magnitude of
the stimuli introduced to neuron i is determined by (J Ib)i, and J I

i ∼ U([0, 1]). Finally, ε is a
vector of stochastic noise introduced directly onto each neuron, and εi ∼ N (0, ρ2). For most
experiments, we used ρ2 ∈ [0, 1].

Unlike the model that is the focus of this paper, there are two sets of trainable weights. One set
defines the recurrent connections within network the network, and the other linearly transforms
the firing rates of neurons in the network to produce a target variable:

z(t) = r(x(t))Tw

Similar to the network that is the focus of this paper, in order to model context-dependent
feature integration task outlined in [4], we used stimulus vectors b = (cc mc ac am ret)T,
where cc, mc ∈ {−0.5,−0.17,−0.05, 0.05, 0.17, 0.5}, and ac = 1, am = 0 in the color context,
and ac = 0, am = 1 in the motion context. ret is set to zero during stimulus presentation, and is
set to 1 to indicate to the network when a trial has ended. The target behavior includes reporting
the sign of the relevant stimulus. For example, if am = 1, and mc = 0.5, we would expect the
network to report that it has integrated “positive” motion coherence, by reporting z = 1.
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C.4 Task based training method

Here, too, we employ FORCE learning [28], though C takes a different form:

C = 1
T

T

∑
t=1
‖z(t)− f (t)‖2

Here, we learn weights on w using the RLS filter. The filter seeks to elect weights w that
minimize C, which is done by first calculating the error signal e(t) between desired output f (t)
and network output r(x(t))w(t− δt),

e(t) = r(x(t))Tw(t− δt)− f (t)

and using the calculated error signal e(t) to update the weights at each iteration w(t),

w(t) = w(t− δt) + (e(t)P (t))Tr(x(t))

and then finally, updating the cross-correlation matrix P (t),

P (t) = P (t− δt)− P (t− δt)r(x(t))r(x(t))TP (t− δt)
1 + r(x(t))TP (t− δt)r(x(t))

For the experiments detailed below, we employed a variant of the FORCE learning scheme that
also adjusts weights of the connectivity matrix J :

J(t) = J(t− δt) +
e(t)(P (t)r(x))T

1 + r(x(t))TP (t)r(x(t))

For these experiments, P (0) = 1
αI, where α is considered the approximate learning rate of the

FORCE procedure (we typically used an α� N, the number of neurons in the network, usually
using α = 1). Additionally, w(0) = 0.

C.5 State space analysis, or reverse-engineering the network

C.5.1 Theoretical background and methods

A significant portion of the analysis of our model involves treating the RNN as a globally non-
linear dynamical system approximated by a collection of local linear systems surrounding fixed
and semi-stationary points in the state space of the RNN. By studying the system in the locally
linear regimes, which are analyzable in ways that the global system is not, we gain intuition for
how the network attempts to solve the larger goal of integrating information and dynamically
representing that information based on a context.
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C.5.2 Locating fixed points in the model state space

The process of finding a fixed point in the system amounts to identifying a location in the
state space for which small perturbations along any of the spanned axes results in minimal
movement of the system from the point. The dynamical system is globally described by Equa-
tion 3.1, which we rewrite in compact notion: ẋ = F(x). We want to find a set of points
X∗ = {x∗ | F(x∗) = 0 ∨ F(x∗) ≈ F(x∗ + δx)} for some sufficiently small δx. The former
condition, F(x∗) = 0, describes a strict fixed point. The complexity of the dynamical system
modeled by the RNN requires us to also consider slow points where dynamics are not nec-
essarily fixed, but which nonetheless behave like strictly fixed points within bounded regions
(captured by the latter condition, F(x∗) ≈ F(x∗ + δx)).

To find these points, we define an auxiliary function: q(x) = 1
2‖F(x)‖2, which can be thought

of as, effectively, the kinetic energy of the system F(·) at some point x. We use this function
because it is a scalar function, and thus is amenable to optimization software. Because q(·) is
a sum of squares, we know that it reaches its minimum wherever F(·) does, and so by finding
where q(·) reaches 0, we find where F(·) = 0.

C.5.3 Locally linear dynamics

Consider the Taylor expansion of ẋ = F(x) around some fixed point x:

F(x + δx) = F(x) + F′(x)δx +
1
2

δxTF′′(x)δx + . . .

Because the point x is a fixed point, F(x) = 0, and the second order term of the Taylor series
(and all terms succeeding it) are approximately 0, so the magnitude of first order term domi-
nates all other terms, or else ‖F′(x)δx‖ > ‖F(x)‖ and ‖F′(x)δx‖ � ‖ 1

2 δxTF′′(x)δx‖ (we are
concerned primarily with perturbations δx that are quite small, which substantially reduce the
magnitude of the second-order term). These inequalities illustrate why some points x such that
F(x) = 0 are ideal candidates for linearization: they afford us a lower bound on ‖δx‖, which is
0. In other words, all infinitesimally small perturbations ‖δx‖ > 0 around some points x such
that F(x) = 0 will generate local linear or approximately linear dynamics.

Because we examine dynamics around fixed points, or points where F(x) = 0, our expansion
of F(x + δx) reduces to:

F(x + δx) = F′(x)δx +
1
2

δxTF′′(x)δx + . . .

Let p = δx. Heeding the second inequality (‖F′(x)δx‖ � ‖ 1
2 δxTF′′(x)δx‖), we omit the

second order term of this expansion, which yields:

F(x + p) = F′(x)p

which is the general form for a linear dynamical system: ṗ = F′(x)p, which is linear in p. Thus,
when studying local linear dynamics around some fixed point x, our analysis will primarily be
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concerned with the matrix M = F′(x), the Jacobian of F(·). In fact, we can think of M as the
linear approximation of the network around fixed points, which aids in the following analysis.

We are interested in understanding local linear dynamics around M , and so we perform an
eigendecomposition on M :

M = RΛL

such that L = R−1, and where the i-th row of L is the i-th left eigenvector of M , the i-th
column of R is the i-th right eigenvector, and Λ is a diagonal matrix such that Λii is the i-th
eigenvalue corresponding to the i-th eigenvectors of L and R. Let λi := Λii, and let li and
ri denote the i-th left and right eigenvector, respectively. Then, liM = λili and M ri = λiri.
Such a decomposition offers tools to study the evolution of the system according to independent
bases, which drastically simplifies the analysis of the RNN around a fixed point.

Then, returning to the equation describing the locally linear dynamical system:

ṗ =Mp

ṗ = (RΛL)p

Lṗ = ΛLp

α̇ = Λα (5)

where α := Lp. Then any mode i can be described by α̇i = λiαi in this locally linear
regime, and, because the system is described over the diagonalized left eigenbasis, mode i’s
evolution in the regime is independent of all other modes’ states in the system. Isolating the
activities of each mode independently affords us a means of characterizing high-dimensional
systems based on the activities of a subset of modes within the system, particularly when the
contribution of this subset of modes to the evolution of the system is significantly larger than
others.

Equation 4.1 describes the dynamics of a general, locally linear dynamical system around a sta-
tionary point. Such an analysis is still applicable to our system of interest (an RNN responding
to incoming sensory evidence), albeit with an extension. In describing our system’s evolution
through the repeated application of the left eigenvectors associated with the Jacobian of the
network around a fixed point, we can argue that the incorporation of sensory evidence into the
network amounts to adding to the network state the projection of the stimulus of interest, filtered
through the input weights associated with that stimulus, onto the left eigenbasis. Additionally,
because each mode of Equation 4.1 evolves independently, we can simply add this projection
to each mode.

In the case supposed in [4], fixed points and the locally linear evolutions within the state space
around these points organize in a line attractor, or a line in the state space along which fixed
and slow points lie. For this to occur, the spectra of M at all fixed or slow points must have
a specific structure: max(Λ) ≈ 0 and the other N − 1 eigenvalues should have very large
negative real parts (or, indexing eigenvalues by their magnitude, |σi| � |ωi| for i = 2, . . . , N)2.

2An important note here is that the dimensionality of the attractor is intimately linked to the number of near-zero
eigenvalues in the spectrum of M . If the system organized points along a plane attractor and dynamics along
that plane were stable or near-stable, the spectrum of M would contain 2 near-zero eigenvalues, and so on for
higher-dimensional attractor manifolds.
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Along the N− 1 modes with eigenvalues that have large negative real parts, trajectories rapidly
decay; only along the mode with the near 0 eigenvalue does the system integrate over the
course of the trajectory. Let l0, r0 denote the left and right eigenvectors of the 0 mode. The
system evolution along this mode is observable as the result of a projection of the trajectory
along l0 onto the r0. Then, the line attractor is spanned r0.

C.6 Transforming neurological data into a target function

Our target neural data set comes from Mante et al.’s study, and is comprised of neural record-
ings taken from FEF of two rhesus monkeys trained to perform the context-dependent feature
discrimination task described in Chapter 2. We followed Mante et al.’s procedure for parsing,
cleaning and organizing the data, which we describe briefly in this section.

For their experiments, Mante et al. taught the task to two rhesus monkeys, labeled A and F,
and performed several, randomized trials in each recording session with both A and F. Each
recording session is contained within its own .mat file; each one contains, on average, 1,200
trials for each unit. Each trial is comprised of a neural recording, lasting 850 ms, and values
indicating the motion coherence of the dots on the display, the color coherence of the dots, the
context of the trial (what feature the monkey was instructed to attend to), and whether or not
the monkey correctly completed the trial by directing a saccade to the target.

The neural recordings from the experiments take the form of a sequence of 0’s and 1’s, one in
each time bin. In each bin, 1 indicates detected electrophysiological activity, and 0 indicates the
absence of any detected activity. Mante et al. performed their recordings with the hopes of an-
alyzing neural behavior at the neuron population level; while this method allows for the analysis
of neural dynamics across larger neural landscapes and greater insight into how populations
of neurons act during activities of interest, this method of recording is also far less precise
than single-neuron recordings. This results in remarkably high variability in the recorded neural
response across trials in a single unit for which the monkey was presented the exact same in-
formation. This fact, along with the underlying assumption in our RNN model that functions it is
trained to reproduce are continuous (unlike the binary nature of the neural recordings) requires
us to manipulate the neural data in a way that preserves its structure but that also makes it
more amenable to reproduction by our model.

For each unit, we averaged the neural recordings across conditions. We identified 144 possible
conditions for the data: some permutation of 6 possible motion coherence values and 6 possible
color coherence values, 2 possible contexts (attend to color coherence or attend to motion
coherence) and 2 possible outcomes of the experiment (either the monkey got it right or wrong).
The experimental data for each unit had roughly the same number of trials for each of these
conditions, which made averaging across them a reasonable estimate for neural activity in that
unit in any particular condition. For each time bin in each condition, we calculated the average
strength of the neural pulse by summing the neural activations across each time bin for each
condition and divided by the number of trials in each respective condition. We recovered the
firing rate of individual neurons by using a moving box average with a width of 50 bins. We
focused only on neural traces 100 ms after stimulus onset, leaving a trace 750 ms in length.
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The moving box average resulted in traces that were 750 / 50 = 15 bins long.

The final step involved smoothing and re-sampling the box-averaged neural response. We
first smoothed the response using a Gaussian kernel (σ = 40 ms) and then re-sampled this
smoothed signal to create a sequence of 200 bins. After smoothing and re-sampling, we re-
shaped the data, by z-scoring the value in each time bin and throughout each condition by
subtracting the mean of the total average activity over the entire unit, and dividing by the stan-
dard deviation of the activity over the entire unit.
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D Statistics

We use two primary statistics to quantify the accuracy of our model in simulating neural trajec-
tories: R2

condition and R2
neuron.

R2
condition k = 1− ∑N

i=1 ∑T
t=1(Dk

i (t)− rk
i (t))

2

∑N
i=1 ∑T

t=1(Dk
i (t)− D̄k(t))2

where N is the number of observed neurons in the system, Di(t) is the target value of neuron
i at time t in condition k, where a condition is a set of motion and color coherence values,
and an associated context cue, rk

i (t) is model neuron i’s output at time t in condition k, and
D̄k(t) is the mean firing rate across all neurons in condition k at time t. R2

condition k is the R2

coefficient, specifically, for describing the correlation between the target function and the output
of the model for some condition k.

We are also interested in quantifying neuron-to-neuron likeness across conditioned trajectories,
and so we also use R2

neuron:

R2
neuron i = 1− ∑K

k=1 ∑T
t=1(Di

k(t)− ri
k(t))

2

∑N
k=1 ∑T

t=1(Di
k(t)− D̄i(t))2

where K is the total number of conditions, Di
k(t) is the target value of neuron i in condition k at

time t, ri
k(t) is model neuron i’s output at time t in condition k and D̄i(t) is the mean firing rate

of neuron i across all conditions at time t.

32

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.27.401539doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.27.401539
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Results
	Recurrent network model dynamics can be constrained to fit contextual neural activity
	Models constrained with experimental data exhibit biologically realistic behavior
	Hidden population dynamics
	Tracing stimulus-driven network trajectories in lower dimensions

	Discussion / Conclusion
	Alternative network structures
	Additional Figures
	Network models are perfect integrators without noise on the signal
	Psychophysical response of candidate models with and without noise corruption of the stimulus
	State space dynamics of model trained only to solve the behavioral task

	Methods
	Primary network architecture
	Training procedure
	Task-based network architecture
	Task based training method
	State space analysis, or reverse-engineering the network
	Theoretical background and methods
	Locating fixed points in the model state space
	Locally linear dynamics

	Transforming neurological data into a target function

	Statistics

