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Abstract

Neurons in visual and vestibular information integration areas of macaque brain
such as medial superior temporal (MSTd) and ventral intraparietal (VIP) have
been classified into congruent neurons and opposite neurons, which prefer congruent
inputs and opposite inputs from the two sensory modalities, respectively. In this
work, we propose a mechanistic spiking neural model that can account for the
emergence of congruent and opposite neurons and their interactions in a neural
circuit for multi-sensory integration. The spiking neural circuit model is adopted
from an established model for the circuits of the primary visual cortex with little
changes in parameters. The network can learn, based on the basic Hebbian learning
principle, the correct topological organization and behaviors of the congruent and
opposite neurons that have been proposed to play a role in multi-sensory integration.
This work explore the constraints and the conditions that lead to the development
of a proposed neural circuit for cue integration. It also demonstrates that such
neural circuit might indeed be a canonical circuit shared by computations in many
cortical areas.

1 Introduction
Traditionally, researchers have focused on studying an individual sensory modality, like
vision, audition and touch, in isolation. Although this has undoubtedly provided us with
great amounts of knowledge about the basic mechanisms underlying information process-
ing and unimodal attention, it is unsatisfactory when it comes to our rich multisensory
experiences and behaviors. [1] There have been numerous neurophysiological and behav-
ioral studies demonstrating extensive interactions among senses, as well as researches
indicating the processes underlying multisensory information processing. [2]

In this study, we focus on information integration between visual inputs and vestibular
inputs. They both convey information about heading direction. When we walk on the
street, the optical flows we see and the vestibular signals we experience are in consistence.
This is when an integration model will be selected to present more faithful estimate of

∗Corresponding author: tai@cnbc.cmu.edu

1

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.27.401216doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.27.401216
http://creativecommons.org/licenses/by-nd/4.0/


heading direction of self-motion. However, when we wear a virtual reality headset and sit
still on a chair, visual and vestibular signals are discordant and this is the case where a
segregation model should be used.

Whats the neural implementation of visual and vestibular integration? There are two
kinds of multisensory neurons in visual and vestibular brain areas, such as ventral intra-
parietal (VIP) areas and dorsal medial superior temporal area (MSTd). They are named
according to whether their tunings under each sensory cue are congruent or opposite.
Congruent neurons prefer visual and vestibular cues of the same direction while opposite
neurons prefer cues of opposite directions. [3] [4] [5] [6] [7]

Previously, a firing-rate model has been proposed to achieve visual and vestibular
sensory integration. [8] [9] But the congruent neurons in that model could send both
excitatory and inhibitory signals to other neurons, violating Dales law. Also their nor-
malization were done by activation function. In this work, we adopt a more detailed
biophysical model which transfers the firing rate model to a spiking model with both
excitatory and inhibitory neurons to achieve multisensory integration. Inhibitory pools of
neurons are introduced not only for normalization, but also for interaction with opposite
neurons. The learned neurons have tuning properties agreeing with experiments as well
as theoretical predictions. We have also discussed about parameter regime and their im-
plications, which provides more detailed information about the stability and sensitivity
of the model.

In the following sections, we are going to use a spiking network inspired by a well-
established V1 circuit [10] [11] to learn the feedforward connections to congruent and
opposite neurons and also the horizontal connections between two multisensory integration
modules. We are also going to show the learned netwrok behaves as expected in the
sense that the population response and single neuron tuning curve are consistent with
experiments as well as theoretical predictions.

2 Materials and Methods

2.1 Model setup
Figure 1 indicates the model architecture. Red circles indicate excitatory neurons while
blue circles indicate inhibitory neurons. Arrow indicates excitatory connections while
a dot indicates inhibitory connections. Each module is mainly composed of a pool of
sensory neurons, a pool of congruent neurons and a pool of opposite neurons. I11, I13,
I21, I23 are for normalization. Normalization not only makes our model more biologically
plausible, but also is necessary for our model to work properly, as seen in later sections.
I12 and I22 are inhibitory interneurons implementing the inhibition from C to S without
violating Dales law.

There are recurrent connections among each pool of congruent and opposite neurons.
There are also excitatory reciprocal connections between C1 and C2 bridging the two
modules.

There are 36 neurons in each of the excitatory ring and I12, I22, 9 neurons in I11, I13,
I21, I23. Each neurons dynamic is governed by a leaky integrate and fire function.

d

dt
V i
L(t) = −gL[V

i
L(t)− VR]− giLE(t)[V

i
L(t)− VE]− giLI(t)[V

i
L(t)− VI ] (1)

where L indicates which pool (ring) the neuron belongs to, and i is the index of the neuron
in that pool. The functions giLE(t), giLI(t) denote the temporal profiles of the excitatory
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Figure 1: Model architecture.

(inhibitory) conductance that impinge upon the ith neuron in pool L. When the voltage
V i
L(t)(t = tσil ) reaches spiking threshold VT , the spike time tσil is recorded, the voltage is

reset to VR, held there for a brief time tR, and then re-initialized as V i
L(t = tσil + tR) = VR.

"leak conductance" gL, the reversal potentials (VR, VE, VI) are constants, as is the thresh-
old VT . The values for the biophysical parameters are commonly accepted. The "refractory
period" tR = 3ms(1ms) for excitatory (inhibitory) neurons. After nondimensionalization,
gL = 50, VI = −2/3, VR = 0, VT = 1, VE = 14/3.

The conductances in equation (1) drives the time evolution of the membrane voltage.
For I,

giI,E(t) = SIE

∑
k,l

[KIE
i−kGE(t− tE,k

l )] + viI(t) (2)

For C1,

giC1,E(t) = SEE

∑
k,l

[KC1,C1
i−k GE(t−tC1,k

l )]+LEE

∑
k,l

[KC1,C2
i−k GE(t−tC2,k

l )]+giS1(t)+viE(t) (3)

giC1,I(t) = SEI

∑
k,l

[KC1,I11
i−k GI(t− tI11,kl )] + viI(t) (4)

For O1,
giO1,E(t) = SEE

∑
k,l

[KO1,O1
i−k GE(t− tO1,k

l )] + giS1(t) + viE(t) (5)

giO1,I(t) = SEI

∑
k,l

[KO1,I12
i−k GI(t− tI12,kl )] + SEI

∑
k,l

[KO1,I13
i−k GI(t− tI13,kl )] + viI(t) (6)

In (2)-(6), Sσ1,σ2 is synaptic strength, where σ2 is the sending neuron type and σ1 is the
receiving neuron type. k indexes the number of sending neurons in its pool, while l indexes
the number of spike of that particular neuron. As for the spatial kernels, they are von
Mises.

Kσ2,σ2

i−k =
Jrc

2πI0(κσ2)
eκσ2cos(θi−θk) (7)

for pools of neurons in the same module, and

Kσ1,σ2

i−k =
Jrp

2πI0(κσ2)
eκσ2cos(θi−θk) (8)
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for pools of neurons in different modules. I0(x) is the modified Bessel function of the first
kind with order 0. However, the interactions between the excitatory pool and normaliza-
tion pool are uniform. That is,

KI11,C1 = KI13,O1 = KI21,C2 = KI23,O2 = ie (9)

KC1,I11 = KO1,I13 = KC2,I21 = KO2,I23 = ei (10)

We need to mention here that the spatial kernels KC1,S1,KO1,S1, KO1,I12, KC2,C1,
KC2,S2, KO2,S2, KC2,I22, KC1,C2 are learned.

As for temporal kernels, GE is sum of two alpha functions for AMPA and NMDA
respectively, while GI is sum of two alpha functions for GABAA and GABAB respectively.
Alpha function can be written as

αQ(t) = CQ
e
− t

τd − e−
t
τr

τd − τr
(11)

When τd = τr,
αQ(t) = CQ

t

τ 2d
e−

t
τe (12)

where Q indexes different neurotransmitters. The S conductance in the equation is the
sum of synaptic conductance waveforms evoked by S spikes, with kinetics like the con-
ductance waveforms of that in C, I and O. Each S neuron’s spike train is modeled as a
modulated Poisson process. The modulation of the spike rate of the ith S neuron is given
by

λS(θi, t, R) = kS(
R

2πI0(aS)
eaScos(θi−zS(t)) +

1−R

2π
) (13)

The subscript S ∈ {1, 2} indicates whether the input is from S1 or S2. kS is a scaling
constant, while R ∈ [0, 1] is the reliability of the input. aS determines the width of the
input, while zS(t) refers to the center of the input at time t. Finally, viE(t) and viI(t) are
noise terms representing inputs from other cortical area,

viσ(t) = Sv
σ

∑
l

Gσ(t− sl), σ = E, I (14)

while the spike times sl is a Poisson process with a fixed rate.

2.2 Learning algorithm
The feedforwarrd weights are all initialized with the following metohd: consider feedfor-
ward connections from a pool of input neurons indexed by j to a pool of target neurons
indexed by i. For each j, we sample θ̃j from a uniform distribution over the N target neu-
rons without replacement (i.e., θ̃j = θ̃j′ , if and only if j = j′), as well as the multiplicative
factor Aj from a log normal distribution with arithmetic mean of 0.3 and arithmetic
variance of 0.1. Then the initial feedforward connections are given by

Kij = [ηij +
√

0.5ηijϵij]+ (15)

where
ηij = 0.14Aje

2cos(θi−θ̃j) (16)
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and ϵij is i.i.d. Gaussian noise with µ = 0 and σ = 0.1. Intuitively, this models each input
neuron as projecting to a random target location with variable connection strength and
a spatial spread given by von Mises distribution.

The position of input from S1, z1(t), is generated by first randomly permuting an
evenly spaced sequence of input from −π to π, each lasting 2s. The simulation is run for
3600s and the step size for membrane potential update is 0.1ms. The weights are updated
every 50ms, with time window being 100ms. Weights adjusted with the rule are further
constrained to be non-negative.

We adopt Willshaw’s rule. It can be written as

∆Kij = ϵ(rirj − αriKij) (17)

Learning rate ϵ are different for different set of connections.

ϵS1C1 = 0.2 ∗ 0.9772[
t

3.6
] (18)

ϵS1O1 = 0.2 ∗ 0.9772[
t

3.6
] (19)

ϵI12O1 = 0.008 (20)
ϵC1C2 = 0.08 (21)

We adopt a curriculum learning method. Except Wi12o1, other connections starts to
be learned at 0s. Wi12o1 starts to be learned at 2400s.

3 Results

3.1 Learned feedforward connections
The network exhibits self-organization, i.e., neurons in each ring learn to be topograph-
ically organized unsupervisedly. Topographically organized means that the neurons are
arranged in a structure where there is an orderly spatial relationship between the distri-
bution of sending neurons and a related distribution of receiving neurons.

According to Figure 1, we call the connections from Si to Ci, Si to Oi, and Ii2 to Oi
feedforward connections, where i = 1 or 2 representing the two modules. The connections
from Si to Ci, from Si to Oi are called direct feedforward connections, for they represent
feedforward input directly from sensory neurons. We call the connections within con-
gruent neurons and opposite neurons recurrent connections, and call the bi-directional
connections between C1 and C2 reciprocal connections.

Only the connections mentioned above needs to be learned. It is natural that we dont
need to learn normalization and recurrent connections. Also, we assume that WCiIi2 is
arranged according to their spatial location, i.e., a von Mises connection from Ci to Ii2.
The reason we introduce 6 pools of inhibitory neurons is to implement the function of
congruent and opposite neurons without violating Dales law.

Figure 2A illustrates the connection from S1 to C1. Different colors indicate different
preferred direction in S1 and the x-axis is by preferred direction in C1. It can be observed
that the shape of feedforward connections is approximately a von-Mises distribution. It
is usually assumed that feedforward connections are von-Mises or Gaussian shaped in
multisensory integration models. We show here that a von Mises shape can naturally
appear in our learning model. Figure B and C are similar. We only show results of the
first module, for the two modules are symmetric in the model.
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In figure 2D-F, we show that the topological order is preserved from sensory neurons
to congruent neurons, from congruent neurons to opposite neurons and from sensory
neurons to opposite neurons. In all three figures, there is a bright diagonal indicating that
all pairs of neurons preferring the same direction are strongly connected together. This
phenomenon comes out from the fact that in each ring, the closer the neurons preferred
directions are, the stronger the recurrent connection between them is. To some extent,
the recurrent connection plays the role of teacher teaching the feedforward connections to
arrange themselves.

Figure 2: Learned feedforward connections and their topological order. A-C) feedforward
connections in module 1. Different colors indicate neurons preferring different direction in
the sendng pool. X-axis is by preferred direction in the receiving pool. D-F) The color in-
dicates strength of connection. These figures illustrate that topological order is preserved
for there is a bright band in the diagonal showing that all pairs of neurons preferring the
same direction are strongly wired together. This is due to recurrent connections inside
each individual ring.
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Figure 3: Learned feedforward connections and their topological order. Same as Figure
2, but for that in module 2.

3.2 Learned reciprocal connections
There is no surprise that the reciprocal connections between congruent neurons bridging
the two modules also have von-Mises shape. Although the kernel is roughly of the same
magnitude with that of the feedforward connections, the scale factor before the kernel
of reciprocal connections is actually much smaller than that of feedforward connections.
This is due to preventing the congruent neurons from spontaneous activities. Therefore,
the information from the other module is much smaller than information from the self
module, which will be demonstrated in the population response. As illustrated in Figure
4C-D, Wc1c2 and Wc2c1 are also topologically organized.

3.3 Population response with learned connection weights
For the learned model, the population response of neurons in C1, O1, C2, O2 is in Figure
5 below. S1 is centered at 0 degree, and S2 is centered at -120 degree. We will see why
congruent neurons are called congruent and opposite neurons opposite. Actually, the
population response of congruent neurons always peaks in congruence with its unimodal
stimulus, i.e., S1 or S2. As for opposite neurons, they tend to peak in consistence with
input in their own module, while opposite to that from the other module.

When only cue 1 is present, C1 will certainly peak at 0 degree. O1 will also peak
at 0 degree for there is no input in module 2. It receives feedforward excitation from
S1 and horizontal inhibition from C1. They both peak at 0 degree but the feedforward
excitation is much stronger, so O1 will still peak at 0 degree. C2 will peak at 0 degree but
with a smaller amplitude and a DC shift. The smaller amplitude is due to weaker input
strength from C1 than S1 and The DC shift is due to input from S2 with zero reliability.
O2 will peak at 180 degree, which is opposite to the center of S1. It receives DC input
from S2 and horizontal inhibition from C2. C1 neuron will inhibit the most the neuron
in S1 which has the same orientation preference. So neuron favoring 0 degree in O2 will
receive the strongest inhibition, thus making the population response of O2 center at 180
degree, opposite to 0 degree.
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Figure 4: Learned reciprocal connections between two modules and their topological order.
A) Reciprocal connections from module 1 to module 2. B) Reciprocal connections from
module 2 to module 1. C-D) Topological order of neurons bridging the two modules.

When both cues are present, the peak of the response of C neurons lies between the
center of two cues, but closer to the one in its own module. This can be understood
intuitively for the input from the other module is indirect and thus weaker. The opposite
neurons reflect the disparity of the two stimuli. For example, the peak the population
response of O2 neurons lies between S2 and the opposite of S1 (S1+180 degree), but it’s
closer to S2.

Figure 5: Population response of neurons in C1, O1, C2, O2. A) Only cue 1 is present.
B) Only cue 2 is present. C) Both cues are present.

3.4 Single neuron response
We simulated the neurophysiological experiments presenting stimuli centered at different
locations and measuring the response of a particular neuron to those stimuli. Here, ’only
cue 1 is present’ means that the reliability of cue 2 is zero instead of the input firing rate
of S2 being zero, that is, in the formula of λ, R1 = 1 and R2 = 0. Note that there is still
input in S2 even in the case of unimodal S1 stimulus, though the input in S2 is uniform
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across all directions. This is consistent with the observation that MT neurons appear to
have s non-zero background input. What’s more, we mention here that a certain kind of
homeostasis has to be maintained for our model to work: the total input from S1 and S2
has to remain relatively constant. This necessitates the use of a constant DC input in S2
even in the case of unimodal S1 stimulus.

Fig. 7A shows the tuning curve of a neuron in C1 preferring stimulus of -90 degree.
When only cue 1 is present, the response of the neuron peaks at -90 degree with a von-
Mise shape. When only cue 2 is present, the neuron’s response still peaks at -90 degree
but the amplitude is less. This is due to the input from module 2 is indirect and relatively
weaker. When both cues are present, the tuning of the congruent neuron has a similar
von-Mise shape with stronger yet sub-additive response. Fig. 7B show the tuning curve
of a neuron in O1 preferring -90 degree in module 1 and 90 degree in module 2. When
only cue 1 is present, the response of the neuron peaks at -90 with a von-Mise shape but
with smaller amplitude than that of C1. This is because besides excitation from S1, O1
also receives inhibition from C1. When only cue 2 is present, the response of the opposite
neuron peaks at 90 degree. When both cues are present, the response is flattened and
highly sub-additive. The subadditivity of the multisensory neurons’ response is consistent
with experimental observations of MSTd neurons in macaque.

Fig. 7C-D show the correlation of congruent and opposite neurons’ tuning curves
towards unimodal S1 stimulus and unimodal S2 stimulus, showing they have congruent
and opposite tuning properties respectively. Responses to S1 and S2 stimuli (unimodal
von-Mise) are most strongly correlated when the inputs are at the same location for
congruent neurons. While responses are most strongly correlated with the inputs biased
by 180 degree for opposite neurons.

4 Discussion
This work provides a biological implementation of a previous model with inhibitory neu-
rons implementing normalization explicitly and the anti-Hebbian connection between C1
and O1 neurons. In this work, no a priori assumption about topographic organization of
the multisensory neurons is made. The topographic organization naturally emerges via a
Kohonen map-like mechanism.

We adopt a biologically realistic rate-based model to learn both congruent and opposite
neurons. The learned opposite neurons exhibit experimentally observed tuning properties
to bimodal stimuli and are topographically organized. Population response of congruent
and opposite neurons are also qualitatively consistent with experimental results. Our
model architecture is compatible with some existing decentralized models of multisensory
integration, and therefore our work also provides a basis for leanring such models in
general. Also, this network is inspired by and transferred from a model that was developed
for V1, indicating that this model might be a biologically realistic canonical model.

4.1 Delicate balance between excitation and inhibitory normal-
ization

We once adopted von-Mises excitatory to inhibitory and inhibitory to excitatory con-
nection. However, there was always a two-period issue, i.e., there are two instead of
one bright band after reordering in the topological order diagram. Thus, we turned to
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Figure 6: Tuning curves. A) Tuning curve for a congruent neuron preferring -90 degree.
B) Tuning curve for an opposite neuron preferring -90 degree in module 1 and 90 degree
in module 2. C) Correlation of tuning curves of C1 neurons towards unimodal S1 stimulus
and unimodal S2 stimulus. The bright diagonal means that there is strong correlation of
response to S1 and S2 inputs from the same location. D) Correlation of tuning curves
of O1 neurons towards unimodal S1 stimulus and unimodal S2 stimulus. A bright ridge
along the diagonal shifted by 180 degree means there is strong correlation of response to
S1 and S2 inputs from opposite locations.

uniform inhibition between excitatory pool and inhibitory normalization pool instead of
von-Mises. Then the issue was solved.

Intuitively, it is important for each stimulus, there is a clear winner, so that it can
suppress the others. A von-Mises inhibition kernel tends to suppress oneself, and if the
width is not wide enough, it will allow another winner to emerge at the far away, causing
the pool to learn two cycles in the topology, two sets of neurons with the same receptive
field. That is to say, there has to be an intricate balance between excitation and inhibitory
normalization.

We then explored the parameter space more carefully, finding the parameter range that
works is quite narrow. We first ask what the situation will be in some extreme values,
which is when the inhibition is too weak or too strong. According to Figure 6A, when the
inhibition is not strong enough, there is no clear winner to be leader for each stimulus,
then everyone just follows the fashion no stability or everyone becomes the winner equal
opportunity to learn. According to Figure 7B, when the inhibition is too strong, there
will be no winner and the response is quite small, thus learning messy topological orders.
It has to be mentioned that both results in Figure 6 are learned with constant learning
rate. This is because we want to see whether the learned result changes with time. If
the learning rate is small in the end, we cant decide whether its because the network is
stabilized or the learning process is shut down.

In Figure 8 we demonstrate the parameter dependence of feedforward learning. We
vary aei and aie, which are inhibitory to excitatory strength and excitatory to inhibitory
strength respectively. The effective inhibition is the convolution of these two parameters.
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Figure 7: Learned topological diagram’s evolution with time. A) aei=1.2, aie=1.4. This
is the case where the inhibition is not strong enough. Every neuron will learn the same
thing and it changes with time. B) aei=1.6, aie=1.6. This is the case where the inhibition
is too strong. The topological diagram will be messy.

It is shown in the figure that when the inhibition is too weak, the learned kernels tend to
be the same, but not exactly the same, which is because decreased learning rate makes
the network trapped in some local minimums. When the inhibition is too strong, the
learned topological graph is messy. When the inhibition is much too strong, the learned
kernels are all the same again. It has to be made clear that this is due to a numerical
inefficiency. When the strengths are that large, the conductance can be so large that the
numerical integration step is not small enough. The network behaves abnormally, whose
responses get saturated and since the activity of all the neurons are the same, they learn
the same kernel.

4.2 Inference mode versus learning mode
Parameters in inference mode and learning mode can be quite different. For one thing,
the implementation of divisive normalization is critical. We have experimented two kinds
of inhibition one is that inhibitory neurons are von-Mises, and the other requires the
inhibition to be uniform. Both will work for operation when the connections S1-C1 are
learned, but uniform (and with sufficient strength) is needed during learning, otherwise, all
the neurons responses will saturate, and receptive fields kept following the input training
stimuli. It is also important for each stimulus, there is a clear winner, so that it can
suppress the others. A von-Mises inhibition kernel tends to suppress oneself, and if the
width is not wide enough, it will allow another winner to emerge at the far away, causing
the pool to learn two cycles in the topology, two sets of neurons with the same receptive
fields.

For another, during learning there needs to be a weak reciprocal (long range) connec-
tion strength so that the learning in two modules wont interfere with each other. However,
during inference, the reciprocal connection strength needs to be strong so that congru-
ent neurons and opposite neurons will get enough information from the other module to
perform integration.

4.3 Decreased learning rate with time
At first, the learned feedforward connections from S to C or O are too noisy to produce a
reasonable population response. So we adopted an exponentially decreasing learning rate
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Figure 8: "Phase diagram" of the learned topological diagram. The parameter range is
quite narrow.

with time from 0.2 to 0.02 in 100 steps. To comprehend this intuitively, the system may
not reach local minimum with too high a learning rate kept unchanged. It may bounce
back and force on the energy curve. Actually, at first there needs to be a large learning
rate to avoid being caught in local minimum. Later there needs to be a small learning
rate to learn the details of the curves.

We have also tried decreasing input noise strength with time, but found it neither
sufficient nor necessary. Also, biologically input noise from other cortical areas basically
wont change with time.

5 Conclusion
Here, we first demonstrate that the decentralized neural circuit model for multisensory
processing, a firing rate model without the explicit representation of inhibitory neurons
(thus violating Dale’s law), can be implemented by leaky integrate and fire model, orig-
inally developed for modeling V1 neurons, wiht realistic parameters. This is simply
achieved by (1) introducing inhibitory neurons for performing normalization, i.e., PV
neurons (the weight is fixed or parameters to be tuned), and (2) introducing an inhibitory
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neuron for each C1 to relay the inhibition to the O neurons (Wc1i12 is fixed von-Mise but
Wi12o1 is learned). The shape learned is von-Mise. It does have some inhibitory synap-
tic plasticity. However, we can’t learn both Wc1i12 and Wi12o1 because there might be
many options-degenerate. This model is different from Zhang et al.’s in that the opposite
neurons can be completely learned in each module without connections from the other
module. Essentially, the model can accomplish what firing rate model accomplished, but
more biologically realistic in (1) obeying Dale’s law, (2) having spiking activities, follow-
ing detailed V1 model at cellular molecular level, for example, having AMPA and NMDA
receptor dynamics. More interestingly, we find that the model that was developed for
V1 can be readily transferred to model MSTd and VIP multi-sensory integration circuit,
indicating that this model might be a biologically realistic canonical model. That would
imply that the multi-sensory integration circuit might also be relevant for understand-
ing the computation in V1 itself. For example, it is reasonable to conjecture that the
congruent neurons and the opposite neurons might also be in V1. That is, the congru-
ent neurons might be integrating information across hypercolumns, while the opposite
neurons are measuring the tension and disparity between the information in the differ-
ent hypercolumns. When the different hypercolumns disagree, opposite neurons will fire
strongly, driving the divorce of the two hypercolumns, as in the Mumford-Shah equation
in image segmentation.

Second, we showed that such model can be using Willshaw law. We found that the
parameters needed for the models, particularly inhibitory spatial range and strength for
normalization is more stringent during development (learning) than during operation.
For example, during operation, a large Gaussian (von-Mise) inhibitory kernel would be
sufficient. But during development, uniform inhibition across all directions are required.
There also needs to be delicate balance between inhibition and excitation for this to work.

6 Supplementary materials
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Table 1: Simulation details

parameter value meaning

gL 50 leaky conductance
VR 0 reset potential
VT 1 voltage threshold
VI -2/3 inhibitory reversal potential
VE 14/3 excitatory reversal potential
tR 3(1)ms refractory period for excitatory (inhibitory) neurons
τAMPA 1ms time constant for AMPA receptor
τNMDAr 2ms rise time constant for NMDA receptor
τNMDAd 128ms decay time constant for NMDA receptor
τGABAA 1.67ms time constant for GABAA receptor
τGABAB 7ms time constant for GABAB recpetor
frtE 10Hz excitatory noise’s firing rate
frtI 10Hz inhibitory noise’s firing rate
dt 0.1ms time step for potential update
tfinal 3600s total simulation time
SEE 10.04 short range excitatory-excitatory synaptic strength
SEI 1037.89 short range inhibitory-excitatory synaptic strength
SIE 181.38 short range excitatory-inhibitory synaptic strength
LEE 1.408 long ragne excitatory-excitatory synaptic strength
aIE 1.5 uniform kernel for excitatory pool to inhibitory normalization pool
aEI 1.5 uniform kernel for inhibitory normalization pool to excitatory pool
SE 15000 synaptic strength of excitatory noise
SI 10000 synaptic strength of inhibitory noise
Jrc1 8 controlling amplitude of recurrent connection (module 1)
Jrc2 8 controlling amplitude of recurrent connection (module 2)
Jrp 8 controlling amplitude of recurrent connection between C1 and C2
κ1 3 controlling width of recurrent connection connection in module 1
κ2 3 controlling width of recurrent connection connection in module 2
a1 0.8 controlling width of input in module 1
a2 0.8 controlling width of input in module 2
k1 200 controlling amplitude of input in module 1
k2 200 controlling amplitude of input in module 2
α 0.5 controlling decay term in Willshaw’s rule
dt2 50ms time step for connection weight update
∆t 100ms time window for learning
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