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25 Abstract
26 The translation of preclinical studies to human applications is associated with a high failure rate, 
27 which may be exacerbated by limited training in experimental design and statistical analysis. 
28 Nested experimental designs, which occur when data have a multilevel structure (e.g., in vitro: 
29 cells within a culture dish; in vivo: rats within a litter), often violate the independent observation 
30 assumption underlying many traditional statistical techniques. Although previous studies have 
31 empirically evaluated the analytic challenges associated with multilevel data, existing work has 
32 not focused on key parameters and design components typically observed in preclinical research. 
33 To address this knowledge gap, a Monte Carlo simulation study was conducted to systematically 
34 assess the effects of inappropriately modeling multilevel data via a fixed effects ANOVA in studies 
35 with sparse observations, no between group comparison within a single cluster, and interactive 
36 effects. Simulation results revealed a dramatic increase in the probability of type 1 error and 
37 relative bias of the standard error as the number of level-1 (e.g., cells; rats) units per cell increased 
38 in the fixed effects ANOVA; these effects were largely attenuated when the nesting was 
39 appropriately accounted for via a random effects ANOVA. Thus, failure to account for a nested 
40 experimental design may lead to reproducibility challenges and inaccurate conclusions. 
41 Appropriately accounting for multilevel data, however, may enhance statistical reliability, thereby 
42 leading to improvements in translatability. Valid analytic strategies are provided for a variety of 
43 design scenarios. 
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44 Introduction
45 Preclinical studies, which range from molecular and in vitro studies to in vivo studies 

46 utilizing biological systems to model disease [1], are not immune [2-3] from the well-documented 

47 reproducibility issues observed in clinical fields [4]. Various factors, including rigorous 

48 standardization of preclinical experiments [e.g., 5-6], lack of scientific rigor [e.g., 7-8], and bias 

49 [e.g., Publication Bias: 9-10; Reporting Bias: 11], threaten reproducibility in preclinical science. 

50 Moreover, utilization of inappropriate statistical techniques is pervasive in the basic biological 

51 sciences [12-13]; a factor that likely exacerbates the reproducibility crisis. 

52 Although statistical analyses have become an essential component of scientific 

53 publications [14], basic scientists receive limited training in experimental design and quantitative 

54 methodology [14-15]. When doctoral curriculums include training in statistics, introductory 

55 courses primarily focus on traditional quantitative techniques (e.g., analysis of variance; ANOVA), 

56 but often fail to cover specialized statistical methods that are integral to contemporary research 

57 [e.g., multilevel modeling; 16]. For example, clustered data (e.g., in vitro: cells within a culture 

58 dish; in vivo: rats within a litter; see Fig 1), which are prevalent in preclinical research [17-18], 

59 often violate the independent observation assumption underlying many traditional statistical 

60 techniques (e.g., t-tests, ANOVA). Multilevel modeling [also called hierarchical linear modeling; 

61 19], however, appropriately accounts for the shared variance in nested data, thereby precluding 

62 violations of the independent observation assumption. For nearly fifty years [20-22], preclinical 

63 scientists have recognized the importance of appropriately defining the experimental unit, and yet 

64 a majority of preclinical studies continue to inappropriately analyze clustered data [e.g., Animal 

65 Models: 23-25, Developmental Psychobiology: 18, Neuroscience: 17]. 

66 Fig 1. Examples of nested data commonly observed in preclinical studies. 
67 Nested data occurs when multiple subjects and/or measurements are obtained from a single 
68 higher-order group. Examples of nested data range from in vitro experiments (i.e., cells within a 
69 culture dish (A)) to in vivo experiments utilizing polytocus species (e.g., rat pups within a litter 
70 (B)). Multilevel data can also occur with the use of longitudinal experimental designs (i.e., 
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71 repeated measurements are taken from a single individuals (C)) or the classical Sholl analysis 
72 (i.e., radii are nested within a neuron (D); [62-63]). 

73 Within preclinical fields, simulation studies have afforded an opportunity to empirically 

74 evaluate the implications of inappropriately modeling clustered data [e.g., 17-18, 26-28]. 

75 Spuriously significant effects, evidenced by inflated type 1 error rates [17-18, 26-28], are a well-

76 recognized consequence of inappropriately modeling clustered data. With regards to statistical 

77 power, higher intraclass correlation coefficients (ICC; i.e., the relatedness of nested data [29-30]) 

78 are associated with lower statistical power [17]. To date, however, the majority of work examining 

79 statistical implications of violating the independent observation assumption has primarily 

80 considered parameters and design components not well aligned with those observed in preclinical 

81 studies (i.e., overly large sample and cluster size), as well as simplified models that preclude the 

82 examination of interactive effects. Moreover, the effect of inappropriately modeling multilevel data 

83 on the statistical accuracy of parameter estimates has not yet been systematically evaluated 

84 under these conditions.

85 In light of gaps in previous work, a Monte Carlo simulation study was conducted to 

86 empirically evaluate the effects of inappropriately modeling multilevel data using parameters more 

87 reflective of preclinical work. Specifically, the study considered: 1) sparse data, defined by either 

88 a small number of level-1 units per cell [31] or a small number of clusters; 2) no between group 

89 comparison within clusters, and 3) interactive effects.  The rationale of including the latter derives 

90 from requirements by the National Institutes of Health to include sex as a biological variable (NOT-

91 OD-15-102). Population data in line with a fully-crossed two-factor ANOVA, where treatment units 

92 were nested within clusters, was simulated to consider the impact on both main effects (e.g., 

93 treatment and sex) and interaction terms (e.g., treatment x sex). Study outcomes were compared 

94 across a traditionally-used fixed effects ANOVA model and a two-level random effects ANOVA 

95 model that allowed variation in both the intercept and slope. Outcome variables were selected to 

96 assess both the accuracy of hypothesis testing and parameter estimates in the model. Valid 
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97 analytic strategies are provided for a variety of design scenarios. Given the current rigor and 

98 reproducibility crisis in the biomedical sciences, evaluating the implications of inappropriate 

99 statistical practices is integral to the quest for more efficient and reliable data. 
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100 Results

101  The population model in the simulation was a fully crossed 2x2 random effects ANOVA 

102 model, with two binary predictors and an interaction term. Population parameters for level-1 

103 sample size (i.e., number of level-1 units per cell; N), level-2 sample size (i.e., number of clusters; 

104 C), the parameter effect size for the main effect (β1), the parameter effect size for the interaction 

105 effect (β3), and ICC were systematically varied yielding a 6 x 5 x 4 x 4 x 2 factorial design with 

106 960 conditions (Table 1). Each condition was replicated 1,000 times, yielding 960,000 datasets 

107 for analysis. Given the extremely large sample size, and corresponding inflation of statistical 

108 significance, practical significance was evaluated against a partial η2 ≥ 0.01 criterion, indicating 

109 that at least 1% of the variance in a given outcome was attributable to the effect of interest [32]. 

110 The partial η2 values for each parameter, and all possible interactions among the parameters, are 

111 presented for all outcome variables in Table 2 (Main Effect of β1) and Table 3 (Interaction Effect 

112 of β3). 

113 Table 1. Simulation Population Parameters and Corresponding Levels of Each Parameter.

Population Parameter Levels
Sample Size: Level-1 (N) 2, 4, 6, 8, 10, 12
Sample Size: Level-2 (C) 4, 8, 12, 16, 20
Parameter Effect Size

Main Effect of β1 (β1) 0, 0.14, 0.39, 0.59
Interaction Effect β3 (β3) 0, 0.14, 0.39, 0.59

Intraclass Correlation (ICC) 0.16, 0.6

114

115 Table 2. Partial η2 for the Main Effect of β1.

Outcome 
Measurement

N C ICC β1 N x C N x 
ICC

N x β1 C x 
ICC

C x β1 ICC x 
β1

N x C 
x ICC

N x C 
x β1

N x 
ICC x 

β1  

C x 
ICC x 

β1 

N x C 
x β1 x  
ICC

Fixed 0.464 0.006 0.445 ----- 0.001 0.073 ----- 0.003 ----- ----- 0.001 ----- ----- ----- -----Type 1 Error
Random 0.046 0.386 0.204 ----- 0.025 0.026 ----- 0.194 ----- ----- 0.010 ----- ----- ----- -----

Fixed 0.013 0.045 0.504 0.235 0.001 0.010 0.003 0.021 0.008 0.141 0.001 0.003 0.003 0.005 0.004Power
Random 0.012 0.058 0.442 0.228 <0.001 0.011 0.003 0.041 0.017 0.168 <0.001 0.002 0.003 0.012 0.002

Fixed 0.016 0.009 0.001 0.002 0.021 0.008 0.023 0.006 0.010 0.003 0.019 0.061 0.014 0.007 0.043Relative Bias
Random 0.015 0.012 0.001 0.002 0.018 0.008 0.020 0.008 0.016 0.002 0.018 0.057 0.014 0.010 0.041

Bias Fixed 0.009 0.033 0.01 ----- 0.119 0.004 ----- 0.017 ----- ----- 0.060 ----- ----- ----- -----
Random 0.008 0.040 0.006 ----- 0.121 0.004 ----- 0.018 ----- ----- 0.058 ----- ----- ----- -----
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Fixed 0.590 0.005 0.374 <0.001 <0.001 0.023 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001Relative Bias of 
the Standard Error Random 0.054 0.004 0.311 0.004 0.012 0.038 0.004 0.212 0.008 <0.001 0.012 0.037 0.005 0.003 0.017

116 Practically significant effects are indicated by boldface type. 

117 Table 3. Partial η2 for the Main Effect of β3.

Outcome 
Measurement

N C ICC β3 N x C N x 
ICC

N x β3 C x 
ICC

C x β3 ICC x 
β3

N x C 
x ICC

N x C 
x β3

N x 
ICC x 

β3  

C x 
ICC x 

β3 

N x C 
x β3 x  
ICC

Fixed 0.602 0.040 0.109 ----- 0.008 0.197 ----- 0.018 ----- ----- 0.006 ----- ----- ----- -----Type 1 Error
Random 0.027 0.105 0.555 ----- 0.013 0.004 ----- 0.203 ----- ----- 0.015 ----- ----- ----- -----

Fixed 0.067 0.064 0.309 0.233 0.006 0.038 0.028 0.040 0.024 0.150 0.002 0.003 0.014 0.016 0.002Power
Random 0.042 0.082 0.285 0.235 0.006 0.039 0.019 0.054 0.036 0.150 0.005 0.003 0.017 0.023 0.003

Fixed 0.004 0.004 <0.001 <0.001 0.014 0.007 0.020 0.004 0.005 <0.001 0.013 0.052 0.025 0.006 0.033Relative Bias
Random 0.003 0.003 <0.001 <0.001 0.020 0.006 0.018 0.003 0.004 <0.001 0.013 0.060 0.023 0.006 0.030

Bias Fixed 0.023 0.013 0.004 ----- 0.077 0.013 ----- 0.019 ----- ----- 0.028 ----- ----- ----- -----
Random 0.018 0.023 0.004 ----- 0.077 0.014 ----- 0.019 ----- ----- 0.028 ----- ----- ----- -----

Fixed 0.684 0.012 0.002 <0.001 <0.001 0.286 <0.001 0.005 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 0.001Relative Bias of 
the Standard Error Random 0.026 0.050 0.577 0.002 0.005 0.011 0.003 0.187 0.002 0.001 0.012 0.010 0.002 0.001 0.008

118 Practically significant effects are indicated by boldface type. 

119 Type 1 error

120 For experimental conditions where the population value of interest (i.e., β1, β3) was zero, 

121 the accuracy of hypothesis testing was evaluated using type 1 error, which was defined as the 

122 proportion of replications in a given condition that yielded statistically significant results. Type 1 

123 error was evaluated against a nominal α criterion of 0.05.

124 Main effect (β1). For the main effect of β1 in the fixed effects model (Fig 2A), the 

125 probability of type 1 error ranged from 5.8% to 23.3% for the small ICC and from 10.3% to 49.8% 

126 for the large ICC. The probability of type 1 error rates increased as the number of level-1 units 

127 per cell increased, but the rate of increase was dependent upon ICC [N x ICC Interaction: 

128 ηp
2=0.073]. Specifically, the probability of type 1 error increased at a significantly greater rate 

129 when the ICC was large relative to a small ICC [First Order Polynomial: R2s>0.91; 

130 F(1,236)=351.1, p≤0.001]. Most critically, however, observed type 1 error rates were greater than 

131 the established α criterion of 0.05 across all levels of the population parameters (i.e., N and ICC). 

132 Fig 2. Probability of type 1 error. 
133 The probability of type 1 error (%) is illustrated as a function of β coefficient (i.e., Main Effect of 
134 β1: A, B; Interaction Effect of β3: C, D), analytic approach (i.e., Fixed Effects ANOVA: A, C; 
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135 Random Effects ANOVA: B, D), and intraclass correlation (ICC). In the fixed effects ANOVA (A,C), 
136 mean estimates for the probability of type 1 error increased as the number of level-1 units per cell 
137 increased; estimates which were greater than the established α criterion of 0.05. Utilization of a 
138 random effects ANOVA (B,D), however, improved the accuracy of hypothesis testing evidenced 
139 by type 1 error rates that approximate the established α criterion. The dashed blue line reflects 
140 the established α criterion of 0.05.

141 When the nested experimental design was appropriately accounted for via a random 

142 effects model, elevated type 1 error rates were largely attenuated (Fig 2B). In the random effects 

143 model, mean type 1 error rates ranged from 6% to 7.3% for the small ICC and from 6.3% to 13.2% 

144 for the large ICC; these values were dependent upon an interaction between the number of level-2 

145 units and ICC [C x ICC Interaction: ηp
2=0.194]. Specifically, the probability of type 1 error 

146 decreased at a significantly faster rate when the ICC was large relative to a small ICC [First Order 

147 Polynomial: R2s>0.83; F(1, 236)=112, p≤0.001]. 

148  Interaction effect (β3). With regard to the interaction effect of β3 in the fixed effects 

149 model (Fig 2C), mean estimates for type 1 error ranged from 3.3% to 8.3% for the small ICC and 

150 from 0.5% to 18.7% for the large ICC. Consistent with observations for β1, mean estimates for the 

151 probability of type 1 error were dependent upon an interaction between the number of level-1 

152 units per cell and the value of the ICC [N x ICC Interaction: ηp
2=0.197]. Specifically, as the number 

153 of level-1 units per cell increased, the probability of type 1 error increased; an increase that was 

154 significantly faster when the ICC was large relative to a small ICC [First Order Polynomial: 

155 R2s>0.99; F(1, 236)=490.7, p≤0.001]. Type 1 error rates were conservative when there were only 

156 two level-1 units per cell. There was diminished accuracy of hypothesis testing when more than 

157 four level-1 units per cell were selected, however, evidenced by a type 1 error rate that was 

158 greater than the established α criterion of 0.05. 

159 Utilization of a random effects model, to appropriately account for the nested experimental 

160 design, largely attenuated the elevated type 1 error rates for the interaction effect of β3 (Fig 2D). 

161 When the ICC was small, mean estimates for the probability of type 1 error in the random effects 

162 model ranged from 3.8% to 4.8%; observations which support accurate estimates across all level-
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163 2 population parameters. For the large ICC, mean estimates for the probability of type 1 error in 

164 the random effects model ranged from 6.3% to 11.7%; observations which revealed a greater 

165 probability of type 1 error when fewer level-2 units per cell were sampled. The overall ANOVA 

166 confirmed our observations, revealing a practically significant interaction between the number of 

167 level-2 units and the ICC [C x ICC Interaction: ηp
2=0.203]. 

168 Power

169 For experimental conditions where the population value of interest (i.e., β1, β3) was non-

170 zero, the accuracy of hypothesis testing was assessed via statistical power, which was defined 

171 by the proportion of replications in a given condition that yielded statistically significant results. 

172 Statistical power was evaluated against a criterion of 0.80 [32]. 

173 Main effect (β1). With regard to the main effect of β1 in the fixed effects model (Fig 3A), 

174 statistical power ranged from 12.2% to 73.8% for the small ICC and from 0.03% to 8.8% for the 

175 large ICC. A practically significant interaction between the magnitude of β1 and ICC was observed 

176 [β1 x ICC Interaction: ηp
2=0.141]. As the magnitude of β1 increased, statistical power increased; 

177 an increase that was significantly faster when the ICC was small relative to a large ICC [First 

178 Order Polynomial: R2s>0.97; F(1,716)=734.5, p≤0.001]. However, the observed statistical power 

179 failed to reach the established criterion of 0.80 at any levels of the population parameters studied. 

180 Fig 3. Statistical power. 
181 Statistical power is illustrated as a function of coefficient magnitude (i.e., 0.14, 0.39, 0.59), β 
182 coefficient (i.e., Main Effect of β1: A, B; Interaction Effect of β3: C, D), analytic approach (i.e., Fixed 
183 Effects ANOVA: A,C; Random Effects ANOVA: B,D), and intraclass correlation (ICC). 
184 Independent of analytic approach and/or β coefficient, statistical power failed to reach the 
185 established criterion of 0.80. Overall, statistical power was lower for the interaction effect of β3. 
186 The dashed blue line reflects the established criterion of 0.80.

187 Utilizing a random effects model to appropriately account for the nested experimental 

188 design did not significantly improve the statistical power to detect effects. In the random effects 

189 model, statistical power ranged from 7.8% to 74.6% for the small ICC and from 0.03% to 5.6% for 

190 the large ICC (Fig 3B); these estimates were dependent upon an interaction between the 
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191 magnitude of β1 and ICC [β1 x ICC Interaction: ηp
2=0.168]. Consistent with observations for the 

192 fixed effects ANOVA, statistical power to detect the main effect of β1 increased at a significantly 

193 faster rate when the ICC was small relative to a large ICC  [First Order Polynomial: R2s>0.97; F(1, 

194 716)=720.2, p≤0.001].  Although statistical power failed to reach the established criterion of 0.80 

195 in the random effects model, it is noteworthy that the utilization of an appropriate, advanced 

196 quantitative method had no adverse effects (i.e., did not decrease) on statistical power. 

197 Interaction effect (β3). For the interaction effect in the fixed effects model (Fig 3C), 

198 statistical power ranged from 3.8% to 53.6% for the small ICC and from 0% to 5.7% for the large 

199 ICC. These estimates  were dependent upon an interaction between the  magnitude of β3 and the 

200 ICC [β3 x ICC Interaction: ηp
2=0.150] and were lower for the interaction effect of β3 relative to the 

201 main effect of β1. As the magnitude of β3 increased, statistical power increased; an increase that 

202 was significantly faster when the ICC was small relative to a large ICC [First Order Polynomial: 

203 R2s>0.97; F(1, 716)=345.2, p≤0.001]. 

204 Utilization of a random effects model to appropriately account for the nested experimental 

205 design did not increase statistical power to detect effects. In the random effects model, statistical 

206 power ranged from 3.1% to 50% for the small ICC and from 0% to 5.5% for the large ICC (Fig 

207 3D). Consistent with observations for the interaction effect of β3 in the fixed effects model, 

208 statistical power was dependent upon an interaction between the magnitude of β3 and ICC [β3 x 

209 ICC Interaction: ηp
2=0.150]. Statistical power increased at a significantly faster rate when the ICC 

210 was small relative to a large ICC [First Order Polynomial: R2s>0.96; F(1, 716)=318.5, p≤0.001]. 

211 Consistent with observations for β1, statistical power for the interaction effect of β3 failed to reach 

212 the established criterion of 0.80 in either the fixed effects model or the random effects model; 

213 results that suggest preclinical studies may often be underpowered, resulting in decreased 

214 accuracy for hypothesis testing.

215
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216 Relative bias of parameter estimates

217 For conditions where the parameter effect size of interest (i.e., β1, β3) was non-zero, the 

218 relative bias of parameter estimates was evaluated to assess the accuracy of model parameter 

219 estimates. Relative bias was defined as the difference between the observed sample estimate 

220 and the true value of a given parameter, relative to the true value of the parameter being 

221 estimated:

222 𝑅𝐵𝜃 =
𝜃 ― 𝜃

𝜃

223 where 𝜃 is the average parameter estimate across 1000 replications and 𝜃 refers to the population 

224 parameter value. Values of relative bias that exceeded |10%| were considered poor [33].

225 Main effect (β1). For the main effect of β1, a practically significant four-way interaction 

226 between the number of level-1 units per cell, the number of level-2 units, the magnitude of β1, and 

227 ICC [N x C x β1 x ICC Interaction: ηp
2=0.043] was observed in the fixed effects model. Under 

228 conditions where the ICC was small, results demonstrated tolerable rates of relative bias across 

229 varying values of β1, with mean estimates for relative bias ranging from -6.6% to 7.2% when  

230 β1=0.14, from -5.7% to 1.6% when β1=0.39, and from -1.7% to 2.1% when β1=0.59. For the large 

231 ICC (Fig 4A, 4C, 4E), however, excessive rates of bias were observed under conditions when the 

232 magnitude of β1 was small. Specifically, mean estimates for relative bias ranged from -21.2% to 

233 38% when β1=0.14. This contrasted to relative bias estimates in the large ICC conditions when β1 

234 was either medium (0.39) or large (0.59), with relative bias estimates ranging from -5.8% to 8.7% 

235 and from -6.5% to 6.9%, respectively. Overall, the pattern of relative bias was random, centered 

236 around zero, and did not consistently exceed the established criterion of |10%| in these conditions. 

237

238
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239 Fig 4. Relative bias of parameter estimates. 
240 Relative bias (%) is illustrated for the main effect of β1 and the large intraclass correlation as a 
241 function of coefficient magnitude (i.e., 0.14 (A, B), 0.39 (C, D), 0.59 (E, F)), analytic approach 
242 (i.e., Fixed Effects ANOVA: A, C, E; Random Effects ANOVA: B, D, F), the number of level-1 
243 units per cell, and the number of level-2 units. Independent of analytic approach, elevated rates 
244 of relative bias were observed for some conditions when the magnitude of β1 was small (A,B). 
245 Overall, however, the pattern of relative bias was random, centered around zero, and not 
246 consistently exceed the established criterion of |10%|  for either the fixed effects or random effects 
247 ANOVA. The green area within the two dashed blue lines reflects the acceptable levels of relative 
248 bias. Points outside of the green area are greater than the established criterion of |10%|.

249 With regard to the main effect of β1 in the random effects model, a practically significant 

250 four-way interaction between the number of level-1 units per cell, the number of level-2 units, the 

251 magnitude of β1, and ICC [N x C x β1 x ICC Interaction: ηp
2=0.041] was also observed. For the 

252 small ICC, results demonstrated tolerable rates of relative bias across values of β1, with mean 

253 estimates for relative bias ranging from -6.6% to 7.3% when β1=0.14 from -3.1% to 1.9% when 

254 β1=0.39, and from -1.4% to 2.2% when β1=0.59. Under parameter conditions where the ICC was 

255 large (Fig 4B, 4D, 4F), results demonstrated intolerable relative bias when the magnitude of β1 

256 was small, with estimates ranging from -16.5% to 37.9%. This contrasted to relative bias 

257 estimates when the magnitude of β1 was either medium (0.39) or large (0.59) in these conditions, 

258 with relative bias estimates ranging from -5.7% to 8.7% and from -8.4% to 2.7%, respectively. 

259 The comparability of relative bias results across  the random effects and fixed effects models 

260 indicate  neither a beneficial nor detrimental effect of appropriately modeling nested data  on the 

261 relative bias of model parameter estimates. 

262 Interaction effect (β3). For the interaction effect of β3, a practically significant four-way 

263 interaction between the number of level-1 units per cell, the number of level-2 units, the magnitude 

264 of β3, and ICC [N x C x β3 x ICC Interaction: ηp
2=0.033] was observed in the fixed effects model. 

265 When β3=0.14, mean estimates for relative bias ranged from -17.8% to 11.1% and from -23.4% 

266 to 21.3% for the small ICC and large ICC, respectively. When β3=0.39, mean estimates for relative 

267 bias ranged from -2.0% to 1.9% for the small ICC and from -8.4% to 8.6% for the large ICC. 

268 Finally, when β3=0.59, mean estimates for relative bias ranged from -1.8% to 1.3% and from -
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269 5.4% to 11.7% for the small ICC and large ICC, respectively. Overall, relative bias did not 

270 consistently exceed the established criterion of |10%|. Notably, however, there were excessive 

271 rates of relative bias when the magnitude of the interaction term was small.

272 Mean estimates for relative bias for the interaction effect of β3 in the random effects model 

273 approximated those observed in the fixed effects model. Furthermore, consistent with 

274 observations for the interaction effect of β3 in the fixed effects ANOVA, a practically significant 

275 interaction between the number of level-1 units per cell, the number of level-2 units, the magnitude 

276 of β3, and the ICC was observed [N x C x β3 x ICC Interaction: ηp
2=0.030]. Specifically, for the 

277 small ICC, mean estimates for relative bias ranged from -23.9% to 10.6% when β3=0.14, from -

278 1.8% to 2.6% when β3=0.39, and from -1.7% to 1.9% when β3=0.59. Under parameter conditions 

279 where the ICC was large, mean estimates for relative bias ranged from -23.4% to 20.5% when 

280 β3=0.14, from -8.3% to 9.8% whenβ3=0.39, and from -5.7% to 11.6% when β3=0.59. As with 

281 results for the fixed effects model, there was a modest elevation of relative bias when the 

282 magnitude of the interaction term was small. Overall however, and consistent with observations 

283 for β1, relative bias for the interaction effect of β3 did not consistently exceed the established 

284 criterion of |10%| in either the fixed effects model or the random effects model. 

285 Absolute bias of parameter estimates

286 When relative bias was undefined in experimental conditions (i.e., when true values of the 

287 parameter effect size of the β coefficients were equal to zero), absolute bias was calculated as 

288 follows: 

289 𝐵𝜃 = 𝜃 ― 𝜃

290 Values of absolute bias that exceeded |10%| were considered poor [33].

291 Main Effect (β1). For the main effect of β1 in the fixed effects model, mean estimates for 

292 absolute bias ranged from -0.8% to 1.3% for the small ICC and from -2.5% to 6.2% for the large 
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293 ICC. A practically significant interaction between the number of level-1 units per cell, the number 

294 of level-2 units, and ICC was observed [N x C x ICC Interaction: ηp
2=0.060]. 

295 Utilizing a random effects model to appropriately account for the nested experimental 

296 design had neither a beneficial nor adverse effect on absolute bias. Consistent with observations 

297 for the main effect of β1 in the fixed effects ANOVA, a practically significant interaction between 

298 the number of level-1 units per cell, the number of level-2 units and ICC was observed [N x C x 

299 ICC Interaction: ηp
2=0.058]. Specifically, for the small ICC, mean estimates for absolute bias 

300 ranged from -0.8% to 1.5%. For the large ICC, mean estimates for absolute bias ranged from -

301 2.0% to 6.4% in the random effects ANOVA. Therefore, absolute bias did not exceed established 

302 criterion of |10%| for any conditions assessed in either the fixed effects ANOVA or the random 

303 effects ANOVA.

304 Interaction Effect (β3). With regards to the interaction effect of β3, a practically 

305 significant three-way interaction between the number of level-1 units per cell, the number of level-

306 2 units, and ICC [N x C x ICC Interaction: ηp
2=0.028] was observed in the fixed effects model. 

307 Mean estimates for absolute bias ranged from -1.2% to 1.1% and from -2.3% to 1.8% for the small 

308 ICC and large ICC, respectively.  

309 Utilizing a random effects model to appropriately account for the nested experimental 

310 design had neither a beneficial nor adverse effect on absolute bias. For the small ICC, mean 

311 estimates for absolute bias ranged from -1.1% to 1.1%. For the large ICC, mean estimates for 

312 absolute bias ranged from -3.7% to 1.1%. Consistent with observations for the main effect of β1, 

313 absolute bias for the interaction effect of β3 did not exceed the established criterion of |10%| for 

314 any conditions assessed in either the fixed effects ANOVA or the random effects ANOVA.

315 Relative bias of the standard error

316 Relative bias of the standard error was evaluated for all experimental conditions to 

317 examine the accuracy of error estimates using the following formula [34]:
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318 𝑅𝐵𝑆𝐸 =
𝑆𝐸𝜎 ― 𝑠𝑑𝜎

𝑠𝑑𝜎

319 where 𝑆𝐸𝜎 is the average standard error across replications and 𝑠𝑑𝜎 is the empirical standard 

320 deviation of parameter estimates. Values of relative bias of the standard error that were greater 

321 than |5%| were considered poor [35].

322 Main Effect (β1). For the main effect of β1 in the fixed effects model (Fig 5A), results 

323 demonstrated intolerable levels of relative bias of the standard error across parameter 

324 combinations, ranging from -39.5% to -4.3% for the small ICC and from -65.2% to -14.8% for the 

325 large ICC. Mean estimates for relative bias of the standard error were dependent upon an 

326 interaction between the number of level-1 units per cell and ICC [N x ICC Interaction: ηp
2=0.023]. 

327 A one-phase decay provided a well-described fit for the relative bias of the standard error, 

328 independent of ICC (Small ICC: R2>0.99; Large ICC: R2>0.99). However, significant differences 

329 in the y-intercept [F(1,954)=156.1, p≤0.001], rate constant [i.e., K; F(1,954)=284.7, p≤0.001] and 

330 plateau [F(1,954)=106.4, p≤0.001] were observed. When failing to account for the nested data 

331 structure, the standard error for the main effect of β1 was negatively biased. 

332 Fig 5. Relative bias of the standard error. 
333 Relative bias of the standard error (%) is illustrated as a function of β coefficient (i.e., Main Effect 
334 of β1: A, B; Interaction Effect of β3: C, D), analytic approach (i.e., Fixed Effects ANOVA: A, C; 
335 Random Effects ANOVA: B, D), and intraclass correlation (ICC). In the fixed effects ANOVA (A,C), 
336 mean estimates for the relative bias of the standard error decreased as the number of level-1 
337 units per cell increased supporting negatively biased standard errors. Utilization of a random 
338 effects ANOVA (B,D), however, largely attenuated the relative bias of the standard error; an effect 
339 which represents a disattenuation of the standard error. The green area within the two dashed 
340 blue lines reflects the acceptable levels of relative bias of the standard error. Points outside of the 
341 green area are greater than the established criterion of |5%|.

342 When the nested experimental design was appropriately accounted for via a random 

343 effects model, however, the relative bias of the standard error was largely attenuated. When the 

344 ICC was small, mean estimates for the relative bias of the standard error in the random effects 

345 model ranged from 4% to -0.2%; estimates that were less than the established criterion of 5% 

346 across all level-2 units per cell. For the large ICC, mean estimates for the relative bias of the 
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347 standard error ranged from -6.6% to -1.4%; observations which revealed a greater likelihood of 

348 biased standard errors when fewer level-2 units were sampled (Fig 5B). The overall ANOVA 

349 confirmed our observations, revealing a practically significant interaction between the number of 

350 level-2 units and the ICC [C x ICC Interaction: ηp
2=0.212]. Furthermore, an investigation of the 

351 empirical standard deviation of parameter estimates demonstrated negligible differences between 

352 the fixed effect models and random effect models across conditions. Thus, in line with previous 

353 methodological work, results demonstrated that utilization of a random effects model largely 

354 attenuated the relative bias of the standard error to approximate the established criterion of |5%|; 

355 an effect resulting from the disattenuation of the standard error. 

356 Interaction Effect (β3). For the interaction effect of β3 in the fixed effects model (Fig 

357 5C), mean estimates for the relative bias of the standard error ranged from 8.6% to -11.4% for 

358 the small ICC and from 58.9% to -31.1% for the large ICC. Overall, the relative bias of the standard 

359 error was greater when the ICC was large relative to a small ICC.  A shift in the direction of the 

360 relative bias of the standard error (i.e., from positively biased to negatively biased) was observed 

361 as the number of level-1 units per cell increased, in line with increased violations of independence. 

362 A practically significant interaction between the number of level-1 units per cell and ICC confirmed 

363 our observations [N x ICC Interaction: ηp
2=0.286]. A one-phase decay provided a well-described 

364 fit for the relative bias the standard error, independent of ICC (Small ICC: R2>0.99; Large ICC: 

365 R2>0.99). However, significant differences in the y-intercept [F(1,954)=599.2, p≤0.001], and rate 

366 constant [i.e., K;  F(1,954)=93.0, p≤0.001] were observed. Consistent with the observations for β1 

367 in the fixed effects model, when two or more level-1 units per cell were selected, there was 

368 diminished accuracy of standard error estimates. 

369 Utilization of a random effects model to appropriately account for the nested experimental 

370 design, however, largely attenuated the relative bias of the standard error. In the random effects 

371 model, mean estimates for the relative bias of the standard error ranged from 14.6% to 3% for 

372 the small ICC and from -4.8% to -1.1% for the large ICC (Fig 5D). Independent of ICC, as the 
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373 number of level-2 units increased, the relative bias of the standard error approached 0. The 

374 practically significant interaction between the number of level-2 units and the ICC [C x ICC 

375 Interaction: ηp
2=0.187] captures differences in the direction (i.e., Small ICC: positively biased; 

376 Large ICC: negatively biased) of relative bias of the standard error. Therefore, consistent with 

377 observations for β1, utilization of a random effects model largely disattenuated the standard error 

378 and had a negligible effect on the empirical standard deviation of parameter estimates; 

379 observations which support the implementation of random effects models when nested data are 

380 present in a design. 
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381 Discussion 
382 Inappropriately modeling clustered data via a fixed effects ANOVA promoted inaccurate 

383 hypothesis testing and  artificially attenuated standard error estimates; both of these effects were 

384 largely mitigated when the nested data structure was appropriately accounted for via a random 

385 effects ANOVA. Spuriously significant effects, evidenced by type 1 error rates greater than the 

386 established α criterion of 0.05, were observed in the fixed effects ANOVA.  Significant negatively 

387 biased standard errors, which artificially decrease estimates of the standard error, promoted 

388 inaccurate hypothesis testing in the fixed effects ANOVA. Notably, inappropriately modeling 

389 nested data had adverse effects on both the main effect of β1 and the interaction effect of β3; 

390 albeit the magnitude of these effects was dependent upon the β coefficient (i.e., β1 or β3) and 

391 outcome variable of interest. In contrast, appropriately modeling nested data via a random effects 

392 ANOVA improved the accuracy of both hypothesis testing (i.e., Type 1 Error) and parameter 

393 estimates (i.e., Relative Bias of the Standard Error). Statistical power failed to reach the 

394 established criterion of 0.8 in either the fixed effects or random effects ANOVA; a result reflecting 

395 the small sample sizes commonly utilized in preclinical research. Thus, failure to account for a 

396 nested experimental design has critical implications on inferential statistics and may hinder 

397 reproducibility in the behavioral and biomedical sciences.

398 Selection of two or more level-1 units per cell has prominent adverse effects on inferential 

399 statistics when analytic techniques fail to account for the nested data structure. Consistent with 

400 previous methodological work [e.g., 17-18, 26-28, 36-38], type 1 error rates were greater than the 

401 established α criterion of 0.05 in the fixed effects ANOVA; results which demonstrate that findings 

402 based on larger samples, different design characterizations, and simpler models (i.e., t-tests) 

403 extend to the types of parameters more commonly seen in preclinical studies. Notably, the 

404 profound negative bias in the standard error, which occurs even when the number of level-1 units 

405 per cell is small, likely promotes elevated type 1 error rates in the fixed effects ANOVA by 

406 decreasing within-group variance. When multilevel data is appropriately modeled via a random 
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407 effects ANOVA, however, the type 1 error rate and relative bias of the standard error approximate 

408 the established criterion (i.e., α < 0.05 and |5%|, respectively).  

409 Low statistical power has been recognized as a critical, albeit not universal, issue in 

410 preclinical research [39-40]. In the present simulation, statistical power failed to reach the 

411 established criterion of 0.8 in either the fixed effects or random effects ANOVA; a result reflecting 

412 the small level-1 and level-2 sample sizes modeled to reflect those commonly observed in 

413 preclinical studies [41-42]. To maximize statistical power in a nested experimental design, 

414 methodologists recommend increasing the number of level-2 units, rather than the number of 

415 level-1 units per cell [e.g., 28, 43]. However, given feasibility issues (e.g., time, cost) with 

416 increasing sample size, it is important to consider utilizing alternative experimental design 

417 strategies, including repeated-measures [44], the inclusion of covariates [45-47], and use of no 

418 dependent observations [18], to increase statistical power. Implementation of these strategies is 

419 especially important in light of requirements by the NIH to include sex as a biological variable 

420 (NOT-OD-15-102); a requirement that necessitates investigation of interaction terms, which 

421 exhibit lower statistical power than main effects. 

422 The assessment of two ICC variants revealed the importance of the value of ICC across 

423 all outcome measures. Specifically, in the fixed effects ANOVA, the value of ICC altered the 

424 magnitude, but not the presence, of inaccurate hypothesis testing and parameter estimates. The 

425 importance of calculating and reporting the ICC in preclinical studies, therefore, cannot be 

426 understated. ICC (i.e., ρ; [29-30]), which reflects the relatedness of nested data, is calculated by 

427 dividing the between-cluster variability by the total variability (i.e., within-cluster variability and 

428 between-cluster variability; [19]). Values of ICC range from zero to one, whereby, a higher ICC 

429 represents increased similarity within a cluster. Given that even small ICC values (i.e., ρ < 0.05) 

430 may have critical implications on inferential statistics [48-49], researchers should also conduct a 

431 formal statistical test to determine whether the ICC is statistically significant. Winer [50] and 
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432 Denenberg 51] proposed a preliminary test to calculate an F ratio by dividing the mean using the 

433 following equation: 

434 𝐹 =
𝑀𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟

𝑀𝑆𝑠𝑢𝑏𝑗𝑒𝑐𝑡

435 To assess statistical significance, Winer [50] recommended establishing a relatively high α 

436 criterion (i.e., 0.20 to 0.30). Generally, however, and in the absence of calculating and testing 

437 model ICCs to suggest otherwise, the nested data structure should be modeled using an 

438 appropriate analytic technique.

439 Our study considered the utility of a random effects ANOVA to appropriately account for 

440 nested data. Cluster means, an approach historically recommended for handling nested data in 

441 preclinical research [e.g., 21-22], however, merit further consideration. Cluster means are an 

442 inherently simple approach by which multiple observations within a cluster are reduced to a single, 

443 independent observation via the calculation of a summary statistic (e.g., mean; [27, 51]). The 

444 validity of cluster means is evidenced by their ability to effectively reduce the probability of type 1 

445 error [18, 27-28]; albeit further research is needed to assess their utility in studies with more 

446 complex statistical analyses (i.e., ANOVA). However, when both the number of level-2 units and 

447 effect size is small [28], researchers should be cautious about implementing cluster means, as 

448 this approach may decrease statistical power.

449 Generalized estimating equations [GEE; 52] offer another analytic approach for multilevel 

450 data. In GEE, statistical corrections  are utilized to produce standard error estimates via a 

451 ‘sandwich’ estimator, and in some cases parameter estimates, that account for the nested 

452 experimental design [52-53].  Unlike ANOVA techniques, GEE are appropriate for non-normal, 

453 binary, and categorical dependent variables. When the number of level-2 units is large, compelling 

454 evidence for unbiased parameter and standard error estimates supports the validity of GEE for 

455 the analysis of clustered data [e.g., 54-56]. However, when the number of level-2 units is small, 
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456 as is commonly seen in preclinical studies, GEE are too liberal (i.e., increased type-1 error rates, 

457 negatively biased standard errors; [e.g., 27, 56-57]). Furthermore, GEE are strictly a population-

458 level modeling approach, which precludes cluster-specific inferences. Thus, although GEE afford 

459 a valid approach for modeling multilevel data, they may be impractical for preclinical studies. 

460 Methodological advancements and widely available statistical software packages (e.g., 

461 SAT/STAT Software 9.4; SPSS Statistics 26, IBM Corp.) have made appropriately modeling 

462 multilevel data readily accessible. Fig 6 offers a recommendation for determining an appropriate 

463 statistical approach for the analysis of multilevel data in preclinical studies. Specifically, 

464 researchers should begin by calculating ICC and conducting a preliminary statistical test 

465 evaluated against a relatively high α criterion (i.e., 0.20 to 0.30; [50-51]). If the ICC is not 

466 statistically significant, and the number of level-1 units per cell is small, scientists may conduct a 

467 fixed effects ANOVA. However, if the ICC is statistically significant, we recommend accounting 

468 for the nested data structure using an appropriate analytic technique (e.g., random effects 

469 ANOVA, cluster means, GEE) and any necessary bias corrections (i.e., GEE with small-sample 

470 data; [58-59]). 

471 Fig 6. Recommendations for the selection of an appropriate analytic technique for 
472 clustered data.
473 A statistical decision tree illustrates some of the key considerations for determining the most 
474 appropriate statistical technique for nested data. Critically, these recommendations are not 
475 exhaustive, and other statistical approaches may be appropriate dependent upon the research 
476 question. *To conduct a fixed effects ANOVA, you will also want the number of level-1 units per 
477 cell to be small. #Low N in the presence of a large intraclass correlation likely indicates low 
478 statistical power. &For preclinical studies with small samples, bias corrections [58-59] may be 
479 necessary.

480 Taken together, the present simulation empirically demonstrates how the failure to 

481 account for a nested experimental design may threaten reproducibility in preclinical science. 

482 Appropriately accounting for multilevel data via a random effects ANOVA, however, improved the 

483 accuracy of both hypothesis testing and parameter estimates. Valid analytic strategies have been  

484 provided for a variety of design scenarios to aid in the selection of appropriate statistical 
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485 techniques for clustered data. Given the prevalence of clustered data in preclinical studies, 

486 increased awareness of the implications of inappropriately analyses will lead to enhanced 

487 efficiency and translatability. 
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489 Methods
490 Experimental Design

491 Population model. The population model in the simulation was a fully crossed 2x2 

492 random effects ANOVA model, with two binary predictors and an interaction term. The level-1 

493 random-coefficients model was defined as follows:

494 𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑖𝑗𝑋1𝑖𝑗 + 𝛽2𝑖𝑗𝑋2𝑖𝑗 + 𝛽3𝑖𝑗(𝑋1𝑖𝑗 ∗ 𝑋2𝑖𝑗) + 𝑟𝑖𝑗,

495 where  is the intercept, 𝛽1𝑖𝑗 is a level-1 predictor (e.g., Treatment) relating  to 𝑌𝑖𝑗, 𝛽2𝑖𝑗 is 

496 the regression coefficient relating , a second level-1 predictor (e.g., Biological Sex), to 𝑌𝑖𝑗, 

497 𝛽3𝑖𝑗 is the regression coefficient relating the interaction of the two level-1 predictors   

498 to 𝑌𝑖𝑗 and is the level-1 random effects. 

499 All level-1 coefficients were permitted to randomly vary, yielding the following 

500 unconditional level-2 random-coefficient model equations:

501 𝛽0𝑗 = 𝛾00 + 𝜇0𝑗

502 𝛽1𝑖𝑗 = 𝛾10 + 𝜇1𝑗

503 𝛽2𝑖𝑗 = 𝛾20 + 𝜇2𝑗

504 𝛽3𝑖𝑗 = 𝛾30 + 𝜇3𝑗

505 where is the average intercept across clusters and , , and  are the average 

506 regression slopes across those clusters, corresponding to each given predictor in level-1, 

507 respectively, and 𝜇0𝑗, 𝜇1𝑗, 𝜇2𝑗, and 𝜇3𝑗were the associated error terms for each equation. 

508  Data Generation. Data for the binary predictors were generated based on a balanced 

509 cells design with an effects coding scheme of -.5 and .5 to center the variables. The level-1 

510 coefficients were generated from a multivariate normal distribution using the MASS package and 

511 mvrnorm function in R [60]. The mean structure (i.e., fixed effects) was manipulated according to 

512 different sizes of the coefficients. The covariances of the level-2 error terms were set to be zero. 

0 j 1ijX
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ijr
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513 The level 1 error term was generated from a normal distribution with a homogeneous variance 

514 across clusters (i.e., ~ N(0, σ2)). Variances for both level-1 and level-2 error terms were 

515 manipulated to yield the target levels of ICC. The R Foundation for Statistical Computing (version 

516 3.4.1, Vienna, Austria) was utilized to conduct the statistical simulation. The detailed simulation 

517 conditions are summarized below. 

518 Simulation conditions. Simulation conditions were selected to reflect varying level-1 

519 sample sizes (N) and level-2 cluster sizes (C) commonly observed in preclinical studies [41-42]. 

520 The population value for the model intercept was set to zero.  To investigate the impact of variably 

521 sized treatment effects, as well as varying size of the interaction between treatment effects and 

522 biological sex, parameter values for β1 and β3 were systematically varied as follows: Null (0), small 

523 (0.14), medium (0.39), and large (0.59) [32]. The parameter value of β2 was constrained to be 

524 0.14, to focus investigation on detecting variably sized treatment effects of the primary predictor 

525 and the interaction term. 

526 Levels of ICC were manipulated by altering the variances of both level 1 and level 2 error 

527 terms. Two levels of ICCs were considered, including a small (0.16) and large (0.60) cluster effect. 

528 The ICCs were based on the unconditional model. It is noted that the ICC for a given condition 

529 may not be identical to the target values. For the small cluster effect, the population ICCs ranged 

530 from 0.152 to 0.166 across conditions. In terms of the large cluster effect, the population ICCs 

531 ranged from 0.590 to 0.604. Detailed information regarding the population values of the error 

532 variances and ICCs is provided in the supplementary materials.

533 Statistical Analysis 

534 The nlme: Linear and Nonlinear Mixed Effects Models package [61] in R was used to 

535 estimate the random effects ANOVA model. The fixed effects ANOVA model was estimated using 

536 the glm function within the same package. A five-way 6 x 5 x 4 x 4 x 2 ANOVA was implemented 

537 for post-hoc analyses to analyze the influence of each parameter, and all possible interactions 

538 among the parameters, on outcome variables in the study.  Given the extremely large sample 

ijr
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539 size, and corresponding inflation of statistical significance, partial η2 was utilized to evaluate the 

540 practical significance of effects in the study. Specifically, practical significance was evaluated 

541 against a partial η2 ≥ 0.01 criterion, indicating that at least 1% of the variance in a given outcome 

542 was attributable to the effect of interest [32]. Post-hoc statistical analyses were conducted using 

543 SAS (SAT/STAT Software 9.4, SAS Institute, Inc., Cary, NC, USA). Regression analyses were 

544 conducted using GraphPad Prism 5 (GraphPad Software, Inc., La Jolla, CA, USA). Figures were 

545 created using GraphPad Prism 5 (GraphPad Software, Inc., La Jolla, CA, USA).

546 Code Accessibility

547 All code utilized for the Monte Carlo Simulation is available upon request. 

548

549
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