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25 Abstract

26 The present study aimed to compare the predictive acuity of latent class regression (LCR) modelling 

27 with: standard generalised linear modelling (GLM); and GLMs that include the membership of 

28 subgroups/classes (identified through prior latent class analysis; LCA) as alternative or additional 

29 candidate predictors. Using real world demographic and clinical data from 1,802 heart failure patients 

30 enrolled in the UK-HEART2 cohort, the study found that univariable GLMs using LCA-generated 

31 subgroup/class membership as the sole candidate predictor of survival were inferior to standard 

32 multivariable GLMs using the same four covariates as those used in the LCA. The inclusion of the LCA 

33 subgroup/class membership together with these four covariates as candidate predictors in a 

34 multivariable GLM showed no improvement in predictive acuity. In contrast, LCR modelling resulted 

35 in a 10-14% improvement in predictive acuity and provided a range of alternative models from which 

36 it would be possible to balance predictive acuity against entropy to select models that were optimally 

37 suited to improve the efficient allocation of clinical resources to address the differential risk of the 

38 outcome (in this instance, survival). These findings provide proof-of-principle that LCR modelling can 

39 improve the predictive acuity of GLMs and enhance the clinical utility of their predictions. These 

40 improvements warrant further attention and exploration, including the use of alternative techniques 

41 (including machine learning algorithms) that are also capable of generating latent class structure while 

42 determining outcome predictions, particularly for use with large and routinely collected clinical 

43 datasets, and with binary, count and continuous variables. [245/300 words]

44 Key words

45 Latent Class Regression; Prediction; Generalised Linear Modelling; Latent Class Analysis; Heart 

46 Failure; UK-HEART2 Cohort

47 Short title

48 Predicting survival of heart failure patients using latent class regression [66/100 characters]
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49 Introduction

50 The limited acuity and clinical utility of Generalised Linear Models (GLMs)

51 The potential utility of predictive modelling, using routinely collected data for diagnosis, 

52 prognostication and health service planning, is one of five ‘novel capabilities’ that Wang et al. [1] 

53 identified as pertinent to the application of data analytics in medicine and health. Long before John 

54 Mashey first applied the term ‘Big Data’ in this context during the late 1990s [2], generalised linear 

55 models (GLMs) were used to develop clinical ‘risk scores’ based on much smaller scale datasets [3]. 

56 Indeed, clinical prediction models (CPMs) remain popular for prognostication and are in widespread 

57 usage to this day, not least in cardiovascular medicine [4,5]. 

58 While CPMs and their wider utility remain contentious (beyond strict prognostication, and particularly 

59 in prevention [6-9]), many of the standard statistical modelling techniques commonly used are on 

60 clinical datasets that remain relatively small – at least when compared to contemporary notions of ‘Big 

61 Data’ [2]. A substantial statistical weakness of the commonest of these (generalised linear models; 

62 GLMs) as a predictive tool is that they often fail to make full use of the joint information available 

63 amongst all candidate predictor variables. This is because these models rarely explore nonlinear 

64 relationships and interactions. Moreover, even when analysts optimally parameterise the candidate 

65 predictors available, and carefully consider all possible interaction terms between these, the clinical 

66 utility of GLMs is typically limited to predictions made at the population level [6,10], while predictions 

67 at the individual level often lack precision (and with it, utility). 

68 Although more sophisticated machine learning techniques may overcome the rigidity of GLMs and 

69 analysts’ tendency to ignore (or overlook) nonlinear relationships and interactions, population-level 

70 predictions generated using cutting edge machine learning techniques will still be more reliable than 

71 individual-level predictions. Indeed, this bald fact applies to all prediction modelling techniques, 

72 including those underpinning contemporary claims of ‘personalised’ or ‘precision medicine’ [11]. It is 

73 therefore critical to recognise that while it is possible to determine what proportion of any given 
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74 population will experience a specified outcome with a reasonable degree of accuracy, all such models 

75 provide less accuracy in determining outcomes for each individual within that population. 

76 Meanwhile, a further epistemological consideration that commonly arises in CPMs (and elsewhere) is 

77 the mistaken belief that the coefficient estimates of covariates included/retained in the model indicate 

78 the extent to which each covariate contributes to the model’s overall prediction (of the model’s specified 

79 outcome). This belief is mistaken because each covariate’s coefficient estimate is generated conditional 

80 on the adjustment of all other covariates in the model, such that the contribution of any one covariate is 

81 merged with that of all other covariates included in that model. For this reason, what the coefficient 

82 estimate of each covariate actually represents is the residual relationship between that covariate and the 

83 outcome subject to the joint contributions made by all other covariates in the model considered 

84 simultaneously. 

85 This situation is further complicated where any of the covariates included in the model reflect events 

86 that occurred contemporaneously with or even after the specified outcome – in this instance, the joint 

87 contributions made by all covariates would be subject to conditioning on the outcome, which can have 

88 other adverse consequences on model interpretation [12-14]. In practice, the inclusion of covariates 

89 acting contemporaneously with or after the outcome’ in prediction modelling is likely to be used only 

90 where the aim is to estimate the values for variables whose measurements are missing, imprecise or 

91 challenging to measure (i.e. in modelling that aims to achieve what might be called ‘predictive 

92 interpolation’ for diagnostic and related measurement/ascertainment purposes). These issues aside, it is 

93 important to stress that the coefficient estimates of all covariates (with the exception of the covariate 

94 closest in time to the outcome) cannot be causally interpreted, as they will be subject to inferential bias 

95 known as mediator bias [15], which undermines causal interpretation of their coefficients due to the so-

96 called ‘Table 2 Fallacy’ [16]. 

97 Due to these caveats, predictions that are generated using GLMs cannot address the two key concerns 

98 of attending physicians, namely: “Which of the covariates (i.e. ‘predictor’ variables) are amenable to 

99 clinical intervention, so as to prevent or mitigate any adverse outcome (or promote and amplify any 
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100 favourable outcome) in each (or all) of these patients?” and “Which particular patients will experience 

101 an adverse (or favourable) outcome?”. To address the first of these questions, analysts need to switch 

102 their focus from predicting outcome values to estimating each of the relationships between covariates 

103 considered plausible targets for intervention and the outcome – an approach that can capitalise on recent 

104 advances in causal inference modelling techniques [17]. To address the second question, the best that 

105 can be achieved is to identify clinically meaningful subgroups of patients with shared characteristics 

106 that set them apart from other (subgroups of) patients – a relatively novel approach that involves 

107 multivariable ‘risk profiling’. 

108 Improving the acuity and clinical utility of predictive modelling for prognostication

109 Multivariable risk profiling can be achieved using latent class analysis (LCA) in which the exploration 

110 of nonlinearity, and of important interactions amongst included covariates, forms an integral (albeit 

111 implicit) part of classifying patients into subgroups [18]. Despite these benefits, the clinical utility of 

112 the resulting latent classes ultimately depends upon the extent to which this approach optimally exploits 

113 the joint information amongst available covariates. This approach perhaps has greatest clinical utility 

114 where there are: (i) factors known to be associated with the outcome (which therefore facilitate 

115 prediction); but (ii) there are no known, modifiable causes of the outcome, or aetiological understanding 

116 is poor/contested (as is the case with many rare, novel or complex diseases). Indeed, providing that the 

117 specified outcome is excluded from the LCA process (to avoid conditioning on the outcome) [14], 

118 combining LCA class membership with candidate predictors provides increased complexity that can 

119 help exploit the joint covariate information in multivariable GLM prediction. That said, it is important 

120 to stress that causal interpretation of any covariate coefficients for latent class membership in such 

121 models remains deeply flawed for the very same reasons that causal interpretations of any covariate 

122 coefficient in prediction GLMs is flawed (as explained earlier). Ostensibly this consideration might 

123 appear to limit the clinical utility of LCA-generated class membership, and it is true that describing 

124 class membership as a ‘risk factor’ often generates, and commonly reflects, a lack of understanding. 
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125 Indeed, it risks conflating prediction and causal inference/determination just as it does when individual 

126 covariates are described in similar terms as ‘risk factors’ [7]. 

127 Thus, while classifying subgroups of individuals using LCA can improve analytical practice and 

128 strengthen consideration of nonlinear relationships (and important interactions amongst covariates), it 

129 does not address the clinical appetite for identifying so-called ‘modifiable risk factors’, or for 

130 individually tailored risk probabilities (the so-called ‘holy grail’ of personalised or precision medicine) 

131 [10]. This might explain why the use of latent variable methods in prediction modelling remains largely 

132 under-explored, even though more sophisticated approaches exist that incorporate such techniques 

133 within GLM and offer substantial advantages for clinicians through subgroup risk profiling. These 

134 approaches involve the construction of latent classes ‘across’ multivariable GLMs to: integrate 

135 consideration of nonlinear relationships and important interactions between covariates; and better 

136 capture (and exploit) the joint information amongst the available/included covariates. For example, in 

137 what is termed latent class regression (LCR) modelling, population data are partitioned into their 

138 constituent latent classes and a distinct GLM is simultaneously generated for each class. In the process, 

139 this approach accommodates any inherent population heterogeneity and thereby improves model 

140 precision. 

141 In its simplest form, LCR models may be viewed as two distinct modelling concepts undertaken in a 

142 single estimation process: in the first, population data are probabilistically assigned to latent classes 

143 (population subgroups); while, in the second, separate GLMs are derived for each class/subgroup. The 

144 probability of an individual belonging to each class is based on similarities in the characteristics 

145 displayed by individuals attributed to different classes. Importantly, the assignment of individuals to 

146 classes is not limited to just those covariates available for analysis, since outcome differences 

147 attributable to unknown (i.e. latent) influences are also accommodated, and without inappropriate 

148 conditioning on the outcome. Individuals may thus belong to more than one class, with the sum of 

149 probabilities over all classes being one. Within each class, distinct GLMs are generated, with the 

150 selection of covariates acting as predictors (and their model coefficients) permitted to vary from one 
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151 class to the next. In this way, by ensuring that the consideration of potential nonlinearity and possible 

152 interactions is integral to the application of LCR models, these models should exploit the covariate joint 

153 information available in a more consistent fashion and thereby strengthen the acuity of the prediction 

154 achieved. An additional benefit of this approach is that the latent classes/subgroups identified using 

155 LCR may also strengthen the clinical utility of the prediction achieved because any variation in the 

156 risk of the outcome amongst different classes/subgroups can be used to target diagnostic, therapeutic 

157 or palliative resources more precisely and efficiently. 

158 The aim of the present study was therefore to explore whether LCR models might improve the accuracy 

159 and precision of predictions at the population and individual level, by comparing LCR-generated 

160 predictions to standard GLM and LCA-informed GLM (including the use of LCA-generated class 

161 membership as either the only candidate predictor in univariable GLMs, or as an additional candidate 

162 predictor alongside all other available covariates in multivariable GLMs). We thus explore four models 

163 offering progressively more complex exploitation of the individual and joint information available from 

164 the covariates available for consideration as candidate predictors. To this end, the analyses that follow 

165 use data (on age, sex, haemoglobin level and diabetes) that are routinely available in a clinical context 

166 (cardiovascular medicine) in which Cox proportional hazards time-to-event analyses are commonly 

167 used in prognostic predictions of mortality, where survival and loss to follow-up are pertinent analytical 

168 endpoints. 

169 Methods 

170 Study design, data collection and ethics

171 The analyses that follow used data from the United Kingdom Heart Failure Evaluation and Assessment 

172 of Risk Trial 2 (UK-HEART2) – a prospective cohort of ambulant patients with signs and symptoms of 

173 chronic heart failure (CHF) [19]. The study recruited 1,802 adult patients with CHF who attended 

174 specialist cardiology clinics in four UK hospitals between July 2006 and December 2014 [20]. Patients 

175 were eligible for recruitment if they: were aged 18 years or older; had had clinical signs and symptoms 
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176 of CHF for at least 3 months; and had a left ventricular ejection fraction that was less than or equal to 

177 45% [19,20]. Ethical approval was obtained from the research ethics committee at each participating 

178 hospital and eligible study participants were only recruited following informed consent [21]. Additional 

179 information regarding UK-HEART-2’s study design, patient eligibility and inclusion criteria, together 

180 with a detailed description of the study cohort has been reported elsewhere [19-21]. 

181 Statistical methods

182 To simplify the methodological comparisons undertaken in the present study, the covariates selected as 

183 candidate predictors comprised two demographic variables (age, sex), a single physiological parameter 

184 (haemoglobin level), and a single clinical characteristic (type 2 diabetes). These four covariates were 

185 then used to generate prognostic predictions of survival amongst UK-HEART-2 participants using four 

186 separate statistical Procedures (for each of which the underlying principles and model building 

187 processes are described in detail in Part 1 of the Supplementary Materials):

188  Procedure 1 (standard GLM) involved single step multivariable Cox proportional hazards models 

189 that considered all four covariates as candidate predictors of survival, with no consideration of 

190 nonlinear relationships or interactions between covariates. 

191  Procedure 2 (LCA-informed GLM without the inclusion of covariates) involved two sets of models, 

192 each involving two separate steps. First, LCA was used to identify any latent classes/subgroups of 

193 participants using the four selected covariates, with individual membership to each latent class 

194 allocated using modal (Procedure 2a) and probabilistic (Procedure 2b) assignment. Second, 

195 univariable Cox proportional hazards models examined latent class membership as the sole 

196 predictor of survival, with separate models generated using latent class membership derived using 

197 modal (Procedure 2a) or probabilistic (Procedure 2b) assignment. 

198  Procedure 3 (LCA-informed GLM with the inclusion of covariates) again involved two sets of 

199 models, each involving two separate steps. First, LCA was used to allocate latent class membership 

200 using modal (Procedure 3a) and probabilistic (Procedure 3b) assignment – as in the first step of 
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201 Procedure 2 (above). Second, multivariable Cox proportional hazards models considered all four 

202 covariates (as used in Procedure 1) plus latent class membership as multiple predictors of survival, 

203 with separate models generated using latent class membership derived using probabilistic 

204 (Procedure 3a) or modal (Procedure 3b) assignment. 

205  Procedure 4 (LCR) involved single step latent class regression (LCR) models that considered all 

206 four covariates as candidate predictors to simultaneously predict both latent class membership and 

207 survival within each latent class. 

208 For all latent class models, entropy is reported which assesses the extent that individuals are aligned 

209 predominantly to a single class (i.e. having a large modal probability, leading to a greater entropy), as 

210 this facilitates clearer interpretation of each latent class as a near-complete collection of individuals. 

211 Model optimisation in terms of the number of latent classes may thus depend upon both the overall 

212 predictive acuity of the latent class structure (as evident from the model BIC) and the intended utility 

213 of the determined classes thereafter (as indicated by the model entropy). For this illustration, we 

214 prioritise overall predictive acuity.

215 All descriptive statistics and GLMs were generated using R (version 4.0.3) [22], as were the model 

216 specification, selection, validation and bootstrapping procedures (Part 2 of the Supplementary 

217 Materials). All latent class modelling was undertaken in Mplus (version 8.3) [23], using the Mplus 

218 automation package to run models in Mplus from within R [22]. 

219 Results

220 The first column of Table 1 summarises the distribution of each covariate amongst participants in the 

221 UK-HEART-2 cohort. These indicate that: the mean age of the cohort’s participants was 70 years; 

222 around two thirds (69.7%) were male; over a quarter (28%) had type 2 diabetes; the mean level of 

223 circulating haemoglobin was 13.5 g/dl; and 60% died during the period of follow-up (equivalent to a 

224 median survival of 3.4 years). 
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225 In Procedure 1, the single step Cox proportional hazards models that considered all four covariates as 

226 candidate predictors of survival found that the model in which all four covariates were retained achieved 

227 the highest AUC (0.69) – a level of acuity considered ‘modest to poor’ [24].

228 In Procedure 2, the LCAs conducted during the first step found that the 5-class model which retained 

229 all four covariates had the most favourable BIC (Table 2). Applying this 5-class model during the second 

230 step as the sole predictor of survival in a Cox proportional hazards model, achieved an AUC of 0.65 

231 using modal assignment (Procedure 2a) and 0.66 using probabilistic assignment (Procedure 2b). These 

232 levels of acuity were both lower than that achieved using Procedure 1 (AUC=0.69). 

233 In Procedure 3, the second step involved consideration not only of the four covariates as candidate 

234 predictors of survival in the Cox proportional hazards model (as in Procedure 1), but also membership 

235 of the same 5-class model developed in the first step of Procedure 2. These analyses found that: the best 

236 fitting GLMs did not retain class membership as a predictor; and forcibly retaining class membership 

237 in the model did not improve the AUC above that achieved in Procedure 1 or 2, regardless of how class 

238 membership was assigned (modal: AUC=0.65; probabilistic: AUC=0.66). 

239 In Procedure 4, with all four covariates eligible for inclusion as candidate predictors of both latent class 

240 membership and the Cox Proportional Hazards models, some of the models were over-parameterised 

241 and failed to converge. Nonetheless, the most favourable of the models that successfully converged 

242 involved a latent class variable with just two classes and an AUC of 0.79 (Table 3). When compared to 

243 the best performing models in Procedures 1-3, these results suggest that Procedure 4 achieved a 

244 substantial improvement in predictive acuity of 10-14%.

245 Improvements in acuity aside, the most favourable of the LCR models had only three of the covariates 

246 (age, sex, and type 2 diabetes) retained in the Cox proportional hazards models for each membership 

247 class, and only one of these covariates (type 2 diabetes) and the remaining covariate (haemoglobin level) 

248 retained as covariates in the LCR class membership model (Table 4). Given that all four covariates were 

249 retained in the most favourable CPH models generated by Procedures 1 and 3, and in the LCA models 
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250 generated in the first step of Procedures 2 and 3, these findings suggest that Procedure 4’s 10-14% 

251 improvement in AUC is likely to have been achieved by exploiting the available covariate information 

252 differently to each of the three other Procedures. An indication of what this entailed can be found in the 

253 distribution of covariate characteristics amongst the two classes of the most favourable LCR model 

254 (Table 5), which suggest that these classes might warrant post-hoc labelling as ‘high risk’ and ‘low risk’ 

255 subgroups and might thereby offer substantial additional clinical utility (in guiding the allocation of 

256 diagnostic, therapeutic and/or palliative resources). 

257 A further key finding that emerges from closer examination of the Cox proportional hazards models 

258 generated for each of the two classes within the optimum LCR model (Table 4) is that the contribution 

259 made by each of the covariates therein varied by class, and was dissimilar to the contribution these 

260 covariates made in those Procedures where all covariates were available for inclusion as separate 

261 candidate predictors (i.e. Procedure 1 and 3a/b). While the coefficient estimates of covariates in each of 

262 these models cannot be interpreted as measures of causal effects [16], their contribution as candidate 

263 predictors is strikingly different and depends upon the choice of model(s) used in each Procedure (Table 

264 4). For example, the hazard of death associated with being male was 1.7 to 1.8 in Procedures 1 and 3, 

265 whilst for Procedure 4 being male was associated with a substantially higher hazard of death in one 

266 class (HR = 2.07; 1.58, 2.71) yet was unrelated to the hazard of death in the other class (HR = 1.01; 

267 0.64, 1.60). Likewise, Type 2 diabetes was consistently associated with an elevated hazard of death in 

268 models generated under Procedure 1 and 3, while in Procedure 4 this covariate was associated with both 

269 an elevated hazard of death in one class (HR = 1.26; 0.91, 1.75) and a reduced hazard of death in the 

270 other class (HR = 0.43; 0.23, 0.82). 

271 Clearly, the joint information available amongst each of the candidate predictors is selected and utilised 

272 very differently by each of the Procedures examined in the present study (see Table 4). Nonetheless, 

273 what sets the LCR model in Procedure 4 apart from the models used in Procedures 1-3 is that LCR 

274 allows the predictive contribution from each covariate to be partitioned across any latent substructures 

275 existing within the study population, such that covariates are able to operate differently within each of 
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276 the latent subgroups – thereby capturing and reflecting population heterogeneity that is: unavailable to 

277 any of the other modelling Procedures; and, crucially, of substantial (additional) value when predicting 

278 the specified outcome.

279 Discussion 

280 The present study provides proof of principle that LCR models can provide substantive improvements 

281 in predictive acuity and clinical utility over standard approaches using GLM (with or without LCA). 

282 Nonetheless, there are several potential limitations that warrant consideration and further investigation. 

283 In particular, it would be insightful to compare these alternative approaches to prediction using larger 

284 datasets and larger numbers of covariates than those chosen in this instance for illustration. This might 

285 involve comparing Procedures 1 through 4 using different numbers and sets of covariates from similar 

286 sized datasets; as well as extending the application of LCR modelling to more complex scenarios and 

287 much larger datasets. At the same time, it is important to point out that, in the context of the dataset 

288 used in the present study, the underlying ‘truth’ (and the data generating mechanisms involved) cannot 

289 be known with certainty, and exploring the potential strengths (and analytical limitations) of LCR would 

290 thus benefit from extensive simulations to evaluate a range of different circumstances for a range of 

291 different covariates and outcomes (including those comprising binary, continuous and count variables) 

292 to evaluate whether LCR continues to perform well (and better than GLM, LCA or both) under these 

293 circumstances. In the absence of subsequent research along these lines, the ‘proof of principle’ offered 

294 by the present study remains speculative; although it would also be worth exploring whether alternative 

295 approaches to prediction modelling might be incorporated into, or integrated with, the analytical 

296 principles underpinning LCR modelling, such as the inclusion of similar dual modelling structures 

297 within machine learning, to assess whether the apparent benefits of LCR models might be further 

298 enhanced.

299 These limitations, the present study successfully compared three different approaches for incorporating 

300 latent variable methods within prediction modelling and demonstrated that LCR models can outperform 

301 not only the standard approach using GLM (in which membership of latent classes is ignored – 
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302 Procedure 1), but also those that include latent class membership identified using LCA to generate an 

303 alternative (Procedure 2) or additional (Procedure 3) candidate predictor. This improvement in 

304 predictive acuity (which, as shown above, resulted in a 10-14 percentage point improvement in AUC, 

305 despite the modest number of participants and covariates involved) illustrates the potential benefits of 

306 LCR for prediction modelling which, in this instance, shifted the acuity of prediction from ‘modest to 

307 poor’ to ‘substantial’ [24]. 

308 The present study also demonstrated that the latent class/subgroup structure that is revealed through 

309 LCR may have potential clinical utility. This is because it might – as in the example examined here – 

310 facilitate the identification of discrete subgroups (i.e. latent classes) of populations with very different 

311 underlying risks of the outcome. While such subgroups may not necessarily be amenable to effective 

312 intervention (given that LCR models support prediction, not causal inference [16]), they should help to 

313 improve the efficient allocation/targeting of outcome-relevant diagnostic, therapeutic and/or palliative 

314 resources to those subgroups identified as more likely to require (and perhaps even benefit from) these. 

315 However, to maximise the clinical exploitation of latent subgroups identified using LCR (and similar 

316 techniques), model selection must focus on those achieving higher entropy – where the probability of 

317 class assignment is closer to one for most assignments – as this better aligns individuals/participants to 

318 a predominant single class (rather than aligning individuals/participants to multiple classes). For 

319 example, in Procedure 4, the 3-class model had lower predictive acuity but greater entropy than the 2-

320 class model (see Table 3); and had the identification of clinically meaningful subgroups been the focus 

321 of these analyses (as opposed to overall predictive acuity), then it might have been appropriate to accept 

322 a modest reduction in predictive acuity in favour of enhanced clinical utility – i.e. recognising three 

323 (‘high’, ‘medium’ and ‘low’ risk) subgroups rather than just the two (‘high’ and ‘low’ risk) subgroups 

324 identified by the LCR model with the most favourable predictive acuity (Table 3). Indeed, when clinical 

325 resources are scarce, such an approach might prove a more reliable approach to resource allocation than 

326 one based upon a stringent interpretation of predictive acuity alone.
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327 Online Supplementary Material

328 Part 1. Underlying principles and model-building processes involved in the GLM, 

329 LCA and LCR techniques examined

330 GLM: the Cox proportional hazards model

331 A Cox proportional hazards model generates a (hazard) function which indicates the risk of the outcome 

332 occurring during the period of follow-up. Mathematically, a Cox regression model [25,26] is defined 

333 as:   

334 ℎ(𝒕│𝒙,𝛽𝑖) = ℎ0(𝒕)exp (𝒙𝜷𝑇)  (Eq1)

335 where: 𝒕 is a non-negative random variable representing time to ‘death’, ‘loss to follow-up’ or ‘the end 

336 of the study’ for all participants (in this example, patients with CHF); ℎ0(𝒕) is the baseline hazard function; 

337 𝒙 is the vector of predictors for the time-to-event outcome 𝒕; and 𝜷𝑇 is the transpose of the vector of 

338 coefficients obtained from the Cox proportional hazards model. To make predictions using the Cox 

339 proportional hazards model, the survival function is defined as: 

340 𝑆(𝒕│𝒙,𝛽𝑖) = [𝑆0(𝒕)]exp (𝒙𝜷𝑇)  (Eq2)

341 where, if the baseline hazard function ℎ0(𝒕) is known, then: 

342 𝑆0(𝒕) = exp { ― ∫𝑡
0 ℎ(𝑢)𝑑𝑢}  (Eq3)

343 LCA: the general latent class (profile) model

344 Latent class (profile) models come from a family of finite mixture models that classify observations 

345 into classes associated with unobserved heterogeneity in a population. A population is partitioned into 

346 𝑔 classes for the outcome 𝒚 with the mixture density function defined in relation to covariates 𝒙 as:

347 𝑓(𝒚│𝒙,𝜆) = ∑𝑔
𝑖=1 𝜋𝑖𝑓𝑖(𝒚│𝒙,𝜷𝒊)  (Eq4)
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348 where 𝑓𝑖(𝒚│𝒙,𝜷𝒊) is the conditional probability density function for the observed response in the ith class 

349 and 𝜋𝒊 (𝑖 = 1…𝑔) represent the class-membership probabilities that are estimated for each class such 

350 that:

351 ∑𝑔
𝑖=1 𝜋𝑖 = 1.  (Eq5)

352 For a class membership model, the structural part of the model is given by: 

353 𝑙𝑜𝑔𝑖𝑡(𝜋𝑖(𝒙│𝛾𝑖,𝜹𝒊)) = 𝛾𝑖 + 𝒙𝜹𝑻
𝒊 (Eq6)

354 hence 

355 𝜋𝑖(𝒙│𝛾𝑖,𝜹𝒊) =
exp (𝛾𝑖 + 𝒙𝜹𝑻

𝒊 )
∑𝑔

𝑗=1 𝛾𝑖 + 𝒙𝜹𝑻
𝒊

(Eq7)

356 where: 𝒙 is a (𝑝 × 1) covariate vector for the class-membership model; and 𝜹𝑻
𝒊  is the transposition of the 

357 vector 𝜹𝒊 for the multinomial logistic class-membership model. 

358 LCR: the latent class regression model

359 The latent class regression (LCR) model is an extended version of the generalised linear model where 

360 the concept of latent class mixtures is applied to the entire model specified, not just to a cluster of 

361 covariates. LCR survival analysis extends this to the time-to-event framework of Cox proportional hazards 

362 modelling to: (i) predict probabilistically assigned subgroups of participants with different futures (in this 

363 example, subgroups of patients with different prognoses of survival/death) based on the available 

364 covariates; and, (ii) simultaneously predict the survival distributions for each subgroup selecting from 

365 the same covariates acting as candidate predictors. The distribution of the survival time variable for each 

366 component in Eq4 can be: 

367  parametric – a scenario with distributional assumptions concerning the survival times; 

368  semi-parametric – a scenario with relaxed distributional assumptions; or 
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369  non-parametric – a scenario without distribution assumptions concerning the survival times. 

370 Assuming a parametric model for the specified outcome variable, the component’s densities are 

371 assumed to be from the same family, so that a number of common distribution functions may be 

372 considered appropriate for survival times, such as: exponential; Gamma; and Weibull [38]. In a semi-

373 parametric case, the Cox proportional hazards model is an example. Within a latent class framework, if 

374 𝒕 is the random variable representing time to event (e.g. ‘death’, ‘loss to follow-up’, or ‘end of the 

375 study’), individuals are divided into 𝑔 latent classes that are differentiated by the covariate vector 𝒛, with 

376 individual survival in each class 𝑖 predicted by covariate vector 𝒙, and the survival model is defined as:

377 𝑆(𝒕│𝒙,𝒛,𝜃) = ∑𝑔
𝑖=1 𝜋𝑖(𝒛│𝛾𝑖,𝜹𝒊)𝑆𝑖(𝒕│𝒙𝒊,𝜷𝒊)  (Eq8)

378 where: 𝜃 = (𝛾𝑖, 𝜹𝒊, 𝜷𝒊) is the collection of parameters to be estimated such that 𝜋𝑖(𝒛│𝛾𝑖,𝜹𝒊) satisfies the 

379 constraints in Eq4. Vectors 𝒙𝒊 and 𝒛 are any available measures of participant characteristics, exposures 

380 and treatments etc., which may be the same or differ, just as the 𝒙𝒊 covariates may also differ for each 

381 class. 

382 If the effects of the 𝒙𝒊 covariates on the hazards (i.e. the instantaneous risk of event) in each class is 

383 constant during the duration of follow-up, then the hazard function can be specified as:          

384 ℎ𝑖(𝒕│𝒙𝒊,𝜷𝒊) = ℎ0𝑖(𝒕)exp (𝒙𝒊𝜷𝑇
𝑖 ) (Eq9)

385 where: ℎ0𝑖(𝑡) is the baseline hazard for class 𝑖; and exp (𝒙𝒊𝛽𝑇
𝑖 ) is the relative risk associated with a 

386 vector of the 𝒙𝒊 covariates acting as candidate predictors. We can then derive a survival function from 

387 equation Eq9 as follows: 

388 𝑆(𝒕│𝒙𝒊,𝜷𝒊) = [𝑆0𝑖(𝒕)]exp (𝒙𝒊𝜷𝑇
𝑖 ) (Eq10)

389 where:

390 𝑆0𝑖(𝒕) = exp { ― ∫𝑡
0 ℎ𝑖(𝒕│𝒙𝒊,𝜷𝒊)𝑑𝑢} (Eq11)
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391 is the baseline survival for individuals at times 𝒕, given a vector of candidate predictors 𝒙𝒊 for class 𝑖. 

392 The baseline hazard ℎ0𝑖(𝒕) in Eq9 is assumed to be an unknown, arbitrary and non-negative function of 

393 time and the only parametric part of the model in Eq10 is exp (𝒙𝒊𝜷𝑇
𝑖 ) [25]. The maximum likelihood 

394 procedure fails to estimate parameters for the likelihood function of Eq9 accurately because the baseline 

395 hazard function is not assumed to take any particular form. Instead, these parameters can be estimated 

396 using the partial-likelihood approach [26]. This is derived by taking the product of the conditional risk 

397 at time 𝑡𝑖 given the set of individuals not yet dead, lost to follow-up or censored by that time.

398

399 Part 2. Model specification, selection, validation and software used in 

400 Procedures 1, 2a/b, 3a/b and 4.

401 Model specification, selection and validation 

402 All subsets regression was deployed [27], along with k-fold cross-validation as recommended by Grimm 

403 et al. [28], to find the best-fitting model for Procedures 1-4, with four covariates considered for both 

404 Cox proportional hazards models and (where applicable) the latent class models. The area under the 

405 receiver operating characteristic (ROC) curve (AUC) was used to evaluate all models generated – an 

406 approach that has been widely used in medical research to assess the diagnostic acuity of biomarkers to 

407 discriminate between diseased and healthy subjects [29-31]. In this way the AUC was used in the present 

408 study to quantify the extent to which each modelling Procedure was able to discriminate between 

409 individuals/participants and classes at risk of mortality. AUC values range from 0.5 to 1, where 0.5 

410 indicates that the discrimination achieved is equivalent to (and no better than that that could be achieved) 

411 by chance; a value of 1 indicates perfect discrimination; and a value >0.8 is interpreted as evidence of 

412 good discrimination. k-fold cross-validation involved randomly dividing the dataset into k partitions of 

413 approximately equal size, where k – 1 partitions were used as a training set and the model was evaluated 

414 and validated using the remaining kth partition, repeated k times. The value k = 10 was chosen based on 

415 established (and evaluated) best practice [32], with k = 10 favoured for less biased model parameters, 
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416 according to experimentation [33]. The AUC was calculated for each of the 10 test samples, with 

417 subsequent confirmation of the results obtained from 10 iterations assessed using a bootstrap re-sampling 

418 procedure 1000 times (creating datasets from the original data without making further assumptions) to 

419 provide empirical 95% confidence intervals [34]. 

420 Covariate selection was guided by the desire to achieve parsimonious models according to the Bayesian 

421 Information Criterion (BIC) – the statistic preferred as the most parsimonious penalised likelihood 

422 statistic to minimise the risk of overfitting [35]. In choosing the optimum number of latent classes for 

423 the latent variable models (i.e. LCA and LCR), BIC was again the preferred statistic as simulations have 

424 demonstrated it outperforms other model fit statistics [36]. Strategies for determining the optimal 

425 number of classes may also be influence by interpretability (such as clinical salience and/or utility 

426 [33,37]), which is often reflected in ‘entropy’ [38] – a measure of the consistency between the modal 

427 (highest probability) and probabilistic (exact probabilities) assignment of individuals to latent classes. 

428 A high entropy indicates that individuals are more aligned to a single class (large modal probability), 

429 which leads to clearer interpretation of each latent class. A low entropy does not preclude latent classes 

430 having utility and substantive meaning, but individuals may not be as clearly aligned to just one class, 

431 making modal assignment a poor representation of the latent class structure. 

432 Software 

433 An important challenge with latent class modelling is its sensitivity to starting values, because these are 

434 used to maximize the likelihood function when estimating model parameters. Where the starting values 

435 are far from the optimum solution, the likelihood function takes longer to converge and may even fail to 

436 do so. Occasionally, up to 50% of the random starts chosen will generate meaningful solutions when the 

437 likelihood function is maximized. For a solution to be meaningful, the highest likelihood value is 

438 expected to be replicated many times. When this does not occur, it signifies that either: no solution has 

439 been achieved and the number of random starts needs to be increased to converge on a global optimum 

440 solution; or the specified model structure is unsuitable for the given dataset. While this can add to the 
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441 time required to explore optimum solutions, once the target values are estimated they can be used as 

442 initial values for the final models derived, thereby reducing the duration of the final search process [23]. 
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Table 1. Descriptive characteristics of the study cohort.

Study Cohort

N (%)

Participants 1,796 (100.0)

Deaths 1,061 (59.1)

Male 1,313 (73.1)

Type 2 Diabetes 504 (28.1)

Median (IRQ)

Survival Time (years) 3.40 (2.11, 5.78)

Mean (95% CI)

Age (years) 69.7 (69.1, 70.2)

Haemoglobin (g/dl) 13.46 (13.38, 13.54)

N = number; % = percentage; IQR = interquartile range; CI = confidence interval.
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Table 2.  Latent class analysis (LCA) model summaries – the preferred model from this step was used 

in Procedures 2 and 3.

Number

of classes

Number of

parameters
BIC Entropy Class Modal N (%) Probabilistic N (%)

1 6 19,818.53 - 1,796 (100.0) -

Class 1 1,452 (80.8) 1425.3 (79.4)
2 11 19,537.79 0.75

Class 2 344 (19.2) 370.7 (20.6)

Class 1 1,203 (67.0) 11744.0 (65.4)

Class 2 480 (26.7) 500.7 (27.9)3 16 19,445.74 0.74

Class 3 113 (6.3) 120.3 (6.7)

Class 1 811 (45.2) 797.0 (44.4)

Class 2 486 (27.1) 504.4 (28.1)

Class 3 381 (21.2) 371.4 (20.7)
4 21 19,422.35 0.80

Class 4 118 (6.6) 123.2 (6.9)

Class 1 586 (32.6) 566.7 (31.6)

Class 2 470 (26.2) 459.7 (25.6)

Class 3 324 (18.0) 296.9 (16.5)

Class 4 317 (17.7) 368.6 (20.5)

5 26 19,421.44 0.67

Class 5 99 (5.5) 104.1 (5.8)

Class 1 527 (29.3) 517.7 (28.8)

Class 2 474 (26.4) 470.5 (26.2)

Class 3 276 (15.4) 247.7 (13.8)

Class 4 234 (13.0) 232.6 (13.0)

Class 5 186 (10.4) 229.8 (12.8)

6 31 19,422.87 0.63

Class 6 99 (5.5) 97.6 (5.4)

BIC = Bayesian information criterion; N = number; % = percentage; the optimal LCA model according to the BIC is 

emboldened. 
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Table 3. Latent class regression (LCR) model summaries for Procedure 4 

Number

of classes

Number of

parameters
BIC Entropy

1 3 3695.06 ----

2 10 3659.49 0.68

3 17 3682.44 0.91

4 24 3722.89 0.94

BIC = Bayesian information criterion; the optimal LCA model according to the BIC is emboldened. 
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Table 4. Covariate coefficients for each preferred model (Procedures 1-4) executed on the complete 
data, along with median AUC and empirical 95% empirical confidence intervals generated 
through 10-fold cross-validation.

Model (AUC: 95% CI) HR (95% CI)

Procedure 1 - CPH (AUC = 0.69: 0.67, 0.72)
Type 2 Diabetic vs. not 1.35 (1.16, 1.59)

Male vs. Female 1.76 (1.47, 2.11)
Age (per 5 years) 1.24 (1.20, 1.29)

Haemoglobin (per g/dl) 0.82 (0.78, 0.86)

Procedure 2a - LCA (modal) / CPH (AUC = 0.65: 0.62, 0.67)
†Class 1 (N = 586) vs: Class 2 (470) 0.35 (0.30, 0.44)

Class 3 (324) 1.33 (1.10, 1.60)
Class 4 (317) 0.71 (0.57, 0.87)
Class 5   (99) 0.17 (0.10, 0.29)

Procedure 2b - LCA (probabilistic) / CPH: (AUC = 0.66: 0.64, 0.68)
‡Class 1 (32.0%) vs: Class 2 (26.0%) 0.26 (0.19, 0.34)

Class 3 (18.0%) 1.00 (0.71, 1.39)
Class 4 (18.0%) 1.58 (1.27, 1.97)
Class 5   (6.0%) 0.17 (0.09, 0.32)

Procedure 3a - LCA (modal) / CPH (AUC = 0.69: 0.66, 0.72)
Type 2 Diabetic vs. not 1.51 (1.13, 2.01)

Male vs. Female 1.80 (1.49, 2.17)
Age (per 5 years) 1.21 (1.13, 1.29)

Haemoglobin (per g/dl) 0.82 (0.79, 0.86)
†Class 1 (N = 586) vs: Class 2 (470) 0.77 (0.53, 1.10)

Class 3 (324) 0.84 (0.59, 1.19)
Class 4 (317) 0.92 (0.71, 1.20)
Class 5   (99) 0.79 (0.38, 1.67)

Procedure 3b - LCA (probabilistic) / CPH (AUC = 0.69: 0.66, 0.72)
Type 2 Diabetic vs. not 1.44 (1.01, 2.06)

Male vs. Female 1.70 (1.31, 2.21)
Age (per 5 years) 1.21 (1.11, 1.32)

Haemoglobin (per g/dl) 0.81 (0.76, 0.88)
‡Class 1 (32.0%) vs: Class 2 (26.0%) 0.78 (0.41, 1.49)

Class 3 (18.0%) 0.90 (0.55, 1.48)
Class 4 (18.0%) 1.15 (0.56, 2.36)
Class 5   (6.0%) 0.99 (0.35, 2.78)

Procedure 4 – LCR (AUC = 0.79: 0.74, 0.85)
Cox proportional hazards model
Class 1 (‘High risk’): Type 2 Diabetic vs. not 1.26 (0.91, 1.75)

Male vs. Female 2.07 (1.58, 2.71)
Age (per 5 years) 1.36 (1.28, 1.44)

Class 2 (‘Low risk’): Type 2 Diabetic vs. not 0.44 (0.23, 0.82)
Male vs. Female 1.01 (0.64, 1.60)

Age (per 5 years) 1.17 (1.06, 1.29)
Class membership model OR (95% CI)
‘High’ vs. ‘Low’ risk: Type 2 Diabetic vs. not 0.27 (0.09, 0.76)

Haemoglobin (per g/dl) 2.16 (1.64, 2.84)

AUC = area under the curve; CI = empirical confidence interval obtained from the 2.5% to 97.5% centiles of bootstrapped 
samples following 10-fold cross-validation; HR = hazards ratio; OR = odds ratio; CPH = Cox proportional hazards; LCA = 
latent class analysis (modal assignment or probabilistic assignment); LCR = latent class regression.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.27.400887doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.27.400887
http://creativecommons.org/licenses/by/4.0/


29

Table 5. Descriptive characteristics for the 2-class Cox proportional hazards latent class regression model.

Latent Class Regression Model

Class 1 (‘High risk’) Class 2 (‘Low risk’)

Modal N (%) Probabilistic N (%) Modal N (%) Probabilistic N (%)

Participants 1,566 (87.2) 1507.8 (84.0) 230 (22.8) 288.2 (16.0)

Deaths 1,046 (66.8) 1014.7 (67.3) 15 (6.5) 45.8 (15.9)

Male 1,160 (74.1) 1112.8 (73.8) 153 (66.5) 200.9 (69.7)

Type 2 Diabetes 368 (23.5) 342.3 (22.7) 136 (59.1) 162.5 (56.4)

Median (IRQ) Median (IRQ)

Survival Time (years) 3.86 (2.41, 5.89) 1.13 (0.50, 2.27)

Mean (95% CI) Mean (95% CI)

Age (years) 69.2 (68.6, 69.9) 72.5 (71.1, 73.9)

Haemoglobin (g/dl) 13.80 (13.72, 13.88) 11.14 (10.99, 11.30)

N = number; % = percentage; IQR = interquartile range; CI = confidence interval.
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