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Abstract

Visual object recognition relies on elaborate sensory processes that transform retinal inputs to object representations,
but it also requires decision-making processes that read out object representations and function over prolonged time
scales. The computational properties of these decision-making processes remain underexplored for object recogni-
tion. Here, we study these computations by developing a stochastic multi-feature face categorization task. Using
quantitative models and tight control of spatiotemporal visual information, we demonstrate that humans categorize
faces through an integration process that first linearly adds the evidence conferred by task-relevant features over space
to create aggregated momentary evidence, and then linearly integrates it over time with minimum information loss.
Discrimination of stimuli along different category boundaries (e.g., identity or expression of a face) is implemented by
adjusting feature weights of spatial integration. This linear but flexible integration process over space and time bridges
past studies on simple perceptual decisions to complex object recognition behavior.

Introduction

Accurate and fast discrimination of visual objects is essential to guide our behavior in complex and dynamic environ-
ments. Previous studies largely focused on the elaborate sensory mechanisms that transform visual inputs along the
ventral visual pathway to generate object-selective neural responses in the inferior temporal cortex of the primate brain
(DiCarlo et al. 2012; Tanaka 1996). These transformations are often modeled as a fixed set of feedforward, represen-
tational changes that untangle visual inputs arising from different objects under a variety of environmental conditions
(DiCarlo and Cox 2007; Freiwald and Tsao 2010; Riesenhuber and Poggio 1999; Yamins et al. 2014). However, these
sensory transformations are only one part of the neural mechanisms that use visual information for guiding behavior.

Goal-directed behavior also requires decision-making processes that can flexibly read out sensory representations and
guide actions based on them as well as information about the environment, behavioral goals, and expected costs and
gains. The computational properties of these decision-making processes have received significantly less attention in
past studies on object recognition. Existing models commonly assume instantaneous decoding mechanisms based
on linear readout of population responses of sensory neurons (Chang and Tsao 2017; Hung et al. 2005; Majaj et al.
2015). Although such instantaneous decoding models explain some aspects of behavior that require recognition of
transient visual stimuli or acting on immediately presented visual information (Kiani et al. 2007; Majaj et al. 2015;
Rajalingham et al. 2015), they are unable to account for other aspects of behavior that are based on deliberation on
temporally extended visual information common in our daily environments. The properties of the decision-making
processes for object recognition have been rarely tested in the quantitative experimental settings used for studying
perceptual decision making (Gold and Shadlen 2007; Palmer et al. 2005; Ratcliff and Rouder 1998; Waskom et al.
2019), although the need for such tests is gaining significance and important steps are taken in this direction (Heekeren
et al. 2004; Philiastides and Sajda 2006; Zhan et al. 2019). By contrast, past studies on perceptual decision making

1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.27.396705doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.27.396705


typically focused on sensory inputs that varied along a single dimension, e.g., direction of moving dots changing from
left to right (Palmer et al. 2005), orientation of gratings changing from clockwise to counter-clockwise (Drugowitsch
et al. 2016), or contrast of stimuli ranging from low to high (Waskom and Kiani 2018). More complex visual decisions
based on stimuli defined by multiple features, including object images, remain underexplored.

Here, we apply the quantitative approach developed for studying simple perceptual decisions to investigate object
recognition as a process of combining sensory evidence over both space and time. Object recognition often includes
rich temporal dynamics. Although object identification and categorization are usually fast, reaction times (RTs) are
often hundreds of milliseconds longer (Carlson et al. 2014; Gauthier et al. 1998; Kampf et al. 2002; Ramon et al.
2011) than the time required for a feedforward sweep along the ventral visual pathway (Hung et al. 2005; Thorpe
et al. 1996). This difference is likely due to recurrent processes within the ventral pathway and decision-making
mechanisms that transform visual representations into actions. The presence of these mechanisms is supported by
speed-accuracy tradeoff in object recognition, where additional time improves accuracy (Gauthier et al. 1997; Thorpe
et al. 1996). Together, the speed-accuracy tradeoff and commonly observed long RTs suggest that the decision-making
process in object recognition is not instantaneous but unfolds over time (Hanks et al. 2014; Heitz and Schall 2012).

Furthermore, object recognition is known to be flexible and goal dependent. The same visual inputs could support
a variety of behaviors in a context-dependent manner (Gauthier et al. 1997, 1998; Kosslyn et al. 1995; Richler and
Palmeri 2014). For example, we use the color of an apple to judge its ripeness if we want to eat it, but we use the
surface curvature of the apple to grasp it. Humans flexibly utilize visual information to categorize objects according
to their behavioral needs (Schyns et al. 2002, 2007; Sigala and Logothetis 2002). The underlying neural mechanisms
of this flexibility remain underexplored, too.

To study object recognition as a process that operates on sensory evidence acquired over space and time, we developed
a novel face categorization task suitable for characterizing quantitative properties of the decision-making process. In
this paper, we focus on face recognition because of its ethological significance in primates (Freiwald et al. 2016; Goren
et al. 1975; Johnson et al. 1991) and because it is by far the most extensively studied (Barraclough and Perrett 2011;
Kanwisher and Yovel 2006; Perrodin et al. 2015; Rossion 2014; Tsao and Livingstone 2008) among the sub-domains
of object vision. Face stimuli are also convenient to use because they allow quantitative manipulation of sensory
information pivotal for mechanistic characterization of the decision-making process (Waskom et al. 2019); images can
be decomposed into local spatial parts (e.g., eyes, nose, mouth) and can be morphed between two instances (e.g., faces
of two individuals) to create a parametric stimulus set. At the same time, human face perception is highly elaborate
and embodies the central challenge of object recognition that must distinguish different identities from their complex
visual appearances (Tsao and Livingstone 2008). Therefore, gaining insight into the decision-making process in face
perception is a meaningful milestone for a quantitative understanding of object vision.

Using face categorization tasks that tightly control spatiotemporal sensory information, we show that human sub-
jects categorize faces by linearly integrating visual information over space and time. Spatial features are weighted
non-uniformly and integrated largely linearly to form momentary evidence, which is then accumulated over time to
generate a decision variable that guides the behavior. The temporal accumulation is also linear, and its time constant
is quite long, preventing significant loss of information (leak) during the decision-making process. Between identity
and expression categorizations, the weighting for spatial integration flexibly changes to accommodate task demands.
Together, we offer a novel framework to study object recognition as a spatiotemporal integration process, which unifies
two rich veins of visual research: object recognition and perceptual decision making.

Results

Spatial integration in face categorization

We developed stochastic multi-feature face categorization tasks suitable for studying spatial and temporal properties
of the computations underlying the decision-making process. Subjects judged the category of naturalistic face stimuli.
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The stimuli were engineered to have three informative features in the eyes, nose, and mouth regions of the face —
other facial regions were fixed and therefore uninformative for the task. In each trial, subjects observed a dynamic
stimulus stream and, when ready, reported its category with a saccadic eye movement to one of the two targets (Fig.
1A). The targets were associated with the two prototypes that represented the discriminated categories: identities of
two different persons in the identity categorization task (Fig. 1B top) or happy and sad expressions of a person in the
expression categorization task (Fig. 1B bottom).

Using a custom algorithm, we could independently morph the informative facial features (eyes, nose, mouth) between
the two prototypes to create a three-dimensional (3D) stimulus space whose axes correspond to the morph level of the
informative features (Fig. 1C). In this space, the prototypes are two opposite corners (specified as ±100% morph),

Figure 1: Stochastic multi-feature face categorization task. (A) On each trial, after the subject fixated a central
fixation point, two circular targets appeared on the screen and immediately followed by a dynamic stimulus stream
consisting of faces interleaved with masks. The subject was instructed to report the stimulus category (face identity
or expression in different blocks) as soon as ready by making a saccadic eye movement to one of the two targets
associated with the two categories. Reaction time was defined as the interval between the stimulus onset and the
saccade onset. (B) The stimuli in each task were engineered by morphing two category prototype stimuli, defined as
±100% stimulus strengths. The prototype faces were chosen from the photographs of MacBrain Face Stimulus Set
(Tottenham et al. 2009). For the identity stimuli shown in the figure, we used two authors’ faces to avoid copyright
issues. For the expression stimuli, the use of the images has been permitted (http://www.macbrain.org/resources.htm).
(C) Our custom algorithm allowed independent morphing of different stimulus regions. We defined three regions (eyes,
nose, and mouth) as informative features, while fixing other regions to the intermediate level between the prototypes.
Therefore, the stimulus space for each task was three dimensional. In this space, the prototypes (P1 and P2) are two
opposite corners. In each trial, the nominal mean stimulus strength was sampled from points on the diagonal line (filled
black dots). Each stimulus frame was then sampled from a 3D symmetric Gaussian distribution around the specified
nominal mean (gray clouds; s.d. 20% morph). (D) During the stimulus presentation in each trial, the morph levels of
the three informative features were randomly and independently sampled from the Gaussian distribution every 106.7
ms. The features therefore furnished differential and time-varying degrees of support for the competing choices in each
trial. Each face in the stimulus stream was masked with a random noise pattern created by phase scrambling images
of faces (see A). The masking prevented subjects from detecting the feature changes, although they still influenced the
subjects’ final choices.
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and the diagonal connecting the prototypes correspond to a continuum of faces where the three features of each face
equally support one category vs. the other. For the off-diagonal faces, however, the three features provide unequal or
even opposing information for the subject’s choice. In each trial, the nominal mean stimulus strength (% morph) was
sampled from the diagonal line (black dots in Fig. 1C). The dynamic stimulus stream was created by independently
sampling a stimulus every 106.7ms from a 3D symmetric Gaussian distribution with the specified nominal mean (s.d.
20% morph; Fig. 1C-D). The presented stimuli were therefore frequently off-diagonal in the stimulus space. The faces
in the stimulus stream were masked immediately after presentation to keep the changes in facial features subliminal
(Fig. 1A), creating the impression that a fixed face was covered periodically with varying noise patterns (see Methods).
The subtle fluctuations of features, however, influenced subjects’ choices as we show below, enabling us to determine
how subjects combined spatiotemporal sensory evidence over space and time for face categorization.

We first evaluated subjects’ choices and RTs in both tasks (Fig. 2). The choice accuracy monotonically improved
as a function of the nominal mean stimulus strength in the trial (Fig.2A, B; identity task, α1 = 9.7 ± 2.0 in Eq. 1,
p = 4.0× 10−7; expression task, α1 = 12.1± 3.3, p = 0.023). Correspondingly, the reaction times became faster for
higher stimulus strengths (Fig. 2C, D; identity task, β0 = 182.2 ± 87.7 in Eq. 2, p = 2.5 × 10−4, p = 2.5 × 10−4;
expression task, β0 = 179.8±32.0, p = 0.010). These patterns are consistent with evidence accumulation mechanisms
that govern perceptual decisions with simpler stimuli, e.g., direction discrimination of random dots motions (Palmer
et al. 2005; Ratcliff and Rouder 2000; Smith and Vickers 1988). However, the decision-making mechanisms that do
not integrate sensory evidence over time can also generate qualitatively similar response patterns (Stine et al. 2020;
Waskom and Kiani 2018). Furthermore, because in our task design, we used identical nominal mean morph levels for
the informative features in a trial, characterizing behavior based on the mean levels can not reveal if subjects integrated
sensory evidence across facial features (spatial integration). However, we can leverage the stochastic fluctuations of
the stimulus to test if sensory evidence was integrated over space and time. In what follows, we first quantify the
properties of spatial integration and then examine the properties of temporal integration.

Figure 2: Stimulus strength shaped choices and reaction times with differential contributions from informative
features. (A, B) Psychometric functions based on nominal stimulus strength in the identity (A) and expression (B)
categorization tasks. Gray lines are logistic fits (Eq. 1). Error bars are s.e.m. across subjects. (C, D) Chronometric
functions based on nominal stimulus strength in the two tasks. Average reaction times were slower for the interme-
diate, most ambiguous stimulus strengths. Gray lines are the fits of a hyperbolic tangent function (Eq. 2). (E, F)
Psychophysical reverse correlation using feature fluctuations revealed positive but non-uniform contributions of mul-
tiple features in both tasks. The amplitude of the psychophysical kernel for a feature was calculated as the difference
of the average feature fluctuations conditioned on the two choices. Trials with 0-14% nominal stimulus strength were
used in this analysis. Error bars indicate s.e.m. across trials aggregated across subjects. The kernel amplitudes of
individual subjects are shown in Fig. S1. For the full time course of the kernels, see Figs. 5 and S3-4.
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To test if multiple facial features informed subjects’ decisions, we used psychophysical reverse correlation to evaluate
the effect of the fluctuations of individual features on choice. Psychophysical kernels were generated by calculating
the difference between the feature fluctuations conditioned on choice (Eq. 3). We focused on trials with the lowest
stimulus strengths where choices were most strongly influenced by the feature fluctuations (0-14%; mean morph level
of each trial was subtracted from the fluctuations; see Methods). Fig. 2E, F shows the kernel amplitude of the three
facial features averaged over time from stimulus onset to median RT. These kernel amplitudes quantify the overall
sensitivity of subjects’ choices to equal fluctuations of the three features (in %morph units). The kernel amplitudes
markedly differed across features in each task (identity task: p = 7.0 × 10−21, expression task: p = 1.7 × 10−13;
one-way ANOVA), greatest for the eyes region in the identity task (p < 2.3 × 10−16 compared to nose and mouth,
post-hoc Bonferroni test) and for the mouth region in the expression task (p < 8.0×10−7 compared to eyes and nose).

Critically, the choice was influenced by more than one feature. In the identity task, all three features had significantly
positive kernel amplitudes (eyes; p = 4.4 × 10−60, nose: p = 4.8 × 10−5, mouth: p = 1.4 × 10−4, two-tailed
t-test for each feature, Bonferroni corrected for multiple comparisons). In the expression task, mouth and eyes had
statistically significant kernel amplitudes and nose had a positive kernel, although it did not reach significance (mouth:
p = 8.3×10−37, eyes: p = 1.4×10−7, nose: p = 0.25). Positive kernels for multiple facial features were prevalently
observed for individual subjects too (Fig. S1), without substantial differences in the kernel amplitudes across subjects
(one-way ANOVA; identity: p > 0.27 for all features, expression: p = 0.016 for mouth, p > 0.71 for eyes and nose).
Therefore, the pooled results are not due to mixing data from multiple subjects with distinct behavior. These results
suggest that subjects use multiple facial features for categorization, but the features non-uniformly contribute to their
decisions, and their relative contributions differ between the tasks — a topic we will revisit in the following sections.

Although the amplitude of psychophysical kernels informs us about the overall sensitivity of choice to feature fluctua-
tions in the face stimuli, it does not clarify the contribution of sensory and decision-making processes to this sensitivity.
Specifically, subjects’ choices may be more sensitive to changes in one feature because the visual system is better at
discriminating the feature changes (visual discriminability) or because the decision-making process attributes a larger
weight to the changes of that feature (decision weights) (Schyns et al. 2002; Sigala and Logothetis 2002). We will
dissociate these factors in the last section of Results, but for the intervening sections, we will focus on the overall
sensitivity of choice to different features.

Linearity of spatial integration of facial features

How do subjects integrate information from multiple spatial features? Could it be approximated as a linear process, or
does it involve significant non-linear effects —e.g., synergistic interactions that magnify the effect of co-fluctuations
across features? Non-linear effects can be empirically discovered by plotting joint psychometric functions that depict
subjects’ accuracy as a function of the strength of the facial features (Fig. 3A, B). Here, we define the true mean
strength of each feature as the average of the feature morph levels over the stimulus frames shown on each trial (for
temporal effects, see Figs. 5 and 6). The plots visualize the three orthogonal two-dimensional (2D) slices of the 3D
stimulus space (Fig. 1C), and the contour lines show the probability of choosing the second target (choice 2) at the
end of the trial.

These iso-performance contours were largely straight and parallel to each other, suggesting that a weighted linear
integration across features underlies behavioral responses. The slope of contours in each 2D plot reflects the relative
contribution of the two facial features to choice. For example, the nearly vertical contours in the eyes vs. nose plot of
the identity task indicate that eyes had a much greater influence on subjects’ choices, consistent with the amplitudes of
psychophysical kernels (Fig. 2E). Critically, the straight and parallel contour lines indicate that spatial integration does
not involve substantial non-linearity. To quantify the contributions of linear and non-linear factors, we performed a
logistic regression on the choices using both linear and non-linear multiplicative combinations of the feature strengths
(Eq. 4). The model accurately fit to the contour lines in Fig. 3A, B (Fig. 3C, D; identity task, R2 = 0.99; expression
task, R2 = 0.99). The model coefficients show significant positive sensitivities for the linear effects of all facial
features in the identity task (eyes: p = 2.3× 10−83, nose: p = 1.1× 10−6, mouth: p = 2.3× 10−6, two-tailed t-test)
and eyes and mouth in the expression task (eyes: p = 9.5× 10−8, nose: p = 0.062, mouth: p = 5.2× 10−47), but no
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Figure 3: Spatial integration across informative features was largely linear. (A, B) Two-dimensional slices of the
psychometric function for the three-dimensional stimulus space. Each panel shows the iso-probability contours for
choice 2 as a function of the true average morph level of two of the three informative features in each trial. The third
informative feature was marginalized for making each panel. The iso-probability contours are drawn at 0.1 intervals
and moderately smoothed with a 2D Gaussian function (s.d., 4% morph). The straight and parallel contour lines are
compatible with a largely linear spatial integration process across features, with the slope of the contours reflecting
the relative contribution of the features illustrated in each panel. (C, D) A logistic regression to evaluate the relative
contribution of individual features and their multiplicative interactions to subjects’ choices supported a largely linear
spatial integration process: the interaction terms have minimal impact on choice beyond the linear integration across
features. E, N, and M indicate eyes, nose, and mouth, respectively. Error bars indicate s.e.m. across subjects.

significant effect for nonlinear terms (p > 0.29 for all multiplicative terms in both tasks). These results were largely
consistent for individual subjects, too (Fig. S2; 6/9 subjects in identity and 2/3 in expression task showed significant
effects only for linear terms; the rest showed weak significance, p ∼ 0.03, for one of the non-linear terms with small
effect sizes, logit = 0.16 − 0.18). Overall, linear integration provides an accurate and parsimonious account of how
features were combined over space for face categorization.

Linearity of the mapping between stimulus strength and subjective evidence

Quantitative prediction of behavior requires understanding the mapping between the stimulus strength as defined by
the experimenter (morph level in our experiment) and the evidence conferred by the stimulus for the subject’s decision.
The parallel linear contours in Fig. 3 demonstrate that the strength of one informative feature can be traded for another
informative feature to maintain the same choice probability. They further show that this tradeoff is largely stable across
the stimulus space, strongly suggesting a linear mapping between morph levels and inferred evidence.

To formally test this hypothesis, we quantified the relationship between feature strengths and their effects on choice
by estimating subjective evidence in log-odds units. Following the methods developed by Yang et al. (2007), we
split the feature strengths (% morph) of each stimulus frame into ten levels and performed a logistic regression to
explain subjects’ choices based on the number of occurrences of different feature morph levels in a trial. The resulting
regression coefficients correspond to the change of the log-odds of choice furnished by a feature morph level. For both
the identity and expression morphs, the stimulus strength mapped linearly onto subjective evidence (Fig. 4; identity
task: R2 = 0.94, expression task: R2 = 0.95), with the exception of the highest stimulus strengths, which exerted
slightly larger effects on choice than expected from a linear model. The linearity for a wide range of morph levels
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Figure 4: The evidence conferred by a feature mapped linearly to the feature morph level, especially for the
intermediate stimuli. The linear integration of features across space allowed accurate quantification of the evidence
that subjects inferred from each feature. We split morph levels of each feature into ten quantiles and used a logistic
regression that explained choices based on the number of occurrences of the quantiles in each trial, quantifying the
subjective evidence of each morph level in units of log odds of choice. Subjective evidence linearly scaled with the
morph level for each feature, except for the highest strengths. The lines are linear regressions of subjective evidence
against feature morphs, excluding the highest strengths. Error bars indicate s.e.m. across subjects.

—especially for the middle range in which subjects frequently chose both targets— permits us to approximate the total
evidence conferred by a stimulus as a weighted sum of the morph levels of its informative features.

Temporal integration mechanisms

The linearity of spatial integration significantly simplifies our approach to investigate integration of sensory evidence
over time. We adopted a quantitative model-based approach by testing a variety of models that have the same linear
spatial integration process but differ in ways that use stimulus information over time. We leveraged stimulus fluctua-
tions within and across trials to identify the mechanisms that shaped the behavior. We further validated these models
by comparing their predicted psychophysical kernels with the empirical ones.

In our main model, the momentary evidence from each stimulus frame is linearly integrated over time (Fig. 5A).
The momentary evidence from a stimulus frame is a linear weighted sum of the morph levels of informative features
in the stimulus, compatible with linear spatial integration shown in the previous sections. The model assumes that
sensitivities for these informative features (ke, kn, km) are fixed within a trial. However, because the stimulus is
dynamic and stochastic, the rate of increase of accumulated evidence varies over time. The decision-making process
is noisy, with the majority of noise originating from the stimulus representation in sensory cortices and inference of
momentary evidence from these representations (Brunton et al. 2013; Drugowitsch et al. 2016; Waskom and Kiani
2018). Due to the noise, the decision-making process resembles a diffusion process with variable drift over time. The
process stops when the decision variable (accumulated noisy evidence) reaches one of the two bounds, corresponding
to the two competing choices in the task. The bound that is reached dictates the choice, and the reaction time equals
the time to bound (decision time) plus a non-decision time composed of sensory and motor delays (Gold and Shadlen
2007; Link 1992; Ratcliff and Rouder 2000; Smith and Vickers 1988). For each stimulus sequence, we calculated
the probability of different choices and expected distribution of reaction times, adjusting model parameters to best
match the model with the observed behavior (maximum likelihood fitting of the joint distribution of choice and RT; see
Methods). The model accurately explained subjects’ choices (identity: R2 = 0.99±0.0, expression: R2 = 0.98±0.01,
mean±s.e.m. across subjects) and mean reaction times (identity: R2 = 0.84 ± 0.06, expression: R2 = 0.82 ± 0.08)
(Fig. 5B, C), as well as the distributions of reaction times (Fig. S5). The accurate match between the data and the
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model was also evident within individual subjects (Figs. S3 and S4).

The same model also quantitatively explains the psychophysical kernels (Fig. 5D, E; identity task: R2 = 0.79, expres-
sion task: R2 = 0.73). The observed kernels showed characteristic temporal dynamics besides the inhomogeneity of
amplitudes across features, as described earlier (Fig. 2E, F). The temporal dynamics are explained by decision bounds
and non-decision time in the model (Okazawa et al. 2018). When aligned to stimulus onset, the kernels decreased over
time. This decline happens in the model because non-decision time creates a temporal gap between bound crossing
and the report of the decision, making stimuli immediately before the report inconsequential for the decision. When
aligned to the saccadic response, the kernels peaked several hundred milliseconds prior to the saccade. This peak

Figure 5: A model that linearly integrates sensory evidence over space and time accounted for choice, reaction
time, and psychophysical kernels. (A) Multi-feature drift diffusion model. The model linearly integrates the morph
levels of the three informative features with static spatial sensitivities (ke, kn, km) to create the momentary evidence,
which is then integrated over time to create a decision variable. The integration process continues until the decision
variable reaches one of the two decision bounds, corresponding to choices 1 and 2. Reaction time equals the time to
reach the bound (decision time) plus a non-decision time that reflects the aggregate of sensory and motor delays. (B,
C) Model fit to choices and reaction times in the identity (B) and expression (C) categorization tasks. Data points
(dots) are the same as those in Fig. 2A-D. (D, E) The model also accurately explained the amplitude and dynamics
of psychophysical kernels. Shading indicates s.e.m. across subjects. The differences across tasks are due to distinct
feature sensitivities.
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emerges in the model because stopping is conditional on a stimulus fluctuation that takes the decision variable beyond
the bound, while the drop near the response time happens again because of the non-decision time. Critically, the
model assumptions about static sensitivity and linear integration matched the observed kernels. Further, the inequality
of kernel amplitudes across facial features and tasks were adequately captured by the different sensitivity parameters
for individual features (ke, kn, km) in the model.

To further test properties of temporal integration, we challenged our model with two plausible extensions (Fig. 6).
First, integration may be imperfect, and early information can be gradually lost over time (Bogacz et al. 2006; Usher
and McClelland 2001). Such a leaky integration process can be modeled by incorporating an exponential leak rate in
the integration process (Fig. 6A). When this leak rate becomes infinitely large, the model reduces to a memoryless
process that commits to a choice if the momentary sensory evidence exceeds a decision bound — i.e., extrema detection
(Stine et al. 2020; Waskom and Kiani 2018). To examine these alternatives, we fit the leaky integration model to
the behavioral data. Although the leak rate is difficult to assess in typical perceptual tasks (Stine et al. 2020), our
temporally fluctuating stimuli provide a strong constraint on the range of the leak rate that matches behavioral data
because increased leak rates lead to lower contribution of earlier stimulus fluctuations to choice. We found that the
fitted leak rate was near zero consistently across all subjects (Fig. 6B; identity task, mean±s.e.m., 0.010± 0.004s−1;
expression task, 0.006±0.003s−1), supporting near-perfect integration over time (integration time constants≥100 s).

The second extension allows time-varying sensitivity to sensory evidence within a trial (Levi et al. 2018), as opposed
to the constant sensitivity assumed in our main model. To capture a wide variety of plausible temporal dynamics, we
added linear and quadratic temporal modulations of drift rate over time to the model (Fig. 6C; Eq. 10). However,
the modulation parameters were quite close to zero (Fig. 6D; identity task: γ1 = −0.19 ± 0.098, p = 0.093,
γ2 = 0.55 ± 0.028, p = 0.084; expression task: γ1 = −0.23 ± 0.18, p = 0.33, γ2 = 0.067 ± 0.082, p = 0.50,
two-tailed t-test), suggesting a lack of substantial temporal dynamics. The temporal properties of the decision-making
process are therefore consistent with linear multi-feature integration with static sensitivities.

Figure 6: Spatiotemporal integration had static sensitivity to features and minimal forgetting (leak). We used two
extensions of the multi-feature drift diffusion model to test for leaky integration and modulation of feature sensitivities
over time. (A) Schematic of the leaky integration model. An exponential leak term was added to the temporal
integration process to examine potential loss of information over time (Eq. 9). The leak pushes the decision variable
toward zero, reducing the effect of earlier evidence. (B) Fitting the leaky integration model to behavioral data revealed
a leak rate close to zero for both the identity and expression categorization tasks. (C) Schematic of the model with
dynamic modulation of feature sensitivities. We added a second-order polynomial modulation function to investigate
potential temporally non-uniform influence of stimulus features on choice within a trial (Eq. 10). The function allows
for a variety of temporal patterns, including ascending, descending, and non-monotonic changes. (D) Fitting the model
with dynamic sensitivities revealed no substantial change over time, with both the linear and quadratic terms of the
modulation function close to zero. Error bars indicate s.e.m. across subjects.
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Testing the sequence of spatiotemporal integration

In the models above, temporal integration operates on the momentary evidence generated from the spatial integration
of features of each stimulus frame. But is it necessary that spatial integration precedes temporal integration? Although
our data-driven analyses above suggest that subjects combined information across facial features (Figs. 3 and 4), it
might be plausible that spatial integration follows the temporal integration process instead of preceding it. Specifically,
the evidence conferred by each informative facial feature may be independently integrated over time, and then a
decision may be rendered based on the collective outcome of the three feature-wise integration processes (i.e., spatial
integration following temporal integration). A variety of spatial pooling rules may be employed in such a model. A
choice can be determined by the first feature integrator that reaches its bound (Fig. 7A), by the majority of feature

Figure 7: Models with late spatial integration across features fail to explain the experimental data. (A) Schematic
of a parallel integration model in which single features are independently integrated over time to a decision bound,
followed by spatial integration across features to determine the choice. A decision is made based on the first integrator
that reaches the decision bound. Models with different decision rules —such as the choice supported by the majority
of feature integrators or a linear combination of decision variables across integrators— are examined in Fig. S6. (B,
C) Model fits to psychometric and chronometric functions. Conventions are the same as in Fig. 5B, C. (D, E) The
model fails to explain psychophysical kernels. Notable discrepancies with the data are visible in the kernels for eyes
in the identity task and the kernels for mouth in the expression task.

10

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.27.396705doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.27.396705


integrators, or by the weighted sum of the decision variables of the integrators after the first bound crossing (Fig. S6).
In all of these model variants, the choice is shaped by multiple features due to the stochasticity of the stimuli and
noise (Otto and Mamassian 2012). For example, the “eyes” integrator would dictate the choice in many trials of the
identity categorization task, but the other feature integrators would also have a smaller but tangible effect, compatible
with the differential contribution of features to choice, as shown in the previous sections (Fig. 2E-F). Are such parallel
integration models compatible with the empirical data?

Figure 7 demonstrates that models with late spatial integration fail to explain the behavior. Although these models
could fit the psychometric and chronometric functions (Fig. 7B, C), they underperformed our main model (model
log-likelihood difference for the joint distribution of choice and RT, −434.9 in the identity task and −231.4 in the
expression task). Moreover, and critically, they did not replicate the subjects’ psychophysical kernels (Fig. 7D,
E; identity task: R2 = 0.43, expression task: R2 = 0.49). They systematically underestimated saccade-aligned
kernel amplitudes for the dominant feature of each task (eyes for identity categorization, and mouth for expression
categorization). Further, the predicted model kernels peaked closer to the saccade onset than the empirical kernels.
Since psychophysical kernel amplitude is inversely proportional to the decision bound (Okazawa et al. 2018), the
lower amplitude of these model kernels suggests that the model overestimated the decision bound, which necessitated
a shorter non-decision time to compensate for the elongated decision times caused by the higher bounds. These shorter
non-decision times pushed model kernel peaks closer to the saccade onset.

In general, late spatial integration causes a lower signal to noise ratio and is therefore more prone to wrong choices
because it ignores part of the available sensory information by terminating the decision-making process based on
only one feature or by sub-optimally pooling across spatial features after the termination. To match subjects’ high
performance, these models would therefore have to alter the speed-accuracy tradeoff by pushing their decision bound
higher than those used by the subjects. However, this change leads to qualitative distortions in the psychophysical
kernels. Our approach to augment standard choice and RT fits with psychophysical kernel analyses was key to identify
these qualitative differences (Okazawa et al. 2018), which can be used to reliably distinguish models with different
orders of spatial and temporal integration.

What underlies differential contribution of facial features to choice: visual discriminability
or decision weight?

The psychophysical kernels and decision-making models in the previous sections indicated that subjects’ choices were
deferentially sensitive to fluctuations of the three informative features in each categorization task (Figs. 2E-F, 3C-D,
4, and 8A) and across tasks (p = 6.3 × 10−7, two-way ANOVA interaction between features and tasks). However,
as explained earlier, a higher overall sensitivity to a feature could arise from better visual discriminability of changes
in the feature or a higher weight applied by the decision-making process to the feature (Fig. 8B). Both factors are
likely present in our task. Task-dependent changes of feature sensitivities support the existence of flexible decision
weights. Differential visual discriminability is a likely contributor too because of distinct facial features across faces
in the identity task or expressions in the expression task. To determine the exact contribution of visual discriminability
and decision weights to the overall sensitivity, we measured the discrimination performance of the same subjects for
each facial feature using two tasks: odd-one-out discrimination (Fig. 8C) and categorization of single facial features
(Fig. S7).

In the odd-one-out task, subjects viewed three consecutive images of a facial feature (eyes, nose, or mouth) with
different stimulus strengths and chose the one that was perceptually distinct from the other two (Fig. 8C). Subjects
successfully identified the morph level that was distinct from the other two and had higher choice accuracy when the
morph level differences were larger (Fig. 8D). However, the improvement of accuracy as a function of morph level
difference was not identical across features. The rate of increase (slope of psychometric functions) was higher for
the eyes of the identity-task stimuli, and higher for the mouth of the expression-task stimuli, suggesting that the most
sensitive features in those tasks were most discriminable, too. We used a model based on signal detection theory
(Maloney and Yang 2003) to fit the psychometric functions and retrieve the effective representational noise (σf ) for
each facial feature (see Methods). As expected from the psychometric functions (Fig. 8D), visual discriminability,
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Figure 8: Differential sensitivity of decisions to facial features arises from a combination of visual discriminabil-
ity and decision weights (A) The sensitivity parameters of the multi-feature drift diffusion model (Fig. 5A) for the
informative features in the identity (left) and expression (right) categorization tasks. (B) Schematic of the factors that
shape differential sensitivities to the informative features. Feature sensitivity in a task arises from two factors: 1) visual
discriminability of different morph levels of the feature, and 2) the weight that the decision-making process attributes
to the feature. These factors are distinct as visual discriminability arises from the precision of sensory representations,
whereas decision weights are flexibly set to achieve a particular behavioral goal. We define visual discriminability
of a feature as the inverse of representational noise in units of %morph (σf , where f could be e, n, or m for eyes,
nose, and mouth, respectively), and the overall sensitivity to a feature as its visual discriminability (1/σf ) multiplied
by the decision weight (wf ). To determine the relative contribution of these two factors, one needs to measure the
visual discriminability of facial features. (C) The design of an odd-one-out discrimination task to measure the visual
discriminability of individual features. In each trial, subjects viewed a sequence of three images of the same feature
and reported the one the was perceptually most distinct from the other two. The three images had distinct morph levels
(SA, SB , SC sorted in ascending order). All subjects of our main task participated in this experiment. (D) Subjects’
accuracy as a function of the “distinctness” of the correct stimulus from the other two. Distinctness was quantified
as |(SB − SA) + (SB − SC)|. The lines are the fits of an ideal observer model (see Methods). The accuracy for
0% distinctness was slightly larger than a random choice (33%) because subjects were slightly less likely to choose
the middle morph level (SB). (E) Visual discriminability (1/σ) estimated using the ideal observer model. Facial
features have different discriminability with the eyes slightly more discriminable for the faces used in the identity cat-
egorization task and the mouth more discriminable in the expression categorization task. However, these differences
in discriminability across features are less pronounced than those in the overall sensitivity (A). (F) Decision weights
(w in B) calculated by dividing the overall sensitivity to the visual discriminability of each feature.

defined as the inverse of the representational noise in the odd-one-out task, was slightly higher for the eyes of the
identity-task stimuli, and for the mouth of the expression-task stimuli (Fig. 8E; identity task: p = 0.0054, expression
task: p = 0.0066, repeated measures ANOVA; see Fig. S8B for individual subjects).

Similar results were also obtained in the single-feature categorization tasks, where subjects performed categorizations
similar to the main task while viewing only one facial feature (Fig. S7A). We derived the model sensitivity for
each facial feature by fitting a drift diffusion model to the subjects’ choices and RTs (Fig. S7B). Because subjects
discriminated a single feature in this task, differential weighting of features could not play a role in shaping their
behavior, and the model sensitivity for each feature was proportional to the feature discriminability. The order of
feature discriminability was similar to that from the odd-one-out task, with eyes showing more discriminability for the
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stimuli of the identity task and mouth showing more discriminability for the stimuli of the expression task (Fig. S7C).

Although the results of both tasks support that visual discriminability was non-uniform across facial features, this
contrast was less pronounced than that of the model sensitivities in the main task (Figs. 8E-F, S7C). Consequently,
dividing the model sensitivities by the discriminability revealed residual differences reflecting non-uniform decision
weights across features (Fig. 8F; p = 0.0059, two-way ANOVA, main effect of features) and between the tasks
(p = 2.8 × 10−4, two-way ANOVA, interaction between features and tasks). In other words, context-dependent
decision weights play a significant role in the differential contributions of facial features to decisions. Furthermore,
these weights suggest that subjects rely more on more informative (less noisy) features. In fact, the decision weights
were positively correlated with visual discriminability (Fig. S8C; R = 0.744, p = 2.0× 10−7), akin to an optimal cue
integration process (Drugowitsch et al. 2014; Ernst and Banks 2002; Oruc et al. 2003). Together, the decision-making
process in face categorization involves context-dependent adjustment of decision weights that improves behavioral
performance.

Discussion

Successful categorization or identification of objects depends on elaborate sensory and decision-making processes
that transmit and use sensory information to implement goal-directed behavior. The properties of the decision-making
process remain underexplored for object vision. By extending a quantitative framework developed for studying simpler
perceptual decision (Gold and Shadlen 2007; Palmer et al. 2005; Ratcliff and Rouder 1998; Waskom et al. 2019), we
establish an experimental and modeling approach that quantitatively links sensory inputs and behavioral responses
during face categorization. We show that human face categorization constitutes spatiotemporal evidence integration
processes. A spatial integration process aggregates stimulus information into momentary evidence, which is then
integrated over time by a temporal integration process. The temporal integration is largely linear and, because of
its long time constants, has minimal or no loss of information over time. The spatial integration is also linear and
accommodates flexible behavior across tasks by adjusting the weights applied to visual features. These weights remain
stable over time in our task, providing no indication that the construction of momentary evidence or its informativeness
changes with stimulus viewing time.

Our approach bridges past studies on object recognition and perceptual decision making by formulating object recog-
nition as a process that integrates sensory evidence over space and time. Past research on object recognition focused
largely on feedforward visual processing and instantaneous readout of the visual representations, leaving a concep-
tual gap for understanding the temporally extended processes that underlie perception and action planning based on
visual object information. Several studies have attempted to fill this gap by employing noisy object stimuli (Heekeren
et al. 2004; Philiastides and Sajda 2006; Ploran et al. 2007) or sequential presentation of object features (Jack et al.
2014; Ploran et al. 2007). However, their stimulus manipulations did not allow a comprehensive exploration of both
spatial and temporal processes. They either created a one-dimensional stimulus axis that eroded the possibility to
study spatial integration across features or created temporal sequences that eroded the possibility to study temporal
integration jointly with spatial integration. Our success hinges on a novel stimulus design: independent parametric
morphing of individual facial features and subliminal spatiotemporal feature fluctuations within trials. Independent
feature fluctuations were key to characterize the integration processes, and the subliminal sensory fluctuations ensured
that our stimulus manipulations did not alter subjects’ decision strategy, addressing a fundamental challenge (Murray
and Gold 2004) posed to alternative methods (e.g., covering face parts: Gosselin and Schyns 2001; Schyns et al. 2002,
but see Gosselin and Schyns 2004).

We used three behavioral measures —choice, reaction time, and psychophysical reverse correlation— to assess the
mechanisms underlying the behavior. Some key features of the decision-making process cannot be readily inferred
solely from choice and reaction time, e.g., the time constant of the integration process (Ditterich 2006; Stine et al.
2020). However, the inclusion of psychophysical kernels provides a more powerful three-pronged approach (Okazawa
et al. 2018) that enabled us to establish differential sensitivities for informative features (Fig. 2E-F), linearity of spatial
integration (Fig. 3), long time constants (minimum information loss) for temporal integration (Fig. 6B), static feature
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sensitivities (Fig. 6D), and failure of late spatial integration in the parallel feature integration models (Fig. 7). The
precise agreement of psychophysical kernels between model and data (Fig. 5D-E) reinforces our conclusion that face
categorization arises from linear spatiotemporal integration of visual evidence.

Face perception is often construed as a “holistic” process because breaking the configuration of face images —e.g.,
removing parts (Tanaka and Farah 1993), shifting parts (Young et al. 1987), or inverting images (Yin 1969)— reduces
performance for face discrimination (Taubert et al. 2011), categorization (Young et al. 1987), or recognition (Tanaka
and Farah 1993). However, the mechanistic underpinnings of these phenomena remain elusive (Richler et al. 2012).
The linear spatial integration mechanism has the potential to provide mechanistic explanations that can fill existing
conceptual gaps. For example, changes in the configuration of facial features could reduce visual discriminability of
facial features (Murphy and Cook 2017), disrupt spatial integration (Gold et al. 2012; Witthoft et al. 2016), or cause
suboptimal weighting of informative features (Sekuler et al. 2004). Our approach offers a quantitative path to test
these possibilities using a unified modeling framework — a fruitful direction to pursue in the future.

The linearity of spatial integration over facial features has been a source of controversy in the past (Gold 2014; Gold
et al. 2012; Shen and Palmeri 2015). It has been suggested that configural information, such as distances between
facial features, can give rise to non-linearities (Shen and Palmeri 2015) and some of the holistic properties of face
perception (Le Grand et al. 2001; Maurer et al. 2002). Feature locations in our stimuli were kept largely constant to
facilitate morphing between faces. However, our approach can be generalized to include configural information and
systematically tease apart spatial integration over feature contents from integration over the relative configuration of
features. An ideal decision-making process would treat configural information similar to content information — by
linearly integrating independent pieces of information. Although our current results strongly suggest linear integration
over feature contents, we remain open to emergent non-linearities for configural information.

Another key finding in our experiments is flexible, task-dependent decision weights for informative features (Fig. 8).
Past studies demonstrated preferential use of more informative features over others during face and object catego-
rization (Schyns et al. 2002; Sigala and Logothetis 2002). But it was not entirely clear whether and by how much
subjects’ enhanced sensitivity stemmed from visual discriminability of features or decision weights. We have shown
that the differential model sensitivity for facial features in our tasks could not be fully explained by inhomogeneity of
visual discriminability across features, thus confirming flexible decision weights for facial features. Importantly, the
weights were proportional to the visual discriminability of features in each task (Fig. S8C), consistent with the idea
of optimal cue integration that explains multi-sensory integration behavior (Drugowitsch et al. 2014; Ernst and Banks
2002; Oruc et al. 2003). Our observation suggests that object recognition is compatible with Bayesian computations
in cue combination paradigms (Fetsch et al. 2013; Gold et al. 2012; Kersten et al. 2004).

The quantitative characterization of behavior is pivotal in linking computational mechanisms and neural activity. Our
results raise questions about where and how the spatiotemporal integration of sensory evidence is implemented in the
brain for object vision. Traditionally, such processes have been investigated in sensorimotor and association brain
regions (Cisek and Kalaska 2005; Gold and Shadlen 2007; Ratcliff et al. 2003; Schall 2019). Also, the inferotemporal
cortex (IT), where the face patch system is located (Hesse and Tsao 2020), has been investigated as a dominantly
sensory region (DiCarlo et al. 2012; Tanaka 1996). Such a functional division would suggest that IT provides the
input (feature information) to the integrators implemented by the downstream frontoparietal circuits. However, IT
neurons encode combinations of facial features (Chang and Tsao 2017; Freiwald and Tsao 2010) and can flexibly alter
their sensitivity based on task demands (Koida and Komatsu 2007), providing a basis for spatial integration. Further,
IT neurons represent upcoming choices and show response dynamics that can reflect temporally extended decisions
(Akrami et al. 2009; Tajima et al. 2017). An appealing hypothesis is that IT exceeds a purely sensory role and object
recognition behaviors arise from interactions between the IT cortex and downstream sensorimotor and association
areas. Our experimental framework provides a foundation for studying such interactions by determining the properties
of spatiotemporal integration and making quantitative predictions about the underlying neural responses.
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Methods

Observers and experimental setup

Nine human observers participated in the experiments. Observers had normal or corrected-to-normal vision. They
were naı̈ve to the purpose of the experiment and provided informed written consents before participation. All experi-
mental procedures were approved by the Institutional Review Board at New York University.

Throughout the experiment, subjects were seated in an adjustable chair in a semi-dark room with chin and forehead
supported before a CRT display monitor (21-inch Sony GDM-5402, Tokyo, Japan; 75 Hz refresh rate; 1,600 × 1,200
pixels screen resolution; 52 cm viewing distance). Stimulus presentation was controlled with the Psychophysics
Toolbox (Brainard 1997) and Matlab (Mathworks, Natick, MA). Eye movements were monitored using a high-speed
infrared camera (Eyelink, SR-Research, Ontario). Gaze position was recorded at 1kHz.

Stochastic multi-feature face categorization task

The task required classification of faces into two categories, each defined by a prototype face (Fig. 1A). The subject
initiated each trial by fixating a small red point at the center of the screen (FP, 0.3° diameter). After a short delay
(200–500 ms, truncated exponential distribution), two targets appeared 5° above and below the FP to indicate the
two possible face category choices (category 1 or 2). Simultaneously with the target onset, a face stimulus (2.24°×
2.57°) appeared on the screen parafoveally (stimulus center 1.8° to the left or right of the FP; counterbalanced across
subjects). Subjects reported the face category by making a saccade to one of the two targets as soon as they were ready.
The stimulus was extinguished immediately after the saccade initiation. Reaction times were calculated as the time
from the stimulus onset to the saccade initiation. If subjects failed to make a choice in 5 s, the trial was aborted (0.12%
of trials). To manipulate task difficulty, we created a morph continuum between the two prototypes and presented
intermediate morphed faces on different trials (see below). Distinct auditory feedbacks were delivered for correct and
error choices. When the face was ambiguous (halfway between the two prototypes on the morph continuum), correct
feedback was delivered on a random half of trials.

Subjects could perform two categorization tasks: identity categorization (Fig. 1B top) and expression categorization
(Fig. 1B bottom). The prototype faces for each task were chosen from the photographs of MacBrain Face Stimulus Set
(Tottenham et al. 2009, http://www.macbrain.org/resources.htm). For the illustrations of identity stimuli in Fig.1B-
C, we used morphed images of two authors’ faces to avoid copyright issues. We developed a custom algorithm
that morphed different facial features (regions of the stimulus) independently between the two prototype faces. Our
algorithm started with 97-103 manually-matched anchor points on the prototypes and morphed one face into another
by linear interpolation of the positions of anchor points and textures inside the tessellated triangles defined by the
anchor points. The result was a perceptually seamless transformation of the geometry and internal features from one
face to another. Our method enabled us to morph different regions of the faces independently. We focused on three
key regions (eyes, nose, and mouth) and created an independent series of morphs for each one of them. The faces that
were used in the task were composed of different morph levels of these three informative features. Anything outside
those features was set to the halfway morph between the prototypes, thus was uninformative. The informativeness of
the three features (stimulus strength) was defined based on the mixture of prototypes, spanning from –100% when the
feature was identical to prototype 1 to +100% when it was identical to prototype 2 (Fig. 1C). At the middle of the
morph line (0% morph), the feature was equally shaped by the two prototypes.

By varying the three features independently, we could study spatial integration through creating ambiguous stimuli in
which different features could support different choices (Fig. 1C). We could also study temporal integration of features
by varying the three discriminating features every 106.7ms within each trial (Fig. 1D). This frame duration allowed
us sufficiently precise measurements of subjects’ temporal integration in their ∼1s decision times while ensuring the
smooth subliminal transition of frames (see below). The stimulus strengths of three features in each trial were drawn
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randomly from independent Gaussian distributions. The mean and standard deviation of these distributions were equal
and fixed within each trial, but the means varied randomly from trial to trial. We tested seven mean stimulus strengths
(–50%, –30%, –14%, 0%, +14%, +30%, and +50%). The standard deviation was 20% morph level. Sampled values
that fell outside the range [–100% +100%] (0.18% of samples) were replaced with new samples inside the range.

Changes in the stimulus within a trial were implemented in a subliminal fashion such that subjects did not consciously
perceive variation of facial features and yet their choices were influenced by these variations. We achieved this goal
using a sequence of stimuli and masks within each trial. The stimuli were morphed faces with a particular combination
of the three discriminating features. The masks were created by phase randomization (Heekeren et al. 2004) of the
0% morph face and therefore had largely matching spatial frequency content with the stimuli shown in the trial. The
masks ensured that subjects did not consciously perceive minor changes in informative features over time within a
trial. In debriefings following each experiment, subjects noted that they saw one face in each trial, but the face was
covered with time-varying cloudy patterns (i.e., masks) over time.

For the majority of subjects (7/9), each stimulus was shown without a mask for one monitor frame (13.3ms). Then,
it gradually faded out over the next seven frames as a mask stimulus faded in. For these frames, the mask and the
stimulus were linearly combined, pixel-by-pixel, according to a half-cosine weighting function, such that in the last
frame, the weight of the mask was 1 and the weight of the stimulus was 0. Immediately afterward, a new stimulus
frame with a new combination of informative features was shown, followed by another cycle of masking, and so on.
For a minority of subjects (2/9), we replaced the half cosine function for the transition of stimulus and mask with a
full cosine function, where each 8-frame cycle started with a mask, transitioned to an unmasked stimulus in frame 5,
and transitioned back to a full mask by the beginning of the next cycle. We did not observe any noticeable difference
in the results of the two presentation methods and combined data across subjects.

All nine subjects participated in the identity categorization task (total trials, 26,398; mean±s.d. trials per subject,
2,933±289). Three subjects also participated in the expression categorization task in separate sessions (total tri-
als, 8,485; trials per subject, 2,828±233). The results of the identity categorization task were previously published
(Okazawa et al. 2018).

Data analysis

Psychometric and chronometric functions

We assessed the effects of stimulus strength on the subject’s performance by using a logistic regression (Fig. 2A-B):

logit [P (choice2)] = α0 + α1s (1)

where logit(p) = log(p/1 − p), s is the nominal stimulus strength ranging from –1 (–100% morph level) to +1
(+100% morph level), and αi are regression coefficients. α0 quantifies the choice bias and α1 quantifies the slope of
the psychometric function.

The relationship between the stimulus strength and the subject’s mean reaction times (RTs) was assessed using a
hyperbolic tangent function (Shadlen et al. 2006; Fig. 2C-D):

T =
β0
s
tanh(β1s) + β2 (2)

where T is the mean RTs measured in milliseconds and βi are model parameters. β0 and β1 determine the stimulus-
dependent changes in decision time, whereas β2 quantifies the sensory and motor delays that elongate the RTs but are
independent of the decision-making process (i.e., non-decision time).
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Psychophysical reverse correlation

To quantify the effect of stimulus fluctuations over time and space (facial features) on choice (Fig. 1D), we performed
psychophysical reverse correlation (Ahumada 1996; Okazawa et al. 2018) (Figs. 2E- F, 5D-E, 7D-E). Psychophysical
kernels (Kf (t)) were calculated as the difference of average fluctuations of morph levels conditional on the subject’s
choices:

Kf (t) = E[sf (t)|choice 1]− E[sf (t)|choice 2] (3)

where sf (t) is the morph level of feature f at time t. This analysis only used trials with low stimulus strength (nominal
morph level, 0-14%; 10,647 trials across nine subjects in the identity task and 3,376 trials across three subjects in the
expression task). For the non-zero strength trials, the mean strength was subtracted from the fluctuations, and the
residuals were used for the reverse correlation. Figs. 5D-E and 7D-E show the time course of psychophysical kernels
for the three informative features. We use stimulus fluctuations up to the median RT aligned to stimulus onset or the
saccade onset in order to ensure that at least half of the trials contributed to the kernels at each time. Fig. 2E-F shows
the kernels averaged over time from stimulus onset to median RT. For the psychophysical kernels shown in Figs. 2E-F,
5D-E, 7D-E, we aggregated data across all subjects. The kernels of individual subjects are shown in Figs. S3 and S4.
We did not perform any smoothing on the kernels.

Joint psychometric function

To quantify the effect that co-fluctuations of feature strengths have on choice, we quantified the probability of choices
as a function of the joint distribution of the stimulus strengths across trials (Fig. 3A-B). We constructed the joint
distribution of the three features by calculating the average strength of each feature in the trial. Thus, one trial corre-
sponds to a point in a 3D feature space (see Fig. 1C). In this space, the probability of choice was computed within a
Gaussian window with a standard deviation of 4%. Fig. 3A-B shows 2D intersections of this 3D space. We visualized
the probability of choice by drawing iso-probability contours at 0.1 intervals. The analysis used trials with low morph
levels (nominal morph levels less than 14%) on which subjects chose both targets frequently. We aggregated data
across all subjects, but similar results were observed within individual subjects.

To quantify linear and multiplicative effects on joint psychometric functions, we performed the following logistic
regression:

logit [P (choice2)] = wese + wnsn + wmsm+

we,nsesn + wn,msnsm + wm,esmse+

we,n,msesnsm

(4)

where se, sn, and sm corresponds to the stimulus strengths of eyes, nose, and mouth for individual stimulus frames.
we, wn, and wm are model coefficients for linear factors, whereas we,n, wn,m, wm,e, and we,n,m are coefficients for
multiplicative factors. In this regression, the dynamic ranges of the linear and multiplicative terms were scaled to
match in order to ensure more homogeneous distribution of explainable variance across different factors; otherwise,
the fluctuations of multiplicative terms would be one or two orders of magnitude smaller than those of the linear terms.
For each subject, all stimulus frames on the trials of low stimulus strengths (≤ 14%) were used for the regression.
Figure 3C-D shows the coefficients averaged across subjects. The results from individual subjects are shown in Fig.
S2.

Relationship between stimulus strength and subjective evidence

To quantitatively predict behavioral responses from stimulus parameters, one must first know the mapping function
between the physical stimulus strength (morph level) and the amount of evidence subjects acquired from the stimulus.
This mapping could be assessed by performing a logistic regression that relates choice to different ranges of stimulus
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strength (Fig. 4), similar to those performed in previous studies (Waskom and Kiani 2018; Yang and Shadlen 2007).
For this analysis, we used the following regression:

logit [P (choice2)] =
∑
f

∑
k∈bins

wf,kNf,k (5)

whereNf,k is the number of stimulus frames that fall into decile k for feature f in a given trial, andwf,k are regression
coefficients that signify the subjective evidence assigned to a morph level k of feature f . Division of feature morph
levels into deciles in our regression aimed at limiting the number of free parameters while maintaining adequate
resolution to quantify the mapping function between the stimulus strength and momentary evidence. If the subjective
evidence in units of log-odds scales linearly with the morph level, then wf,k would linearly change with the morph
level. Plotting wf,k as a function of feature morph level indicated a linear relationship, except perhaps for the extreme
deciles at the two ends of the morph line (Fig. 4). For illustration purposes, the fitting lines in Figure 4 exclude the
extreme deciles, but to ensure unbiased reporting of statistics, we included all the deciles to quantify the accuracy of
the linear fit in Results.

Model fit and evaluation

To quantitatively examine the properties of the decision-making process, we fit several competing models to the
subject’s choices and RTs. Based on our earlier analyses (Figs. 3 and 4), these models commonly use a linear
mapping between feature morph levels and the evidence acquired from each feature, as well as linear functions for
spatial integration of informative features in each frame. The combined momentary evidence from each stimulus
frame was then integrated over time. Our main models are therefore extensions of the drift diffusion model, where
fluctuations of the three informative facial features are accumulated toward decision bounds and reaching a bound
triggers a response after a non-decision time. Our simplest model used linear integration over time, whereas our
more complex alternatives allowed leaky integration or dynamic changes of sensitivity over time. We also examined
models without spatial integration, where the evidence from each informative feature was accumulated independently
(i.e., three competing drift diffusion processes) and the decision and RT were determined by the first process reaching
a bound. Below, we first provide the equations and intuitions for the simplest model and explain our fitting and
evaluation procedures. Afterward, we explain the alternative models.

Spatial integration in our models linearly combines the strength of features at each time to calculate the momentary
evidence conferred by a stimulus frame:

µ(t) = kese(t) + knsn(t) + kmsm(t) (6)

where se(t), sn(t), sm(t) are the strengths of eyes, nose, and mouth at time t, and ke, kn, km are the sensitivity
parameters for each feature. Momentary evidence (µ(t)) was integrated over time to derive the decision variable. The
process stopped when the decision variable reached a positive or negative bound (±B). The probability of crossing
the upper and lower bounds at each decision time can be calculated by solving the Fokker-Planck equation (Karlin and
Taylor 1981; Kiani and Shadlen 2009):

δp(v, t)

δt
=

[
− δ

δv
µ(t) + 0.5

δ2

δv2
σ2

]
p(v, t) (7)

where p(v, t) is the probability density of the decision variable at different times. The boundary conditions are

p(v, 0) = δ(v)

p(±B, t) = 0
(8)

where δ(v) denotes a delta function. The first condition enforces that the decision variable always starts at 0, and the
second condition guarantees that the accumulation terminates when the decision variable reaches one of the bounds.
We set the diffusion noise (σ) to 1 and defined the bound height and drift rate in units of σ. RT distribution for each
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choice was obtained by convolving the distribution of bound crossing times with the distribution of non-decision time,
which was defined as a Gaussian distribution with a mean of T0 and standard deviation of σT0 .

Overall, this linear integration model had six degrees of freedom: decision bound height (B), sensitivity parameters
(ke, kn, km), and the parameters for non-decision time (T0, σT0

). We fit model parameters by maximizing the likeli-
hood of the joint distribution of the observed choices and RTs in the experiment (Okazawa et al. 2018). For a set of
parameters, the model predicted the distribution of RTs for each possible choice for the stimulus strengths used in each
trial. These distributions were used to calculate the log-likelihood of the observed choice and RT on individual trials.
These log-likelihoods were summed across trials to calculate the likelihood function for the dataset. Model parameters
were optimized to maximize this function. To avoid local maxima, we repeated the fits from 10 random initial points
and chose the fit with the highest likelihood. The fits were performed separately for each subject. Figure 5B, C shows
the average fits across subjects.

To generate the model psychophysical kernels, we created 105 test trials with 0% stimulus strength using the same
stimulus distributions as in the main task (i.e., Gaussian distribution with a standard deviation of 20%). We simulated
model responses for these trials with the same parameters fitted for each subject. We then used the simulated choices
and RTs to calculate the model prediction for psychophysical kernels of the three features. Figure 5D-E shows the
average predictions superimposed on the observed psychophysical kernels, averaged across subjects (for single sub-
ject comparisons see Figs. S3 and S4). Note that the model kernels were not directly fit to match the data. They
were calculated based on an independent set of simulated 0% stimulus trials, making the comparison in Fig. 5D, E
informative.

The same fitting procedure was used for alternative models explained below.

Leaky integration

To test the degree of temporal integration, we added a memory loss (leak) in the decision-making process. This model
is implemented as an Ornstein-Uhlenbeck process, whose Fokker-Planck equation is:

δp(v, t)

δt
=

[
δ

δv
(λv − µ) + 0.5

δ2

δv2
σ2

]
p(v, t) (9)

where λ is the leak rate. A larger leak rate indicates greater loss of information over time. At the limit of infinitely
large leak rate, the model no longer integrates evidence and makes decisions based solely on whether the most recently
acquired momentary evidence exceeds one of the decision bounds.

Dynamic sensitivity

To test whether the effect of sensory evidence on choice is constant over time, we allowed sensitivity to features to be
modulated dynamically. To capture both linear and non-linear temporal changes, the modulation included linear (γ1)
and quadratic (γ2) terms such that

µ(t) = (kese(t) + knsn(t) + kmsm(t))× (1 + γ1t+ γ2t
2) (10)

Parallel accumulation of evidence from three facial features

The models above first integrated the evidence conferred by the three informative facial features (spatial integration)
and then accumulated this aggregated momentary evidence over time. We also considered alternative models, in
which evidence from each feature was accumulated independently over time. These models therefore included three
competing accumulators. Each accumulator received momentary evidence from one feature with fixed sensitivity
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(ke, kn, km for eyes, nose, mouth). In the model featured in Fig. 7A, the accumulator that first reached a decision
bound dictated the choice and decision time. As in the models above, a non-decision time separated the bound crossing
and response time.

To further explore different decision rules, we constructed two variants of the parallel accumulation model (Fig. S6).
In the first variant, the decision was based on the sign of the majority of the accumulators (i.e., two or more out of
three accumulators) at the moment when one accumulator reached its bound. In the second variant, the decision was
based on the sign of the sum of the decision variables across the three accumulators at the time when one accumulator
reached its bound. All model variants had six free parameters (ke, kn, km, B, T0, σT0

), equal to the degrees of freedom
of the main model explained above.

Odd-one-out discrimination task

Our behavioral analyses and decision-making models establish that subjects’ choices in the identity and expression
categorization tasks were differentially informed by the three facial features; choices were most sensitive to changes
in the morph level of eyes for identity discrimination and changes in the morph level of mouth for expression discrim-
ination (Figs. 2E-F, 5D-E). This task-dependent sensitivity to features could arise from two sources: different visual
discriminability for the same features in the two tasks and/or unequal decision weights for informative features in the
two tasks (Fig. 8B). To determine the relative contributions of these factors, we designed an odd-one-out discrimi-
nation task to measure visual discriminability of different morph levels of informative features in the two tasks (Fig.
8C).

On each trial, subjects viewed three stimuli presented sequentially at 1.8° eccentricity (similar to the categorization
tasks). The stimuli appeared after the subject fixated a central FP and were shown for 320 ms each, with 500 ms
inter-stimulus intervals. The three stimuli in a trial were the same facial feature (eyes, nose, or mouth) but had distinct
morph levels, chosen randomly from the following set: {–100%, –66%, –34%, 0%, +34%, +66%, +100%}. Facial
regions outside the target feature were masked by the background. The target feature varied randomly across trials.
Subjects were instructed to report the odd stimulus in the sequence (the stimulus most distinct from the other two)
by pressing one of the three response buttons within 2 s from the offset of the last stimulus (RT from stimulus offset,
0.66 s ± 0.13 s, mean±s.d.). No feedback was given after the response. Subjects underwent extensive training prior
to the data collection to achieve stable and high performance. During training, two of the three stimuli were identical,
and subjects received feedback correctly choosing the distinct stimulus. The training continued until subjects reached
70% correct (chance level: 33%).

All of the subjects who participated in the face categorization tasks also performed the odd-one-out discrimination
task in separate blocks of the same sessions. For the identity stimuli, 13,648 trials were collected across the three
features (9 subjects; 1,516±420 trials per subject, mean±s.d.). For the expression stimuli, 3,570 trials were collected
(3 subjects; 1,190±121 trials per subject).

We used subjects’ choices in the odd-one-out task to estimate visual discriminability of different morph levels of
the informative features. We adopted an ideal observer model developed by Maloney and Yang (2003), where the
perception of morph level i of feature f is defined as a Gaussian distribution, N (ψi,f , σf ), with mean ψi,f and s.d.
σf . The discriminability of a triad of stimuli is determined by their perceptual distances (|ψ1,f − ψ2,f |, |ψ2,f −
ψ3,f |, |ψ3,f − ψ1,f |). Specifically, an ideal observer performing the odd-one-out discrimination of three morph levels
(i, j, k) of feature f would choose i if the perceptual distances of i from j and k are larger than the perceptual distance
of j and k:

p(choice = i) = P (|ψi,f − ψj,f | − |ψj,f − ψk,f | > 0) · P (|ψi,f − ψk,f | − |ψj,f − ψk,f | > 0) (11)

The probabilities on the right side of the equation can be derived from N (ψi,f , σf ). The probability of choosing j
and k can be calculated in a similar way (Maloney and Yang 2003). The model captures both the discriminability of
morph levels of the same feature, through ψi,f , and differences across features, through σf .

20

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.27.396705doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.27.396705


We fit the ideal observer model to the subject’s choices using maximum likelihood estimation. Since there were seven
morph levels for each feature in our task, choices for each feature could be explained using eight parameters (ψi,f

for i = 1 . . . 7, and σf ). Six of these parameters are free (ψ2,f . . . ψ6,f and σf ). ψ1,f and ψ7,f were anchored at –1
and +1, respectively, to avoid redundant degrees of freedom in the fits. The model was fit separately for each subject
and feature. To avoid local maxima, we repeated the fits from 10 random initial points and chose the parameters that
maximized the likelihood function. Because ψi,f changed largely linearly with the feature strength (% morph) in all
fits (Fig. S8A) and the range of ψi,f was fixed at [–1, +1], we could quantify perceptual discriminability of different
features using their respective σf . Specifically, d′ between the two extreme morph levels of a feature is 2/σf as

d′f = (ψ7,f − ψ1,f )/σf = 2/σf (12)

If the differences of feature sensitivity parameters (ke, kn, km in Eq. 6) in the categorization tasks were fully deter-
mined by the visual discriminability of features — i.e., there was no task-dependent weighting of the features — kf
would have the same relative scales as the 1/σf . To test this, we divided the model sensitivities for the three facial
features by their respective 1/σf to estimate task-dependent decision weights. The resulting decision weights showed
significant inhomogeneity across features and between tasks (Fig. 8F), suggesting the presence of task-dependent
weighting of facial features categorization.
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Supplementary figures

Figure S1: The amplitudes of psychophysical kernels of individual subjects. Individual subjects’ plots correspond-
ing to Fig. 2E-F. Most subjects showed positive kernels for multiple facial features in both identity and expression
tasks, indicating that they used multiple facial features for decisions. Error bars indicate s.e.m. across trials.
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Figure S2: Linear spatial integration of features in individual subjects Individual subjects’ plots corresponding to
Fig. 3C, D. The coefficients for multiplicative factors are close to zero in most subjects, indicating that they integrated
spatial evidence in a largely linear fashion. E, N, M indicates eyes, nose, mouth, respectively. Error bars are s.e.m.
across trials.
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Figure S3: Choice, reaction time, and psychophysical kernels for individual subjects in the identity task. Each
row corresponds to the results of one subject. The conventions are the same as in Fig. 5B-E. The multi-feature drift
diffusion model with linear spatiotemporal evidence integration (Fig. 5A) fits quite well to behavioral data for most
subjects (gray lines). Error bars (s.e.m. across trials) in psychometric and chronometric functions are hidden behind
the data points.
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Figure S4: Choice, reaction time, and psychophysical kernels for individual subjects in the expression task.

28

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.27.396705doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.27.396705


Figure S5: Comparison of reaction time distributions between the behavioral data and our main model. Black
bars are the reaction time distributions aggregated across subjects for the specified stimulus strength. Red lines are the
distribution generated by the multi-feature drift diffusion model (Fig. 5A).
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Figure S6: Parallel accumulation models with different decision rules fail to account for behavioral data. (A)
A parallel integration model that independently accumulates evidence of the three facial features and commits to a
choice favored by the majority of the integrators. When one of the three integrators reaches a bound, the model
determines the preferred choice of each integrator based on the sign of its decision variable. The model chooses
the option supported by the majority of the integrators (i.e., two or more out of three). (B) The model in A fails to
account for the dynamics of psychophysical kernels. The plots show the results for the identity task. (C) Another
variant of the parallel integration model that renders a decision based on the summed decision variables of the three
integrators. When one integrator reaches a bound, the decision variables of the three accumulators are added, and a
decision is made based on the sign of the total evidence. (D) The model in C also fails to account for the dynamics of
psychophysical kernels in the identity task.
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Figure S7: Visual discriminability assessed using a single feature categorization task supports non-uniform
decision weights in the main task. (A) To quantify visual discriminability for individual facial features, we performed
a single feature categorization task with a subset of subjects (4/9 in the identity task). The subjects categorized the
facial identities as in the identity task but based their decisions only on one facial feature shown on each trial. The task
structure was the same as that of the identity task. Trials of the three facial features were randomly interleaved. To
capture the full extent of psychometric functions, we used morph levels ranging from –150% to +150% (see B). The
stimuli beyond 100% indicate extrapolation from the prototypes, but the extrapolated images looked natural within
the tested range. The task was performed in the same sessions with the main face categorization task (total: 5,571
trials). (B) Psychometric and chronometric functions for each facial feature. As a comparison, the same subjects’
performance in the identity task is shown in black. The lines are the fits of a drift diffusion model for each facial
feature. (C) Comparison of the model feature sensitivities in the main task and in the single feature categorization
task. The model feature sensitivities computed from the main identity task (Fig. 8A) can reflect visual discriminability
of individual facial features and decision weights dependent on task demands (Fig. 8B), whereas the model sensitivities
obtained in the single feature task should reflect only visual discriminability. Dividing the sensitivities of the main task
by the single-feature sensitivities recover decision weights, which revealed unequal weighting over features (right).
The pattern is consistent with the results based on the discrimination performance in the odd-one-out task (Fig. 8E-F).
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Figure S8: The odd-one-out discrimination task reveals differential visual discriminability for informative fea-
tures, which were proportional to decision weights. (A) The subjects’ stimulus discriminability in the odd-one-out
task can be largely explained using the Euclidean distance of morph levels between stimuli. We explained the sub-
jects’ responses in the odd-one-out task (Fig. 8D) based on the representational noise of a feature (σ) and the relative
distance between individual pairs of stimuli in a perceptual space (ψi and ψj for stimuli i and j). The ψ of all inter-
mediate morph levels and σ were obtained using a maximum likelihood estimation (see Methods). The ψ of the two
morph ends were anchored to –1 and +1 to avoid redundant degrees of freedom in the fits. The resulting ψ (see the
panel) are roughly linearly related to morph levels, indicating that the perceptual distances between stimuli could be
largely explained using the Euclidean distance of the stimulus strengths. This linearity ensures that one can use the
inverse of the representational noise (1/σ) as a metric for the visual discriminability of each facial feature. (B) The
individual subjects’ plots corresponding to Fig. 8A, E-F. The top panels show the model sensitivities for individual
facial features in the main task (ke, kn, km in Fig. 5A). The middle panels show the visual discriminability (1/σ)
of each feature in the odd-one-out task. Dividing the sensitivity (top) by the discriminability (middle) reveals the
contribution of decision weights to the model sensitivities in face categorization (bottom). The results show that most
subjects non-uniformly weighted facial features during face categorization. (C) Positive correlation between the vi-
sual discriminability (middle panels in B) and the decision weights (bottom panels in B) of features is consistent with
optimal cue combination. Each dot corresponds to the values of one facial feature of one subject. The plot aggregates
data from both the identity and expression tasks. To optimally combine evidence, weights should be proportional to
the discriminability of features (Drugowitsch et al. 2014). The plot indeed revealed a significantly positive correlation
(R = 0.744, p = 2.0× 10−7). Both the discriminability and decision weights are normalized within subjects (the sum
of all features is fixed to one) to account for the variability of absolute discriminability and weight across subjects.
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