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Abstract

This paper addresses a new global stability analysis for a specific class of nonlinear multi-compartment
models with non-positive flows and whose balances are described by equilibrium sets. We apply the stability
analysis to our physiological-based model of extracellular fluid used during dialysis therapy in end-stage
kidney disease patients. To gain an in-depth understanding of the risk associated with fluid removal by
the artificial kidney during the short time (3-5hrs) of the dialysis therapy, we use the stability results to
analyze the solution’s behavior of our model under standard ultrafiltration and patient-specific ultrafiltration
profiles. Therefore, the standard ultrafiltration profiles do not guarantee optimal outcomes, and we highly
recommend incorporating physiological insights into the ultrafiltration profiles to improve outcomes.
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1. Introduction

Patient in end-stage kidney disease are often
suffering from multiple acid-base derangements and
fluid shift complications [1, 2]. Dialysis is a
life-sustaining treatment that corrects acid-base
derangement and removes fluid accumulation to
obtain dry weight (normal weight without extra
fluid) [3, 4, 5, 6]. During dialysis treatment, an
artificial kidney is used to remove excess fluid (2-5
liters) from the blood (plasma) by ultrafiltration,
within 2-5 hrs, leading to fluid refilling from the
interstitial compartment to overcome the fluid shift
[7, 8]. An inadequate balance between fluid removal
and refill is associated with increased morbidity and
mortality risk [9].

The standard ultrafiltration protocol applies high
constant rates, generating fluid imbalance between
fluid removal and refill that causes a significant
reduction in the blood volume, especially at the
end of the therapy when the vascular refilling is low
[10, 11]. This fluid imbalance provokes intradialytic
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hypotension (IDH), (intradialytic systolic blood
pressure (SBP) < 90 mmHg) in 25-60% of
hemodialysis treatments, and is associated with a
higher risk of cardiovascular morbidity and rate
of death (20-25% death rate each year under
hemodialysis maintenance therapy) [12, 11].

Stability analysis, widely used in system biology
and control systems, is an essential tool for
analyzing complex mathematical models, but it
is overlooked in extracellular fluid models whose
fluid exchanges are defined by non-positive flows
and whose stability is described by equilibrium
sets. The current emphasis on improving the
assessment of dry weight and strategies for fluid
removal in dialysis therapy motivates the need
for exploring fluid management and equilibrium to
provide possible stabilizing procedures that may
offer guidelines for optimal fluid removal strategies
in end-stage kidney disease patients.

The total body fluid is distributed mainly
between two compartments, the extracellular
compartment (ECC), which contains fluid outside
the cells including interstitial fluid and plasma
(about 20% of the body weight), and the
intracellular compartment (ICC), which contains
fluid inside the cells, (about 40% of the body
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weight) [13]. The ECC is divided by a capillary
membrane into the interstitial compartment and
the intravascular compartment. The intravascular
compartment contains blood, which consists of
cells (e.g., red blood cells) and plasma. The
plasma is the noncellular part of the blood [14,
15]. Fluid-exchange between the intravascular
and interstitial compartments is controlled by the
Starling forces; namely, the osmotic and hydrostatic
pressure gradients [16, 17]. If the difference
between these gradients is negative, there will be a
fluid filtration across the capillary membrane into
the intravascular compartment. However, if the
difference is positive, resulting in the filtration of
fluid into the interstitial spaces.

Over the past years, there has been an active
research effort to characterize fluid removal from
the intravascular compartment by ultrafiltration
and vascular refilling from the interstitial spaces
during dialysis treatment. Two-compartment
models describing the short-term dynamics of
vascular refilling and ultrafiltration have been
derived in (e.g.,[11, 16, 18, 19, 20]). For
example, the model in [16] provides a simplified
linear two-compartment model and nonlinear two-
compartment model incorporating the lymphatic
system. The nonlinear model addresses the
contribution of lymph flow to the fluid movement
from interstitial spaces to the intravascular
compartment. More recently, in [11], a nonlinear
two-compartment model was developed to describe
the vascular refilling during dialysis. This model
considers (microvascular) fluid shifts between the
compartments and lymph flow from the interstitial
to the intravascular compartment.

There are many methods for analyzing the
stability of nonlinear compartmental models [21]
and others. Among them is the Lyapunov stability
approach. Exploring the stability of the nonlinear
compartment model with the Lyapunov method is a
challenging task because it often requires searching
for Lyapunov candidates by trial-and-error. The
stability of a class of nonlinear compartment
models, based on the Lyapunov approach, has been
investigated in [22, 23, 21]. Since the fluid flow
of our model is non-positive, the results of these
papers cannot be applied to our model because of
the particular class of models under consideration.

A class of nonlinear compartment model, similar
to our model, has been discussed in [24, 25].
Sufficient conditions concerning the flows between
the compartments are made (positive flow). These

results, however, do not seem to be applicable
to our model because the conditions are not
satisfied, and the Lyapunov functions used are
inappropriate for our model. In addition, another
class of nonlinear models has been studied in [26].
Although these models have a similar structure
to ours, the result of [26] is not applicable here
because it pertains only to isolated equilibrium
points. The above compartmental models were
used with external inputs described by a specific
class of constant non-decreasing input and with
sufficient conditions to extend stability results.

Our contribution in this paper is two folds. First,
we overcome these limitations and provide a new
Lyapunov function to prove the global stability of
a specific class of nonlinear compartment model
whose flow functions are non-positive. These
results are applied to our two-compartment model
used for dialysis therapy in patients with kidney
failure. Second, to gain a physiological insight
into the risk associated with fluid removal by the
artificial kidney, we extend the results to include
the effect of the input (ultrafiltration) on the
model to investigate the boundedness and behavior
of the solution of the nonlinear model during
ultrafiltration.

We organize the paper as follows: In Section 2,
a brief description of an artificial kidney model is
presented. In Section 4, a global stability analysis
is provided, including the main results. In Section
5, simulation examples are provided. Finally, in
Section 6 is the conclusions.

2. Artificial Kidney Model description

The two-compartment model represented by Fig.
1 is comprised of the intravascular and interstitial
compartments, which are separated by a capillary
membrane wall, and lymphatic flow, which returns
a small amount of fluid from the interstitial
compartment into the intravascular compartment
[27]. Because the plasma is the extracellular fluid
part of the blood in the intravascular compartment,
in this paper, we consider that the plasma
volume is part of the intravascular compartment
volume. There is a continuous microvascular
fluid filtration/refilling between the intravascular
and interstitial compartments via the capillary
membrane where Kf refers to filtration/refilling
coefficient [L/min.mmHg].

• Input: The ultrafiltration rate (UFR) is the
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Figure 1: Two-compartment model used for the artificial
kidney treatment, contains: interstitial and intravascular
compartments separated by a capillary membrane, and
includes lymph flow and ultrafiltration.

external input to this model (denoted by u
with negative sign), which describes the fluid
removal from the intravascular compartment
(i.e., plasma) during dialysis treatment.

• Output: The hematocrit (Hct) is the measured
output, which is the proportion of the total
blood volume that consists of red blood
cells (RBCs); Hct is usually expressed as a
percentage in clinical practices but is defined
here as a fraction.

The mathematical description of this model, during
dialysis, is given by nonlinear differential system:

ẋ1 =−Q1(x1, x2) +Q2(x2)− u (1a)

ẋ2 =Q1(x1, x2)−Q2(x2) (1b)

Hct =
Vrbc

Vrbc + x1
(1c)

where x = (x1, x2) is the state of the model, x1
and x2 represent the intravascular and interstitial
volume, respectively; and Vrbc is the volume of the
red blood cells; Q1(x) denotes the flow of the fluid
filtration/refilling between the two-compartments
across the capillary membrane, which is governed
by the Starling’s equation [11]; Q2(x2) describes the
lymphatic flow, we have

Q1(x1, x2) =Kf (δp − δπ) (2a)

Q2(x2) =gtanh(hPi) + l (2b)

where δp and δπ represent the hydrostatic and
osmotic pressure gradients, respectively. The
mathematical descriptions of these functions are
given in the Appendix Appendix A. g, h, and l
are constants listed in Table A.1. During the fluid
exchange between the two compartments, Q2(x2) is
smaller that Q1(x) [27].

3. Nonlinear Stability Analysis

The class of nonlinear compartment models that
we are dealing with in this paper is developed
in [22, 24, 25]. In order to derive a general
stability result (Theorem 1 below) for this class, we
consider n compartments where the dynamics of a
certain amount of a material of interest in the ith
compartment at time t, denoted by xi(t), is given
by

ẋi(t) = −aiifi(xi(t)) +
∑
j 6=i

aijfj(xj(t)) + ui (3)

where aij ≥ 0, i, j ∈ {1, . . . , n}. The ith
compartment receives the material through the
input at rate u and from some other neighboring
compartments (e.g., jth) at rate aijfj(xj(t)) where
the nonlinear function fj(xj) depends on the
concentration of the jth compartment xj .

Note that all the results of stability in these
studied [22, 24, 25] were based on the assumption
that fij(xj) ≥ 0, for xj ≥ 0, 1≤ i, j≤ n, i 6= j
and fij(0) = 0. However, these results do not
imply to the model in (1) because Q1(x) ≤ 0 (non-
positive) and the nonlinear functions Q1(x) and
Q2(x2) defined in (2a) and (2b), respectively, are
not continuous in the entire domain of x ∈ R2.
This readily can be seen from (A.4), in words at
the origin (x ≡ 0). The dynamics in (3) with n
compartments has a more compact form, which can
be written as

ẋ = Anf(x) +Bu, x0 6= 0 (4)

where f(x) = [f1(x1), . . . , fn(xn)]T , B is an In
identity matrix, and the matrix An ∈ Rn×n is a
symmetric matrix (i.e., aij = aji) defined by

An =


−a11 a12 · · · a1n
a21 −a22 · · · a2n
...

. . .
. . .

...
an1 · · · an,n−1 −ann

 .
Note that the nonlinear function of the flow
Q1(x1, x2) (2a) depends on both states x1 and
x2, whereas, in the general form (3), the flow of
the compartment i, (i.e., fi(xi)), depends only
on the associated state xi. We illustrated the
rearrangement of Q1 in the form of (3) in the next
section.

3
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3.1. Compact Form and Equilibrium Set

It is possible to rearrange the model (1) in the
compact form of (4) by rearranging the equation
of Q1(x) with Q2(x2). This rearrangement is
explicitly derived in the Appendix in Appendix B,
(B.1). The compact form of the model in (B.1) is:

ẋ = A2g(x)− u, x0 6= 0 (5)

where g(x) = [ g1(x1) g2(x2) ]T and A2 is
symmetric, negative semi-definite given by

A2 =

[
−1 1
1 −1

]
.

The mathematical description of g1(x1) and g2(x2)
are detailed in Appendix Appendix B, (B.1).
Because both of these functions are not continuous
in the entire domain of x ∈ R2, we specify a
restrictive domain as follows by this subset:

B := {x∈ R2 | 5 ≥ x1 ≥ 1 and 28.4 ≥ x2 ≥ 5} (6)

This closed subset is started at (1, 5) liters and
closed at (5, 28.4) liters, which is illustrated by Fig.
2. A brief description is provided in the Appendix
Appendix A about how we specified this subset.
Note that since the model (5) is defined only in the
set B (6), an unstable solution of (5) refers to a
solution x(t) (e.g., at t ≡ 0, x ∈ B) leaves the set
B as t→∞.

5 15 25

1

2

3

4

5

Figure 2: The equilibrium set E of the model (5) for all x ∈
B, including E+ and E− subsets. E starts at an equilibrium
point (1, 5) and ends at this equilibrium point (5, 28.4).

From a mathematical point of view, fluid volume
homeostasis can be seen as a stable equilibrium
point. To obtain an equilibrium point (xeq), we
assume that there is no UFR (u ≡ 0), then we
solve for g1(x1eq) = g2(x2eq) where this equality
occurs at equilibrium: 0 = A2g(xeq). Due
to high nonlinearity in these functions: g1(x1)
and g2(x2), we could not derive an explicit
expression, analytically, for the equilibrium point,
xeq, however, we compute instead an equilibrium
set E, numerically, as shown in Fig. 2, by defining
x1 and x2 which satisfy the following relation:
g1(x1) = g2(x2).

We define the equilibrium set for the model in (5)
as follows:

Definition 1. Consider model (5) with u ≡ 0, the
equilibrium set of (5) is define by

E := {x ∈ B | A2g(x) = 0}

in which g1(x1) = g2(x2).

By defining the net flow as: G(x) = −g1(x1) +
g2(x2), we can introduce two subsets above and
below E, described by E+ := {x ∈ B | G(x) > 0}
and E− := {x ∈ B | G(x) < 0}, as shown in Fig. 2.

4. Results

Our stability results in this section is discussed
as follows. First, we deriving new global stability
results for the general class of nonlinear model
(4) using an appropriate Lyapunov function. This
model consists of n compartments and with zero
input (u ≡ 0), i.e., ẋ = Anf(x), x0 6= 0. Then we
apply this result to our model in (5).

Second, under nonzero input u 6= 0 (UFR) and
certain physiological conditions, we demonstrate
the boundedness of the solution x(t) of (5) during
0 ≤ t < ∞. Specifically, we use qualitative
properties of G(x) and under various forms of UFR
profiles used in dialysis therapy to ensure that the
solution x(t) of (5) is contained in a closed pre-
defined set during t ≥ 0 and then as t → ∞,
x(t) approaches the equilibrium set E. Inside this
closed set, we explore the behavior of x(t) to gain
physiological insights into fluid dynamics.

The fluid volume in each compartment of our
model has a dynamics defined in (5). This dynamics
can be determined by a particular slope s. When
u ≡ 0 in (5), the slope is given very simply as
follows:

s = ẋ2/ẋ1 (7)

4
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Lemma 1. When u1 ≡ 0 in (5), the slope s = −1
for all x ∈ B − E.

Proof. We substitute ẋ1 and ẋ2 from (5) into (7),
thus

s =
−g1(x1) + g2(x2)

g1(x1)− g2(x2)
=

G(x)

−G(x)
= −1, ∀x ∈ B−E

Note that for all points in E, by definition ẋ1 = 0,
ẋ2 = 0, consequently, the slope is undefined.

4.1. Global Stability Results

We will establish the global stability result of
the general compartment model in (4). For this
purpose, we invoke LaSalle’s Theorem since it
applies to a system having an equilibrium set rather
than an isolated equilibrium point [28]. The main
results of this paper are demonstrated in Theorem
1 and Theorem 2, by which nonlinear stability
of a class of compartment models (4) and the
boundedness of the solution of (5) are explored.

Theorem 1. Consider (4) with u ≡ 0 and let Ω ⊂
Rn be compact and positively invariant with respect
to the system in (4). Assume f(x) is differentiable
in Ω, and let E be the equilibrium set E = {x ∈
Ω | Anf(x) = 0}, and let ∂fi(xi)

∂xi
> 0, i = 1, . . . , n,

∀x ∈ Ω. If x0 ∈ Ω, then x(t) approaches E as t →
∞.

Proof. Consider the Lyapunov function candidate:
V (x) : Rn → R defined by

V (x) = −1

2
f(x)TAnf(x) (8)

where this function is continuous, differentiable.
Note f(x) and An are given in (4). The derivative
of V (x) with respect to the time is derived in the
Appendix Appendix C as

V̇ (x) = −
n∑
i=1

ẋ2i
∂fi(xi)

∂xi
(9)

where ẋi is defined in (3). This function satisfies
the following conditions:

• V̇ (x) ≤ 0,∀x ∈ Ω,

• V̇ (x) = 0,∀x ∈ E.

In fact, E is the largest invariant subset in which
V̇ (x) = 0, this can be shown as follows. Obviously
E is a subset of {x ∈ E | V̇ (x) = 0}. Now suppose x
is such that V̇ (x) = 0. Then by (9) ẋi = V̇ (x) = 0
for all i, therefore, x ∈ E. It follow by LaSalle’s
Theorem (Theorem 4.4 in [29]), that x(t) converges
to E.

In the next subsection, we will invoke Theorem
1 to prove global stability of the fluid volume two-
compartment model.

4.2. Application to Two-compartment Model

We will demonstrate the attractivity of the
equilibrium set of the two-compartment model
which defined in (5). To invoke Theorem 1, we
consider model (4) with n = 2. For this model,

the ∂fi(xi)
∂xi

> 0, i = 1, 2, ∀x ∈ B for the
parameters given in Table A.1. Consider the
Lyapunov function:

V (x) =− 1

2
g(x)TAg(x)

where in this case, matrix A is as defined in (5).
Then

V̇ (x) = −
n=2∑
i=1

ẋ2i
∂gi(xi)

∂xi

where ẋi, i = 1, 2 are given in (1). We simplify V̇
as

V̇ (x) =− ẋ2
1
∂g1(x1)

∂x1
− ẋ2

2
∂g2(x2)

∂x2
where (ẋ2 = −ẋ1)

=− ẋ2
1
∂g1(x1)

∂x1
− (−ẋ1)

2 ∂g2(x12)

∂x2

=− ẋ2
1
∂g1(x1)

∂x1
− ẋ2

1
∂g2(x2)

∂x2
, which yield to

V̇ (x) =− ẋ2
1

(
∂g1(x1)

∂x1
+

∂g2(x2)

∂x2

)
≤ 0, ∀x ∈ B

By construction the subset B is a compact set.
To show that B is a positively invariant set with
respect to model (5), from (Lemma 1) if x0 ∈ B,
then x(t) approaches E as t→∞ with a particular
slope and direction such that x(t) never leave B.

4.3. Boundedness of Solutions with Nonzero Input

To examine the boundedness of the solution of
(5) under nonzero input (u 6= 0), we use qualitative
properties of G(x) under the effect of the UFR
profile.

5
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For this purpose, we derive the partial derivatives

Gx1
= ∂G(x)

∂x1
and Gx2

= ∂G(x)
∂x2

(see Appendix
Appendix C.1) where G(x) is defined previously
as G(x) = −g1(x1) + g2(x2). We also define the
target volume to be removed as VT (L), and U(t) ≡∫ t
0
u(τ)dτ (L) is the total amount of fluid volume

removed at time t determined by accumulating
UFR (u) during [0, t]; therefore, the removed fluid
volume at the end of a dialysis session is U(tf ) ≡∫ tf
0
u(τ)dτ (L) where tf is the duration of the

dialysis session; V (t) = x1(t) + x2(t) (L) is defined
as the total fluid volume in the system at time t; and
V0 = x10 + x20 (L) is the initial fluid volume in the
system. Theorem 2 demonstrates that the solution
x(t) of (5) is stable and contained in a per-defined
closed set: Bm := {x : 0 ≤ G(x) ≤ umax, x1 ≤
x10, x2 ≤ x20, and (x1 + x2) > V0 − U(tf )}. In
this set, we use physiological values (from dialysis
therapy) for all these parameters: UFR profile,
umax, x10, x20, and tf to examine the boundedness
of the solution x(t) for t ≥ 0 and then as t → ∞
(i.e., t > tf ), thus x(t) approaches E. However, as
we highlighted earlier, since the model (5) is defined
only in the set B (6), an unstable solution of (5)
means that x(t) leaves the set B.

Theorem 2. Consider (5) with x0 ∈ E where E :=
{x ∈ B : G(x) = 0}. Let E+ := {x : G(x) > 0}.
Suppose G is continuous on the interior of the 1st
quadrant and satisfies the following:

1. Gx1
< 0, ∀x ∈ E ∪ E+.

2. Gx2 > 0, ∀x ∈ E ∪ E+.

A) For given: 0 < umax < U0, VT ≤ x10, u(t) ≥ 0,
and tf > 0, take input u1(t):

u1(t) =

{
umax, 0 < t ≤ tf
0 t > tf

(10)

B) For given: 0 < umax < U0, VT ≤ x10, û(t) ≥ 0,
and tf > 0, take input u2(t):

u2(t) =


umax, 0 < t ≤ t∗

û(t) ≤ umax, t∗ < t ≤ tf
0 t > tf .

(11)

Let x(t) be a solution to (5) and let Bm be:
Bm := {x : 0 ≤ G(x) ≤ umax, x1 ≤ x10, x2 ≤
x20, and (x1 +x2) > V0−U(tf )}. Then x(t) ∈ Bm
for all 0 ≤ t ≤ tf .

The prove of Theorem 2 is provided in the
Appendix Appendix D.

We will illustrate this result by considering the
following numerical examples.

0 1 2 3 4
0

1

2
Constant UFR

0 1 2 3 4
0.5

1

1.5

Step UFR

0 1 2 3 4
0

1

2
UFR Profile

Figure 3: Top: A constant UFR profile, Middle: Step UFR
profile, and Bottom: patient-specific (time-varying) profile
used to explore the boundedness and behavior of the solution
x during 0 ≤ t < tf .

5. Simulation Examples

To test our results of the boundedness of the
solution under a nonzero input, we consider the
model in (5) with different UFR profiles (see Fig.
3) applied to the system, including constant UFR
profile, step UFR profile, and patient-specific (time-
varying) UFR profile developed in our previous
work [30], as shown in Fig. 3, bottom. This UFR
profile was designed to meet the decrease in fluid
refilling during the last two-thirds of the therapy.

In Theorem 2, we give physiological conditions
under which the solution x(t) is contained in this
set Bm where Bm := {x : 0 ≤ G(x) ≤ umax, x1 ≤
x10, x2 ≤ x20, and (x1+x2) > V0−U(tf )}. During
0 ≤ t < tf , x(t) will be bounded in this region:
0 ≤ G(x) ≤ umax where umax, which describes the
maximum UFR rate in clinical practices should be
umax ≤ 13 ml/hr/kg to minimize cardiovascular
risk [31]. As shown in Fig. 3, we chose the duration
of the dialysis treatment to be tf = 4 hrs. From the
UFR profiles in Fig 3, the target fluid volume (VT )
was as follows: 4L, 4.5L, and 4L, respectively. The
initial conditions (initial volumes) for these dialysis
sessions were determined to satisfy this condition:
VT ≤ x10 (Theorem 2). This condition allows

6
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Figure 4: The solution x(t) was contained in the set Bm1

under the constant UFR profile. The set Bm1 is determined
as: Bm1 := {x : 0 ≤ G(x) ≤ 0.017 [L/min], x1 ≤ 4L, x2 ≤
20.4L, and L1(tf ) = (x1 + x2) > 20.4L}, where B

′ ⊂ B.

to begin the dialysis therapy with an initial fluid
volume V0 = x10 + x20 that is a large enough to
keep x(t) inside the set Bm during 0 ≤ t < tf .
As we illustrated in Fig. 4 and 6, since VT = 4L,
we used initial conditions (4, 20.4)L located on E,
whereas, for the step UFR profile (see Fig. 5), the
initial conditions were at (4.5, 24.2)L because the
target volume was VT = 4.5L.

The time-varying UFR profile (Fig. 3, bottom)
was designed to remove more fluid in the first
one-third of the session (0.027L/min, which is
1.62 L/hr) when the fluid refilling rate is high,
and then the UFR was decreased slightly towards
the end of the session when the refilling rate
could be low to prevent intradialytic hypotension.
However, the step UFR profile (Fig. 3, middle) was
increased in the second half of the therapy, which
is not recommended in clinical practices because
it may provoke intradialytic hypotension due to a
significant reduction in the blood volume.

We illustrated the boundedness of the solution
x(t) under the three UFR profiles by the Phase-
plane in Fig. 4, 5, and 6. The solution x(t) of (5)
was contained in these sets during the time frame

0
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Figure 5: The solution x(t) was contained in the set Bm2

under the step UFR profile. The set Bm1 := {x : 0 ≤
G(x) ≤ 0.023 [L/min], x1 ≤ 4.5L, x2 ≤ 24.2L, and L1(tf ) =

(x1 + x2) > 24.2L}, where B
′ ⊂ B.

0 < t ≤ tf , respectively:

Bm1 :={x : 0 ≤ G ≤ 0.017 [L/min], x1 ≤ 4L,

x2 ≤ 20.4L, and (x1 + x2) > 20.4L}
Bm2 :={x : 0 ≤ G ≤ 0.023 [L/min], x1 ≤ 4.5L,

x2 ≤ 24.2L, and (x1 + x2) > 24.2L}
Bm3 :={x : 0 ≤ G ≤ 0.027 [L/min], x1 ≤ 4L,

x2 ≤ 20.4L, and (x1 + x2) > 20.6L}

VT ≤ x10 To provide physiological insights and
a deep understanding of fluid removal during the
dialysis treatment, we explore the behavior of the
solution x(t) inside these sets. Inside Bm1 and
Bm2, from the solution’s trajectory x(t), there was
a reduction in the fluid volume in both directions
(x1, x2) under the constant and step function UFR
profiles during the entire session 0 < t ≤ tf . A
significant reduction in x1 provokes intradialytic
hypotension. The reduction in x1 was significantly
appeared under the step function UFR profile (Fig.
5), due to the step increased in the UFR. In
addition, from a mathematical perspective, with
constant and step function UFR profiles, x(t) may
leave the set B and becomes unstable if x10 started
in the left lower corner of B set, which is closer to
the lowest value 1L. This case can be seen when the
condition VT ≤ x10 is violated. On the other hand,
the time-varying UFR profile, which removes the
same amount of fluid (4L), has an opposite effect
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on the trajectory x(t) compared with the constant
UFR profile. The trajectory x(t) was considerably
increased (x1 increased) in the second half of the
session, as shown in Fig. 6. This increase in
x1 could prevent the occurrence of intradialytic
hypotension, which likely occurs at the end of each
session.

0

0

0

0.027

0.027

10 15 20 25

2

2.5

3

3.5

4

4.5

5

Figure 6: The solution x was contained in the set Bm3 under
the time-varying UFR profile. The Bm3 is determined by
Bm3 := {x : 0 ≤ G(x) ≤ 0.027[L/min], x1 ≤ 4L, x2 ≤
20.4L, and L3(tf ) = (x1 + x2) > 20.6L}, where B

′ ⊂ B.

5.1. Discussions

We illustrated a global stability analysis applied
to a specific class of nonlinear models used in
dialysis treatment. We used qualitative properties
of the net flow G(x) and UFR profiles to ensure
the boundedness of the solution of our model. Our
results indicated that if the dialysis session started
in the physiological set Bm, the model’s solution
never leaves this set.

To explore the solution’s behavior under
ultrafiltration, we compared the standard UFR
profiles’ effect versus the patient-specific profile on
the solution’s trajectory x(t) inside Bm during the
dialysis therapy. The slandered UFR profiles do not
guarantee optimal dialysis outcomes. In contrast,
the time-varying UFR profile, which was designed
based on physiological insights to meet the lack in
vascular refilling rate, could lead to effective and
safer dialysis treatment.

6. Conclusions

The current focus on improving fluid
management in dialysis therapy motivated the
need for exploring stability analysis for a specific
class of models used in artificial kidney treatment
in end-stage kidney disease patients.

This paper presented a novel global stability
analysis for a class of nonlinear multi-compartment
models whose flow functions are non-positive.
These results were applied to our nonlinear
two-compartment model. We demonstrated the
solution’s boundedness and behavior of the two-
compartment model during dialysis therapy to
gain physiological insights into fluid removal
risk. We showed that under physiological
conditions, the nonlinear model’s solution could
be bounded and contained in a pre-defined set
during the ultrafiltration. We concluded that the
solution’s trajectory under the patient-specific UFR
profile has better performance than the standard
ultrafiltration profiles. These results motivated us
to provide new and more advanced therapeutics for
dialysis treatment, to save numerous lives of people
with end-stage kidney disease.
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Appendix A. Model Description:

From (2) we have

δp(t) =(Pc(t)− Pi(t)) (A.1a)

δπ(t) =(πp(t)− πi(t)) (A.1b)

where Pc, P i, πp, and πi refer to the hydrostatic
capillary pressure, interstitial pressure, plasma
colloid osmotic pressure, and interstitial colloid
osmotic pressure, respectively. The capillary
pressure is defined by

Pc(t) = Pv(t) + Poff
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Pv(t) = d

(
100

Vrbc + x1(t)

Vrbc + VP,eu
+ r

)f
(A.2)

where Pv is the venous pressure, Poff is a pressure
offset, x1(t) is the intravascular volume at a
given time t, VP,eu is intravascular volume at the
euhydrated state, d, e and l are constants [32] listed
in Table A.1. We define

Pi(t) = a
(

(100
x2(t)

Vi,eu
) +

b

(100ax2(t)
Vi,eu

+ c)

)
(A.3)

where x2(t) represents interstitial fluid volume at
a given time t, Vi,eu refers to interstitial volume at
the euhydrated state, a, b and c are constants [32],
and where

πp(t) =
(kc1mp

x1(t)
+
kc1m

2
p

x21(t)
+
kc1m

3
p

x31(t)

)
(A.4a)

πi(t) =
(kc1mi

x2(t)
+
kc1m

2
i

x22(t)
+
kc1m

3
i

x32(t)

)
(A.4b)

where mp and mi describe the protein mass in
plasma and interstitial volumes, respectively, k1, k2
and k3 are constants [33] (see Table A.1).

Since x1 and x2 represent volume, they should be
positive. Hence, we will restrict the domain of x1
and x2 over this range x1 > 0, x2 > 0. Therefore,
we set the term inside the bracket (·) in (A.2) to be
greater than zero, then we solve for x1 accordingly.
We repeat this step for the denominator in (A.3) to
solve for x2. Note that the constants in (Table A.1)
are used here. As a result, Q1(x) and Q2(x) are
continuous in the following restricted domain:x1 ≥
1 and x2 ≥ 5.

Table A.1: Model parameters

Para. Value Para.-Unit Value
a 0.0065 Kf [L/min*mmHg] 0.0052
b -146.3 mp[g] 210
c -54.72 mi[g] 210
d 0.01 Poff [mmHg] 13
r -30.0 k1 0.21
f 1.5 k2 0.0016
g 0.02 k3 9e-6
h 0.63 VP,eu (L) 3
l 0.02 Vi,eu (L) 12
- - Vrbc (L) 2

Appendix B. Compartmental Model
Arrangement

We rearrange Q1(x) by separating the terms
that contain x1 and x2 as follows: Q1(x1, x2) =
Kf (Pc− πp)−Kf (Pi− πi) and then substitute the
later Q1(x) in the model (3):

ẋ1 =−Kf

(
(Pc − πp)− (Pi − πi)

)
+ (gtanh(hPi(t)) + l)− u

=−Kf (Pc − πp)︸ ︷︷ ︸
g1(x1)

+

+
(
Kf (Pi − πi) + gtanh(hPi(t)) + l

)
︸ ︷︷ ︸

g2(x2)

− u

and ẋ2 becomes:

ẋ2 =Kf

(
(Pc − πp)−Kf (Pi − πi)

)
− (gtanh(hPi(t)) + l)− u

=Kf (Pc − πp)︸ ︷︷ ︸
g1(x1)

−
(
Kf (Pi − πi) + gtanh(hPi(t)) + l

)
︸ ︷︷ ︸

g2(x2)

that leads to

ẋ1 =− g1(x1) + g2(x2)− u (B.1a)

ẋ2 =g1(x1)− g2(x2) (B.1b)

where g1(x1) = Kf (Pc−πp) and g2(x2) = Kf (Pi−
πi) + gtanh(hPi(t)) + l.

Appendix C. Theorem 1

Proof. We have this Lyapunov candidate for n
compartments:

V (x) = −1

2
f(x)TAnf(x)
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Substituting fT (x) = [ f1(x1) . . . fn(xn) ] and
An (4) into V (x) leads to:

V (x) =− 1

2

(
−a11f21 (x1) + . . .

+ a1nf1(x1)fn(xn)

− a22f22 (x2) + . . .

+ a2nf2(x2)fn(xn)

...
...

− annf2n(xn) + . . .

+ ann−1fn(xn)fn−1(xn−1)
)

The derivative V̇ (x) is:

V̇ (x) =− 1

2

(
2{−a11f1(x1) + . . .

+ a1nfn(xn)}∂f1(x1)

∂x1
ẋ1

+ 2{−a22f2(x2) + . . .

+ a2nfn(xn)}∂f2(x2)

∂x2
ẋ2

...
...

+ 2{−annfn(xn) + an1f1(x1) + . . .

ann−1fn−1(xn−1)}∂fn(xn)

∂xn
ẋn

)
This gives:

V̇ (x) =−
(
−a11f1(x1)+

n∑
i 6=j

a1jfj(xj)
∂f1(x1)

∂x1
ẋ1

− a22f2(x2)+
n∑
i 6=j

a2jfj(xj)
∂f2(x2)

∂x2
ẋ2

...
...

− annfn(xn)+
n∑
i 6=j

anjfj(xj)
∂fn(xn)

∂xn
ẋn

)
From (3), we have the following:

−a11f1(x1) +
∑n
i 6=j a1jfj(xj) = ẋ1

−a22f2(x2) +
∑n
i 6=j a2jfj(xj) = ẋ2

...
−annfn(xn) +

∑n
i 6=j anjfj(xj) = ẋn

Thus

V̇ (x) = −∂f1(x1)

∂x1
ẋ1 − . . .−

∂fn(xn)

∂xn
ẋn

= −
n∑
i=1

ẋi
∂fi(xi)

∂xi
.

Appendix C.1. Partial Derivative of the Flow

The partial derivative terms: ∂gi(x)
∂xi

, i = 1, 2 are
derived here:

∂g1(x1)

∂x1
=(

Kfdf100

(Vrbc + Vp,eu)
)∗(

100
Vrbc + x1(t)

Vrbc + Vp,eu
+ r
)f−1

+ (C.1)

Kf

(kc1mp

x1(t)
+
kc1m

2
p

x21(t)
+
kc1m

3
p

x31(t)

)
and

∂g(x2)

∂x2
=
Kf100

Vi,eu

(
(100

ax2(t)

Vi,eu
)−

b

(100ax2(t)
Vi,eu

+ c)2

)
(C.2)

+Kf

(kc1mi

x2(t)
+
kc1m

2
i

x22(t)
+
kc1m

3
i

x32(t)

)
+ gsech2

(
ha(100

ax2(t)

Vi,eu
)

+
b

(100ax2(t)
Vi,eu

+ c)

)
(C.3)

(Kf100

Vi,eu

(
(100

ax2(t)

Vi,eu
)− (C.4)

b

(100ax2(t)
Vi,eu

+ c)2

))
(C.5)

Using the parameters in Table A.1, we have:
∂f1(x1)
∂x1

> 0 and ∂f2(x2)
∂x2

> 0. Note that since

G(x) = −g1(x1) + g2(x2), then Gx1
= ∂G(x)

∂x1
< 0

and Gx2
= ∂G(x)

∂x1
> 0.

Appendix D. Theorem2 (proof)

Substituting G(x) = −g1(x1) + g2(x2) into (5)
leads to

ẋ1 = G(x)− u
ẋ2 = −G(x) (D.1)

and then

E := {x : G(x) = 0}.
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Proof. Along the solution to (5), Q̇ is given by

Ġ = (Gx1 ẋ1 +Gx2 ẋ2)

= (Gx1(G− u) +Gx2(−G))

= (Gx1 −Gx2)G−Gx1u(t) (D.2)

a) At G(x) = 0, from (D.2) and condition (1), Ġ =
−Gx1u(t) :

Ġ =

{
−Gx1

umax > 0, 0 < t ≤ t∗

−Gx1
û(t) ≥ 0 t∗ < t ≤ tf .

(D.3)

b) Using G(x) = umax, from (D.2) and condition
(2) Ġ = Gx1

(umax − u(t))−Gx2
umax :

Ġ =

{
−Gx2

umax < 0, 0 < t ≤ t∗

(Gx1(umax − û(t))−Gx2umax) < 0 t∗ < t ≤ tf .
(D.4)

c) Using G(x) ≤ umax, it follows:

G(x)− u(t) ≤ umax − u(t)

ẋ1 ≤ umax − u(t)

x1 ≤ x10 −
∫ û(t)

û(t∗)

û(s)ds

≤ x10 (D.5)

d) and using G(x) ≥ 0, it follows:

−G(x) ≤ 0

ẋ2 ≤ 0

x2(t) ≤ x20 (D.6)

From (5), we have

ẋ1 + ẋ2 = −u(t)

then

x1 + x2 = (x10 + x20)− (umaxt+

∫ û(t)

û(t∗)

û(s)ds)

> (x10 + x20)− (umaxt
∗ +

∫ û(t)

û(t∗)

û(s)ds)

then from a, b, and d: x(t) ∈ Bm, for all 0 ≤ t ≤
tf . This proves the Theorem.
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