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Abstract 

Myeloproliferative neoplasms (MPNs) are a group of diseases affecting hematopoiesis in 

humans. Types of MPNs include Polycythemia Vera (PV), Essential Thrombocythemia (ET) and 

myelofibrosis.  JAK2 gene mutation at 617th position act as a major causative factor for the onset 

and progression of MPNs. So, JAK2 inhibitors are widely used for the treatment of MPNs. But, 

increased incidence of adverse drug reactions associated with JAK2 inhibitors acts as a 

paramount challenge in the treatment of MPNs. Hence, there exists an urgent need for the 

identification of novel lead molecules with enhanced potency and bioavailability. We employed 

ligand and structure-based approaches to identify novel lead molecules which could act as JAK2 

inhibitors. The dataset for QSAR modeling (ligand-based approach) comprised of 49 

compounds. We have developed a QSAR model, which has got statistical as well as biological 

significance. Further, all the compounds in the dataset were subjected to molecular docking and 

bioavailability assessment studies. Derivative compounds with higher potency and 

bioavailability were identified for the best lead molecule present in the dataset by employing 

chemical space exploration. Dataset and models are available at 

https://github.com/giribio/agingdata 
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1. Introduction 

Myeloproliferative neoplasms are a group of diseases associated with the enhanced production of 

blood cells from bone marrow (Hermouet et al., 2015). MPNs are classified into three groups 

namely Polycythemia Vera (PV), Essential Thrombocythemia (ET) and Primary Myelofibrosis 

(PMF) (Swerdlow et al., 2017). PV is associated with the increased count of erythrocytes and an 

abnormal increase in the number of cells in megakaryocytic/granulocytic lineages. ET accounts 

for the increase in the number of platelets while PMF is characterized by the presence of bone 

marrow fibrosis and enhanced cell count of megakaryocytes (Aaron T. Gerds, 2016). Mutations 

prevalent in  in Hematopoietic Stem Cells (HSC) are considered as the major causative factor for 

the onset of MPNs (Mead and Mullally, 2017). Mutations responsible for the onset and 

progression of MPNs include Janus Kinase 2 (JAK2) gene mutations, thrombopoietin receptor 

gene (MPL) mutations, mutations in the calreticulin gene (CALR) and somatic mutations in the 

exon 2 of LNK (Shammo and Stein, 2016).  

JAK2V617F is the first recognized mutation inherent to the MPN population.  JAK2V617F 

mutation is one of the most recurrent mutations found in the clonal hematopoiesis related to 

aging (Steensma et al., 2015). JAK2V617F mutation is present in 95-97% of patients suffering 

from PV while 50-60% of patients possess JAK2V617F mutation in ET and PMF conditions 

(Baxter et al., 2005).  

JAK2 is a non-receptor tyrosine kinase that belongs to the Janus kinase family.  The activation of 

JAK2 protein mediated by tyrosine phosphorylation is responsible for the regulation of cytokine 

signaling pathways. JAK2 gene possesses an active tyrosine kinase domain called as JAK 

homology 1(JH1) domain, pseudokinase domain, JAK homology 2 domain (JH2), SRC 

homology domain (SH2) and an amino-terminal FERM domain (Ghoreschi et al., 2009). The 
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upper surface of the N-terminal lobe of the JH2 domain is characterized by the presence of 

highly conserved valine at   617th position. JAK2V617F mutation is associated with the 

substitution of phenylalanine at 617th position. This mutation accounts for the destabilization of   

three-dimensional structure of the JH2 domain and leads to aberrant activation of JAK2 (Levine 

et al., 2005). The constitutive activation of JAK2 leads to the elevated production of 

proinflammatory cytokines, which results in immune dysregulation (Mondet et al., 2015).   

The enhanced production of proinflammatory cytokines is a characteristic feature of MPNs. 

Neurohormonal stimulatory factors as well, as cellular responses play a significant role in 

regulating inflammatory cascade in healthy individuals. But, individuals affected with MPNs 

exhibit dysregulation of this system and hence contribute to the elevated production of 

proinflammatory cytokines. Higher levels of circulating inflammatory cytokines contribute to the 

onset of chronic inflammation and several other disease conditions. The co-morbidities 

associated with chronic inflammation in MPN patients include atherosclerosis, the onset of 

hematological and non-hematological secondary cancer (Frederiksen et al., 2011) and thrombotic 

events (Barbui et al., 2013) and Rheumatoid Arthritis (RA) (Barbui et al., 2013). Hence, an 

increased prevalence of JAK2-V617F mutations in the elder population not only contributes to 

the development of MPNs but also cardiovascular and other chronic inflammatory diseases.  

The discovery of specific JAK2 mutation as the major contributing factor for the onset of MPNs 

directed towards the development of JAK2 inhibitors, which could be used as potential 

therapeutic agents (Reddy et al., 2012). Compounds belonging to different chemical classes such 

as pyrazines, pyrimidines, azaindoles, aminoindazoles, deazapurines, stilbenes, benzoxazoles , 

and quinoxalines were studied for their potency and specificity towards JAK2 inhibition (Baskin 

et al., 2010).  
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Hence, our study on the development of JAK2 inhibitors possessing improved pharmacokinetic 

features could be a promising approach for treating MPNs and co-morbidities. 

2. Materials and methods 

The objective of the present work is to identify the physicochemical properties of compounds 

possessing JAK2 inhibitory activity by employing SAR modeling and to predict new chemical 

compounds with better efficacy and pharmacokinetic properties. This objective is accomplished 

in two stages. 1. By building the QSAR model for compounds reported to possess JAK2 

inhibitory property and predicting the activity of new chemicals using validated QSAR model. 2. 

Identification of binding efficacy and pharmacokinetic properties for compounds used in QSAR 

model building and for predicted derivatives.  

2.1 Dataset construction 

In this current research work, 49 compounds possessing JAK2 inhibitory activity were subjected 

to QSAR study (J. et al., 2011). The JAK2 inhibitory values reported in a negative logarithmic 

scale (pIC50) were used as the response variable for QSAR modeling. The molecular structures 

of chemical compounds were drawn in Marvin Sketch. 2D coordinates of chemical compounds 

sketched in Marvin Sketch were converted into 3D co-ordinates after the addition of explicit 

hydrogens. Geometry optimization of 3D co-ordinates was performed by MOPAC using PM7 

parameterization (Stewart, 1989). 

2.2 Descriptor calculation and dataset classification 

Molecular descriptors were calculated by CodessaPro and PaDELsoftwares. CodessaPro is a 

software platform that calculates constitutional, topological, geometrical, electrostatic, quantum 

chemical and thermodynamic descriptors (Katritzky et al., 2001) while PaDEL is a standalone 
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software platform, that  calculates molecular descriptors and fingerprints using the Chemistry 

Development Kit (Yap, 2011). MOPAC optimized geometries were employed for generating 

descriptors from CodessaPro and PaDEL by retaining the optimized 3D configuration of 

chemical compounds. Descriptors generated from both softwares were combined manually 

without redundancy for attaining wide coverage of descriptors for QSAR modeling. Dataset of 

49 compounds were classified into training and test set based on structure-based clustering 

analysis. Clustering was executed by StarDrop by fixing Tanimoto similarity coefficient at 0.8.  

The selection of test set compounds was made by considering the diversity in structure and wide 

range of activity within the dataset. 

2.3 Model building  

QSAR model for the set of 49 compounds was generated in QSARINS, which employs the 

Ordinary Least Squares method and Genetic Algorithm (GA) for feature selection (Gramatica et 

al., 2013). The biological activity is correlated with the physicochemical properties of 

compounds by Multiple Linear Regression equation, 

Y = a0+a1X1+a2X2+a3X3+a4X4+……………..+anXn      � Eq. 1.      , 

Where Y represents biological activity, X represents molecular descriptor types and an represents 

descriptor coefficients.  

The negative logarithmic values of biological activity were set as dependent/response variable 

while calculated descriptors were designated as the independent variable. Feature selection was 

carried out by GA for 10,000 iterations. The mutation rate and population size were fixed at 20 

and 10 respectively. 
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2.4 Model validation 

Internal and external validation was performed for the generated QSAR model. These validation 

strategies ensure the reliability and accuracy of the model prediction.  

2.4.1 Internal validation 

The predictive capacity of the QSAR model is established by considering internal and external 

validation procedures (Cherkasov et al., 2014). Internal validation was carried out by considering 

the data which created the model, while external validation was carried out by using the data 

which were not used for  QSAR model building (Majumdar and Basak, 2018). The fitness of the 

model is reflected in the value of r2. But higher value of r2 does not guarantee of physical 

relevance, predictive capacity , and robustness of the QSAR model (Baguley, 2009). Internal 

validation exploits statistical methods in which different groups of chemicals are repetitively 

removed from the training set and biological activity of excluded compounds is predicted by the 

developed model. QSARINS employ Cross Validation (CV) parameters such as Q2 Leave One 

Out (Q2
LOO), Q2 Leave Many Out (Q2

LMO) and Root Mean Square Error (RMSE) for the 

verification of internal validation (Gramatica, 2007). Q2
LOO (leave one out) and Q2

LMO (leave many out) > 

0.7 indicate models with high robustness and internal predictive ability (Douglas M.  Hawkins et 

al., 2003). LMO cross validation is performed by eliminating nearly 20% of training set 

compounds in different cycles. Lower values of RMSE is also preferred for an acceptable QSAR 

model. Another validation approach employed by QSARINS includes Y-randomization, where 

the response values is shuffled randomly and models are generated. The parameters associated 

with Y-randomization include r2
Yscr and Q2

Yscr. Lower values of these parameters indicate that 

models are not obtained by chance of correlation (Reads, 2017). 
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2.4.2 External validation 

The true predictive capacity of QSAR model is evaluated by carrying out external validation.  

External validation parameters obtained from QSARINS include  r2
ext, Q2F1, Q2F2 , Q2F3, 

CCCext, RMSEext , and r2m. Higher values of r2
ext (>0.6), Q2F1(>0.7), Q2F2(>0.7), Q2F3(>0.7), 

CCCext (0.85) , r2m (>0.6) and lower values of RMSEext are acceptable for highly predictive 

QSAR model (Chirico and Gramatica, 2011). The true external predictive capacity of QSAR 

model is assessed by comparing the predicted and observed activities of an external set of 

compounds that were not used in QSAR model building. This is achieved by applying the QSAR 

model’s equation to one or more test data sets. The efficiency of QSAR model to predict activity 

of external dataset compounds is measured by analyzing the value of statistical parameter (r2). 

2.5 Evaluation of Applicability Domain (AD) 

AD is the chemical space defined by molecular descriptors and modeled responses. AD depicts 

the plot between leverage values and standard residuals. Leverage values are the diagonal 

elements of HAT matrix. AD helps in predicting uncertainty associated with a molecule by 

comparing its structural similarity to the compounds used to build the model (Netzeva et al., 

2005). Compounds having unexpected biological activity and structural dissimilarity compared 

to other compounds in the dataset are considered outliers (Verma and Hansch, 2005).  

2.6 Molecular docking studies  

Molecular docking studies facilitate elucidation of the fundamental biochemical processes by 

enabling small molecule interactions with the active site of a protein. The active site of protein 

was identified by comparing the results obtained from computational tools such as Computed 

Atlas Surface Topography of proteins (CASTp), ScanProsite and existing literature references. 
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CASTp identifies protein active site regions by considering the area and volume of the pocket by 

using a solvent accessible surface model and molecular surface model (Binkowski et al., 2003). 

ScanProsite detects functional and structural intradomain residues by utilizing context-dependent 

template annotations, which includes biological signatures such as expression patterns (de Castro 

et al., 2006). Molecular docking was performed by FlexX, which employs an incremental 

construction algorithm, and amalgamates a suitable model of the physico-chemical properties 

with effective methods for sampling the conformational space of the ligand. The algorithm aids 

exploring the binding properties of large numbers of flexible ligand conformers (Rarey et al., 

1996). Molecular docking was proceeded with the definition of protein active site followed by 

providing preoptimized 3D coordinates of ligand. Identification of binding affinity and ligand 

efficiency was performed by the HYDE scoring function. HYDE scoring function uses hydrogen 

bond, torsion energies and desolvation terms of protein-ligand complexes for the prediction of 

binding affinity and ligand efficiency (Schneider et al., 2013). 

2.7 Bioavailability assessment  

The bioavailability assessment was carried out by StarDrop’s ADME module. Critical analysis 

of Absorption, Distribution, Metabolism , and Excretion provide significant insights to the 

complete metabolic profile of lead-like compounds. The substantial parameters characterizing 

bioavailability include logS (aqueous solubility), logP (partition coefficient), hERG pIC50 

(cardiotoxicity), Human Intestinal Absorption (HIA), Plasma Protein Binding (PPB), cytochrome 

P450 affinities (CYP2C9 and CYP2D6). Aqueous solubility and partition coefficient are 

essential for proper absorption and distribution of compounds. Lower values of aqueous 

solubility and partition coefficient are not adequate for a good lead-like compound. hERG pIC50 

is related to cardiotoxicity associated with the administration of drugs. hERG is a gene that 
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encodes alpha subunit of the potassium channel, which plays a vital role in maintaining the 

electrical activity of the heart. Drug-induced inhibition of hERG contributes to the prolongation 

of QT interval, which could eventually lead to ventricular arrhythmias (Curran et al., 1995). 

Hence preclinical screening of lead molecules for hERG inhibition is highly essential. Positive 

absorption values and lower values of cytochrome affinities confirm good absorption and 

metabolic profile of compounds respectively. Binding of drugs with plasma proteins reduces 

their therapeutic efficacy by decreasing fractions reaching targeted cellular compartment. Plasma 

protein binding imparts a negative contribution to the efficient movement of the drug within cell 

membranes. 

2.8 Identification of new derivatives 

Identification of new derivatives was accomplished by REAL Space Navigator,  tool which 

explores the largest chemical space comprising nearly 11 billion compounds using the building 

blocks from Enamine Ltd (Rarey and Dixon, 1998). The parent compound was considered as a 

reference molecule with pharmacophore constraints to generate derivatives. The Parent 

compound was selected from the experimental training dataset by setting a few checkpoints such 

as higher binding affinity, interactions with key amino acid residues of protein and enhanced 

bioavailability. Molecular docking and bioavailability assessments were carried out to identify 

binding interactions and effectiveness of derivative compounds compared to compounds in the 

experimental training dataset. Further, the potency of new derivatives to inhibit JAK2 was 

assessed by comparing molecular descriptor values and its physical significance obtained from 

validated QSAR model.  
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3. Results and discussion 

3.1 QSAR model building 

The splitting of compounds into training and prediction sets was based on similarity and 

clustering studies on 49 compounds. Compounds with ID S8000003, S8000004, S8000015, 

S8000020, S8000022, S8000023, S8000030, S8000032, S8000033, S8000039, S8000041, and 

S8000048 were classified as prediction set while rest of compounds were grouped as a training 

set. Validated QSAR model comprising 3 descriptors were obtained after the feature selection 

process. Compounds S8000016 and S8000024 were not included for QSAR model building due 

to their structural diversity with respect to other compounds present in the dataset. 

 Comprehensive information regarding dataset split is provided in (Supplementary Table S1).  

3.2 Statistical and biological significance of QSAR model 

The physical significance of descriptors and significant information regarding statistical 

parameters obtained from validated QSAR model is discussed in (Table 1). 

Table 1: Physical significance of descriptors and  validation parameters of  QSAR model. 

Descriptor ID Descriptor Coefficient Std. Error p-value Meaning 

Intercept  37.68    

I1 

AATS1i 

 

-0.16 0.042 0.0006 

Average broto-moreau 

autocorrelation - lag 

1/weighted by first 
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ionization potential 

I2 SpMax7_Bhp -2.50 0.49 0.000 

Largest absolute eigen 

value of burden 

modified matrix-

n7/weighted by 

relative polarizability 

I3 SRW9 -0.69 0.17 0.0003 
Self-returning walk 

count 

Parameters depicting fit of the model and internal validation 

ntraining = 36, r2 = 0.81, s= 0.36, F= 44.44 

Q2
loo = 0.76, Q2

lmo = 0.75, R2
Yscr= 0.08 Q2

Yscr= -0.16 

Predictivity statistics obtained by external validation 

r2
ext = 0.78, Q2F1 = 0.77, Q2F2 = 0.77, Q2F3 = 0.82, RMSE = 0.32, CCC = 0.87, r2m aver = 0.67  

Log IC50 = 37.68 + (-0.16*I1) ± 0.04 + (-2.50*I2) ± 0.49 + (-0.69*I3) ± 0.17  ---- Eq. 2 

 

Permissible values of statistical parameters confirm the good fit and robustness of the QSAR 

model.  Higher values of Q2-external and Concordance Correlation Coefficient (CCC) represents 

the predictive ability of the QSAR model. The inquisition of scatter plot and residual plot 

provide information regarding the statistical significance of QSAR model. Scatter plot and the 

residual plot are represented in  (Fig. 1) And (Fig. 2) respectively. 
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Fig. 1: Depicts the correlation between experimental and predicted values for training set and 

prediction set compounds. Training set compounds are represented as  and prediction set 

compounds are depicted as    . 
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Fig. 2: Illustrates correlation between experimental and residual values for training and 

prediction set compounds. The presence of randomly dispersed data points in a residual plot 

signifies the appropriateness of linear regression approach in modelling the data.  

Key information regarding statistical parameters associated with QSAR model is provided in 

(Supplementary Table S2).  

3.3 Physical Significance of descriptors  

AATS1i, SpMax7_Bhp , and SRW9 were obtained as significant molecular descriptors. AATS1i 

(Average broto-moreau autocorrelation - lag 1/weighted by first ionization potential) belongs to 

the class of autocorrelation descriptors. Autocorrelation descriptors are topological descriptors 

which that that that encode structural and physico-chemical properties of a molecule (Sliwoski et 

al., 2016).  This descriptor describes the distribution of a particular physicochemical property 

along its molecular structure. In this case, the property refers to ionization potential. Ionization 

potential refers to the ease of chemical bond formation by losing electrons from the valence shell 

of chemical compounds. SpMax7_Bhp (Largest absolute Eigen value of burden modified matrix-

n7/weighted by relative polarizability) represent the class of burden modified Eigen value 

descriptors. These class of descriptors are defined as Eigen values of modified connectivity 

matrix known as Burden Matrix B. The diagonal elements of Burden Matrix B are set to account 

for different features of molecule such as electronegativity, polarizability etc. while off-diagonal 

elements represent bond orders (Todeschini et al., 2009). SpMax7_Bhp descriptor accounts for 

the polarizability of molecules used for QSAR model building. Polarizability accounts for the 

degree of ease by which electron cloud around an atom could be distorted. In general, negatively 

charged ions (anions) are highly polarizable and small-sized cations exhibit lower polarizability, 

but they possess the ability to polarize polarizable species such as anions (‘Polarizability - an 
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overview | ScienceDirect Topics’, 2005). Polarizability plays a significant role in depicting 

nature of bonds formed between protein and ligand. The strength of protein-ligand interactions is 

always explained by the formation of a hydrogen bond, which results from a special type of 

dipole-dipole attraction between electronegative and electropositive atoms of ligand and protein. 

Hence, chemical compounds possessing polarizable or polarizing groups to enhance the degree 

of specific biochemical interactions with the target protein. Compounds in the dataset contain 

negatively charged atoms such as oxygen and nitrogen as well as smaller sized, positively 

charged hydrogen. This indicates the presence of both  polarizable and polarizing groups in 

chemical compounds present in the dataset. Our docking studies demonstrated the role of these 

groups in making significant interactions with target protein JAK2. SRW9 (self-returning walk 

count descriptor) belongs to the class of walk and path count descriptor, which is obtained from 

the graph representation of the molecular structure. walk count of odd orders such as SRW9 

accounts for the presence of odd-membered rings in chemical compounds. SRW9 descriptor also 

accounts for the size and nature of substituents attached to the odd membered ring (Todeschini 

and Consonni, 2000). All the compounds in the dataset have a 5 membered ring with NH- 

substituent. Hence, the QSAR model emphasizes on the significance of odd membered rings in 

eliciting JAK2 inhibition. Evidence from the literature suggest the presence of odd-numbered 

(specifically 5 membered rings) attached to heteroatoms in clinically proven JAK2 inhibitors 

such as ruxolitinib, baricitinib, pacritinib, lestaurtinib, and BMS-911543. Hence, our model also 

emphasizes the significance of odd-numbered rings in eliciting JAK2 inhibition.  

Descriptor values for all compounds used for QSAR model building are provided in 

(Supplementary Table S3). 
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 AD  aids in the estimation of a model’s predictions with  given reliability. No compounds were 

detected as outliers (HAT value:0.34). Hence, AD assessment revealed that all compounds in the 

dataset are influential in eliciting JAK2 inhibitory activity.  William’s plot, which depicts 

relationship between leverage values and predicted values is shown in (Fig. 3). 

 

Fig. 3: William’s plot depicting AD of the model. Leverage values are plotted on X-axis and 

residual values are plotted on Y-axis. Chemical compounds which don’t possess structural 

similarity with rest of compounds in the dataset are regarded as outliers. 

QSAR validation plots are provided in Supplementary (Fig. S1-S4). 

The true external predictive ability of QSAR model is evaluated by checking it’s ability to 

predict the activity of a set of compounds which were not used in QSAR model building. The set 

of 5 compounds was utilized for evaluating the external predictive capacity of QSAR model. The 

predictive ability of QSAR model was reflected from r2 value, which is 0.67. Molecular docking 

studies were also executed for these compounds to elucidate their mode of interactions with 

JAK2 protein. Docking studies revealed good binding affinity and significant interactions with 
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JAK2 protein. The structures of compounds used for external validation and their descriptor 

values are provided in (Supplementary Table S4).  Docking parameters associated with these 

compounds are provided in (Supplementary Table S5). Binding interactions (2D depiction)of 

compounds used for external validation with JAK2 protein are illustrated in Supplementary (Fig. 

S5). 

3.4 Molecular docking studies 

Molecular docking studies help in the elucidation of binding interactions between protein and 

ligands. The protein of interest was JAK2, (PDB ID:2B7A). Identification of active site residues 

was done from computational tools such as CASTp and ScanProsite. Active site residues 

identified from these two sources were compared with existing literature on JAK2 inhibitors. 

Met929, Leu855, Val863, Ala880, Val911, Leu983, Gly935, Tyr931, Glu930, Leu932, Asp939, 

Ser936, Arg980, Gly993, Asp994, Asn981, Asn859, Lys882, Phe860, and Asp976 were 

identified as active site residues. Out of these active site residues, Leu855, Val863, Ala880 and 

Val911 represented the class of hydrophobic residues occupied in the N-terminal lobe of JAK2 

while Leu983 and Gly935 were present in C-terminal lobe. Met929 and Tyr931 were present in 

the hinge region of JAK2 (I.S. et al., 2006). Molecular docking studies using FlexX allowed to 

enable different stereo conformations of ligand molecule such as E/Z, R/S and pseudo R/S. 

20,000 poses were generated per iteration including fragmentation and top 100 docking poses 

were analyzed. 

Identification of JAK2 specific mutation in the onset and progression of MPNs lead towards the 

discovery of JAK2 specific inhibitors. Previously reported inhibitors targeted the ATP-binding 

pocket of JAK2 kinase domain (JH1).  Studies conducted on the inhibitory activity of these 

compounds on JAK2 revealed the significance of interactions with hinge region residues and 
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residues in the activation loop for eliciting a higher degree of potency (Burns et al., 

2009),(Baskin et al., 2010). The interaction of inhibitors with Gly993 is highly preferred. 

Binding interaction with Gly993 provides a higher degree of specificity towards JAK2 since 

JAK3 possesses alanine residue in the same position (I.S. et al., 2006). Hence, screening of lead-

like compounds was performed bymolecular docking studies and key amino acid residue 

interactions with the protein were analyzed. Compounds exhibiting optimal balance of dock 

score expected binding interactions as well as higher binding affinity with better torsion energies 

were considered for the next step of the analysis. Out of 49 compounds, 3 compounds S8000041, 

S8000042 and S8000032 exhibited binding affinity in the range of nanoMolar (nM) with JAK2 

protein. Details regarding top 3 compounds is given (Table 2). Binding interactions of 

S8000041, S8000042 and S8000032 are provided in (Fig. 4, 5 and 6) respectively. 

Table 2: Depicts docking parameters associated with the binding of top 3 lead compounds with 

JAK2. 

Sl.no Compound ID Dock 

score 

Binding 

Energy 

(KJ/mol) 

Ligand 

efficiency 

Binding 

affinity range 

H-bond interactions 

(Aminoacid 

residues) 

1 S8000041 -27.17 -34 0.28 nM Leu932, 

Tyr931,Met929, 

Gly993 

2 S8000042 -26.9 -35 0.28 nM Leu932,Glu930, 

Ser936 
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3 S8000032 -26.33 -37 0.31 nM Leu932, Glu930 

 

 

 

 

 

 

 

 

Fig. 4: Binding mode of S8000041 with JAK2. S8000041 displayed hydrogen bond interactions 

with Leu932, Tyr931, Met929 and Gly993. Asn981, Ser936, Met929, Val863, Arg980, Asn981, 

Met929, Leu983, Ala880, Leu855, Tyr931 and Gly935 were found to exhibit hydrophobic 

interactions with S8000041. 
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Fig. 5: Depicts binding interactions of S8000042 with JAK2. Glu930, Leu932 and Ser936 

exhibited hydrogen bond interactions with S8000042. Gly993, Val863, Asp994, Leu855, 

Leu983, Ser936 and Gly935 made hydrophobic interactions with S8000042. 
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Fig. 6: Binding interactions of S8000032. S8000032 revealed hydrogen bond interactions with 

Leu932 and Glu930, while Val863, Gly935, Leu855, Leu983, Tyr931 and Ala880 made 

hydrophobic interactions with JAK2 protein. 

Compound S8000013 unveiled higher dock score of -33.01. But the binding energy, ligand 

efficiency as well as binding affinity range were found to be lesser for this compound.  Hence,  

S8000013 was not selected as a lead like compound. Similarly, compounds having good dock 

scores which failed to satisfy other checkpoints such as good binding energy, ligand efficiency 

and binding affinity range were not considered as lead like compounds.  

Out of top 3 compounds, S8000032 exhibited higher binding energy as well as ligand efficiency 

compared to other compounds.  S8000032 established hydrogen bond interactions with active 

site residues such as Leu932 and Glu930. Leu932 is a hinge region residue that plays a 

significant role in eliciting the biological function of JAK2. But the hinge region is conserved 

across the JAK family, hence specificity towards JAK2 alone cannot be assured. But, S8000041 

made significant interactions with hinge region residue as well as Gly993. The binding 

interaction with Gly993 confirmed specificity towards JAK2 since alanine is present in the same 

position for other members of JAK family. Met929 is known as “gatekeeper residue”. Previously 

reported inhibitor CMP6 developed by Merck Research Laboratories exhibited interactions with 

the gatekeeper residue. The gate keeper residue plays a vital role in maintaining the shape and 

size of the binding pocket. Met 929 constricts the active site and enhances shape 

complementarity for facilitating interactions with specific ligand groups (I.S. et al., 2006). 

Hence, compound S8000041 displayed significant binding affinity and biological significance 

for eliciting JAK2 inhibition. 
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Dock score, binding energy, ligand efficiency and binding affinity range for all compounds 

present in dataset are provided in (Supplementary Table S6) . 

Binding interactions (2D depiction) of all 49 compounds are given in Supplementary (Fig. S6). 

3.5 Bioavailability assessment 

StarDrop performs bioavailability prediction based on the inbuilt QSAR models for each 

parameterdepicting bioavailability (Shen et al., 2010). The threshold values for bioavailability 

parameters are as follows: solubility (logS) > 1, partition coefficient (logP) < 3.5, affinity 

towards cytochrome p450 isoforms - low/medium, Human Intestinal Absorption (HIA +ve), 2C9 

pKi < 6, hERG liability - <5 and plasma protein binding – low. All three compounds exhibited 

exceptional values  for physicochemical features representing bioavailability such as solubility, 

partition coefficient, affinity towards cytochrome isoform 2C9 and hERG liability. But affinity 

towards cytochrome isoform 2D6 and plasma protein binding were found to be very high. Higher 

affinity towards cytochrome p450 and plasma protein hampers the efficacy of the drug to elicit 

targeted biological function and proper distribution in cellular compartments. Hence, there is an 

urgent need to identify lead compounds with better potency and bioavailability. Out of the three 

lead compounds identified, solubility was found to be higher for S8000032 but S8000041 

showed excellent values for other physicochemical features predicting bioavailability closer to 

their threshold values. Docking studies proved that S8000041 displayed significant biological 

interactions with JAK2 protein. Hence this compound was used as a parent compound for the 

identification of derivatives. Bioavailability parameters for the top 3 lead compounds, which 

exhibited good binding affinity and significant interactions with target protein is given in (Table 

3). 
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Table 3: Provides significant information regarding bioavailability parameters for the top 3 lead 

compounds. 

Sl.no Compound 

ID 

logS logP 2C9 

pKi 

hERG 

pIC50 

HIA 2D6 

affinity 

PPB90 

category 

1 S8000041 1.416 3.018 5.1 4.35 + High High 

2 S8000042 1.337 3.88 5.3 4.9 + Very 

high 

High 

3 S8000032 1.298 3.4 5.6 4.6 + High High 

 

 

Bioavailability assessment results for all the compounds in the dataset is provided in 

(Supplementary Table S7). 

3.6 Identification of new derivatives 

Derivatives for S8000041 compound were identified from REAL Space Navigator, which is the 

world’s largest ultra-fast searchable chemical space. This database is built based on 121 enamine 

synthesis protocols and in-stock building blocks. 1000 derivative compounds were predicted for 

S8000041 by fixing tanimoto coefficient at 0.8. The new derivatives ensure synthetic feasibility 

and accessibility checks to ensure the compounds are synthesizable. 

Vital information regarding the structure and physicochemical properties associated with 

derivative compounds of S8000041 is provided in (Supplementary Table S8). 
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3.7 Molecular docking studies 

Molecular docking studies were executed  to identify the binding efficacy of 1000 derivative 

compounds with JAK2 protein (PDB ID: 2B7A). The definition of active sites was followed by 

molecular docking and binding affinity prediction (HYDE assessment). Details regarding 

docking scores, binding energy values, ligand efficiency and binding affinity range are provided 

in (Table 4). Intermediate compounds represent building blocks (ID referred from 

www.enamine.net) is used for entire compound by Enamine. 

Table 4: Provides significant insights into binding mode of top 10 derivative compounds with 

JAK2 protein. 

Compound 

ID 

 

Building blocks 

(for synthesis) 

Dock 

score 

Binding 

Energy 

(kJ/mol) 

Ligand 

efficiency 

Binding 

affinity 

range 

D1 S2708-1034522-14187958 -41.02 -38 0.35 nM 

D2 S271948-9942056-9919210 -39.73 -24 0.21 μM-nM 

D3 S271949-14780076-

12857078 

-39.68 -19 0.17 μM-nM 

D4 S2708-7026222-11967138 -39.65 -26 0.23 μM-nM 
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D5 S2430-15146132-9964506 -39.27 -27 0.22 μM-nM 

D6 S271948-9948308-9919210 -39.24 -11 0.09 mM-μM 

D7 S271949-10832104-

12857078 

-38.93 -14 0.13 mM-μM 

D8 S2708-1001846-14187958 -38.83 -25 0.23 μM-nM 

D9 S2708-12122826-14187958 -38.56 -23 0.2 μM-nM 

D10 S272212-13250008-9425858 -34.97 -17 0.14 mM-μM 

 

 

From the set of 1000 compounds, top 10 compounds possessing higher dock scores were 

screened initially. These compounds were subjected to HYDE assessment for analyzing binding 

energy, ligand efficiency and binding affinity range. D1 established higher dock score, binding 

energy as well as ligand efficiency. The binding affinity range of this compound was predicted to 

be in Nano molar range. H-bond interaction with Gly993 accounted for the specificity of D1 

towards JAK2. In addition to this, literature on JAK2 inhibitors reported that interaction with 

Asp939 is also responsible for maintaining a higher degree of specificity towards JAK2 (Zhao et 

al., 2016). Similarly compounds D2, D3, D4, D5, D6, D7, D8, D9 and D10 exhibited interactions 

with Asp939, which explained the specificity of these compounds towards JAK2. Even though 

D10 showed comparatively lower dock score, binding energy, ligand efficiency and binding 

affinity range it made significant interactions with Gly993 and Asp939. (Fig. 7 and 8) represent 

binding interactions of derivative compounds D2 and D5 respectively. 
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Fig. 7: Depicts binding interactions of derivative compound D2 with JAK2 protein. D2 formed 

H-bond interactions with Asp939, Leu855, Leu932 and Ser936. Compound formed hydrophobic 

interactions with Gly935, Leu855, Tyr931, Val863, Leu983, Ser936 and Arg980. 

 

Fig. 8:  Derivative compound D5 made H-bond interactions with Asp939, Leu855, Leu932, 

Arg980, Asn981 and Ser936, while hydrophobic interactions were made with Gly935, Tyr931, 

Arg980, Ser936, Leu984, Leu863, Leu983 and Leu855. 

 

3.8 Bioavailability assessment for top 10 derivatives  
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Out of top 10 compounds, D2, D3, D5, D6, and D7 showed outstanding bioavailability since the 

predictions were within the threshold values (logS > 1, logP < 3.5, affinity towards cytochrome 

P450 isoforms - low/medium, Human Intestinal Absorption (HIA +ve), 2C9 pKi < 6, hERG 

liability - <5 and plasma protein binding – low). Compound D1, showed good binding affinity, 

significant interactions with the target protein and appreciable bioavailability (good solubility, 

lipophilicity, human intestinal absorption, and lower plasma protein binding profiles). But 

affinity towards cytochrome P450 isoform 2D6 was significantly higher and there was a 

marginal increase in hERG liability. StarDrop’s glowing molecule module predicted the 

structural features of D1, responsible for the enhanced affinity towards cytochrome p450. The 

presence of trimethyl groups, nitrogen atoms, carbonyl groups, and methylene groups are 

primarily responsible for the increased affinity towards cytochrome p450. The marginal increase 

in the value of hERG pIC50 was attributed  to the presence of trimethyl groups, nitrogen atoms, 

carbonyl group, benzene ring and piperidine group. Similarly, compound D10 which showed 

interactions with Gly993 demonstrated marginal increase in hERG liability. hERG liability was 

associated with the presence of piperidine group, nitrogen atom, methylene groups and 4-bromo-

indole groups. (Fig. 9) depicts the structural features of derivative compounds contributing for 

bioavailability parameters. The structural features of D1 responsible for upregulated 

bioavailability parameters such as cytochrome p450 and hERG liability are provided in (Fig. 9a 

and 9b) respectively. (Fig. 9c) depicts structural features of D10 responsible for the increased 

values of hERG liability. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.26.399907doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.26.399907
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28

Fig. 9: Structural features of derivative compounds D1 and D10 contributing for bioavailability

parameters. (Fig. 9a) Depicts structural features of derivative compound D1 contributing for

bioavailability parameter cytochrome p450 isoform 2D6. (Fig. 9b) Depicts structural features of

derivative compound D1 contributing for bioavailability parameter hERG liability. (Fig. 9c)

Depicts structural features of derivative compound D10 contributing for bioavailability

parameter hERG liability. 

But all other bioavailability parameters were predicted within the threshold range. But

compounds D2 and D5 showed substantial binding affinity as well as bioavailability among the

top 10 derivative compounds. Hence, we propose D2 and D5 as potential JAK2 inhibitors by

considering multiple parameters such as binding affinity, binding interactions as well as

bioavailability. (Table 5). Depicts physicochemical properties predicting bioavailability for top

10 derivative compounds.  
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Table 5: Details regarding ADME prediction for top 10 derivative compounds. 

Compound 

ID 

logS logP 2C9 

pKi 

hERG 

pIC50 

HIA 2D6 

affinity 

PPB90 

category 

D1 2.34 2.38 4.35 5.1 + High Low 

D2 3.018 1.44 4.33 4.3 + Low Low 

D3 2.05 1.58 4.56 4.9 + Medium Low 

D4 1.99 2.29 4.27 5.14 + High Low 

D5 2.91 0.9 5.24 4.4 + Low Low 

D6 2.78 1.86 4.39 4.34 + Low Low 

D7 2.12 1.11 4.43 4.96 + Medium Low 

D8 2.183 2.404 4.01 5.2 + High Low 

D9 2.02 2.64 4.02 5.2 + High Low 

D10 2.96 3.18 4.79 5.2 + Medium Low 

 

 

3.9 Activity prediction of derivative compounds using QSAR model 
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Validated QSAR model  reported the significance of 3 descriptors in eliciting JAK2 inhibition. 

These descriptors were calculated for the top 10 derivative compounds. Comparative analysis of 

these descriptor values with that obtained from a validated QSAR model suggested similarity. 

The similarity of descriptor values of derivative compounds with respect to compounds used in 

QSAR model building propose similarity in biological function as well. 

Descriptor values for the top 10 derivative compounds are provided in (Supplementary Table 

S9). 

4. Conclusion 

This study aimed to identify novel JAK2 inhibitors possessing improved biological activity as 

well as bioavailability. We integrated ligand and structural based studies to propose novel 

inhibitors against JAK2. Initially, QSAR model was developed using chemical compounds 

reported for JAK2 inhibitory activity. Validated QSAR model proposed the significance of odd-

numbered rings in chemical compounds for eliciting JAK2 inhibition. This observation was 

confirmed by comparing the structural features of clinically proven JAK2 inhibitors. Further, the 

descriptor present in validated QSAR model revealed the significance of polarizability in 

establishing stronger hydrogen bonds with specific amino-acid residues present in the JAK2 

active site. Hit to lead optimization strategies included molecular docking and bioavailability 

assessments. The interaction of compounds with specific amino acid residues confered their 

potency and specificity for eliciting JAK2 inhibition. Three compounds were identified as 

potential lead compounds by considering the above mentioned criteria. S8000041 was found as 

the most promising lead molecule. But all 3 compounds were found to have higher metabolic 

profiles which lead to faster degradation of these compounds before eliciting its therapeutic 

action. Hence derivative compounds for S8000041 were identified from the Enamine database. 
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Hit to lead optimization strategies were performed similarly as done for parent compounds and 

the top 10 derivative compounds were identified. Consideration of multiple parameters such as 

binding affinity and bioavailability resulted in the identification of 2 lead molecules (D2 and 

D5). These compounds exhibited interactions with Asp939, which is found as a significant 

interaction in eliciting potency and specificity towards JAK2 inhibition. The structural features 

of chemical compounds play significant role in eliciting targeted biological activity. Hence, 

descriptors obtained from validated QSAR were compared with that of derivative compounds to 

identify their structural similarity. Comparative analysis of descriptor values confirmed structural 

similarity of derivative compounds with the compounds (reported JAK2 inhibitors) employed for 

QSAR model building. The similarity in descriptor values denotes the significance of odd-

numbered rings and presence of polarizing groups in making specific hydrogen bond interactions 

with JAK2 protein. Hence, our studies propose two derivative compounds (D2 and D5) as 

potential JAK2 inhibitors. Further, invitro and invivo studies has to be conducted for assuring the 

potency of these compounds as JAK2 inhibitors. 
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