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Abstract 
 

Large-scale brain dynamics are believed to lie in a latent, low-dimensional space. 
Typically, the embeddings of brain scans are derived independently from different cognitive 
tasks or resting-state data, ignoring a potentially large—and shared—portion of this space. Here, 
we establish that a shared, robust, and interpretable low-dimensional space of brain dynamics 
can be recovered from a rich repertoire of task-based fMRI data. This occurs when relying 
on non-linear approaches as opposed to traditional linear methods. The embedding maintains 
proper temporal progression of the tasks, revealing brain states and the dynamics of network 
integration. We demonstrate that resting-state data embeds fully onto the same task embedding, 
indicating similar brain states are present in both task and resting-state data. Our findings suggest 
analysis of fMRI data from multiple cognitive tasks in a low-dimensional space is possible and 
desirable, and our proposed framework can thus provide an interpretable framework to 
investigate brain dynamics in the low-dimensional space. 
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Introduction 
 
Understanding large-scale brain dynamics is a major goal of modern neuroscience (Jorgenson et 
al., 2015). However, due to the high-dimensional nature of brain patterns, how to best 
operationalize and tackle this problem remains an open question. Nevertheless, the temporal 
dimensions that explain the observed dynamics is small compared with the number of time 
points (Cunningham and Byron, 2014). Thus, there is growing evidence to suggest that a low-
dimensional space—hidden from direct observation, learned from the data, and derived from 
many brain regions—may be a suitable model for studying temporal brain dynamics (Gao and 
Ganguli, 2015). 
 
These low-dimensional spaces have been observed using a variety of neural recordings and 
animal models (Ahrens et al., 2012; Churchland et al., 2012; Kobak et al., 2016; Mishne et al., 
2016; Santhanam et al., 2009). Research suggests that linear methods, such as principal 
component analysis (PCA), are appropriate when recorded temporal data comes from simple 
stimuli that project onto a limited area within a manifold (Cunningham and Byron, 2014). 
However, data from richer tasks often project onto a larger portion of the manifold, violating 
linear approximations (Cunningham and Byron, 2014; Gallego et al., 2017). Nonlinear 
dimensionality reduction methods, like diffusion maps (Coifman and Lafon, 2006), can 
overcome this limitation by integrating local similarities into a global representation, which 
better reflect the underlying temporal dynamics in neural recordings. 
 
Similar concepts have emerged in human functional magnetic resonance imaging (fMRI) studies 
to quantify moment-to-moment changes in activity and connectivity (Hutchison et al., 2013b; 
Preti et al., 2017). As with related research on temporal recordings from animal models, 
dimensionality reduction methods are used to project the fMRI time series onto a low-
dimensional space (Allen et al., 2014b; Monti et al., 2017; Shine et al., 2016; Shine et al., 2019). 
From the low-dimensional space, characteristic brain states—or distinct, repeatable patterns of 
brain activity—are used to quantify brain dynamics. Predominantly, these studies have relied on 
linear methods (Allen et al., 2014b; Monti et al., 2017; Shine et al., 2016; Shine et al., 2019). 
However, given the rich repertoire of tasks available in human fMRI, a manifold derived from 
nonlinear methods may better capture the underlying geometry of the low-dimensional space. 
 
To address this, we recently introduced 2-step Diffusion Maps (2sDM; Gao et al., 2019), which 
is a novel extension of diffusion maps. 2sDM extracts common variability between individuals 
by performing dimensionality reduction of a 3rd-order tensor in a two-stage manner. In the first 
stage, timeseries data from each individual are embedded into a low-dimensional Euclidean 
space. In the second stage, embedding coordinates for the same time point from different 
individuals are concatenated for use in a second embedding. The second stage embeds similar 
time points across subjects to obtain a low-dimensional group-wise representation of those time 
points. This two-stage approach avoids directly comparing brain activation across subjects, 
which can be imprecise without proper alignment (Haxby et al., 2011). As 2sDM is an 
unsupervised learning method, there is no need to handcraft features, which are less robust, 
computationally intensive, and generalize poorly when compared to learned features from 
unsupervised methods (Bengio et al., 2013). While diffusion maps have been applied to fMRI 
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data (Margulies et al., 2016; Nenning et al., 2020), we aim to embed the time dimension rather 
than the spatial dimension.  
 
We used 2sDM to embed timeseries from a rich repertoire of tasks onto a single low-dimensional 
manifold in two fMRI datasets: the Human Connectome Project and the UCLA Consortium for 
Neuropsychiatric Phenomics. By using multiple tasks spanning a range of cognitive functions 
and loads, we obtain a more even sampling of the original high-dimensional space of recurring 
patterns of brain dynamics (Cunningham and Byron, 2014; Gallego et al., 2017) to better project 
individual time points onto a low-dimensional manifold. Compared with other embedding results 
that only aim to separate different tasks, our embedding positioned different tasks by their 
cognitive load. Thus, it enables scans to be compared both within the same task and across 
different tasks. As our embedding also has a clear clustering structure, downstream analyses that 
are based on brain states or low-dimensional trajectories are also straightforward to perform 
based on the embedding. Additionally, we embedded resting-state data into the same task 
embedding to investigate differences in brain dynamics between resting-state and task 
performance. These results suggest that manifold learning can uncover an interpretable low-
dimensional embedding for the study of brain dynamics in fMRI data. 
 

Methods 
 
Dataset and imaging parameters  
 
Data was obtained from the Human Connectome Project (HCP) 900 Subject release (Van Essen 
et al., 2013). We use fMRI data collected while 390 participants performed six tasks (gambling, 
motor, relational, social, working memory—WM, and emotion). We restrict our analyses to 
those subjects who participated in all nine fMRI conditions (seven task, two rest), whose mean 
frame-to-frame displacement is less than 0.1mm and whose maximum frame-to-frame 
displacement is less than 0.15mm, and for whom the task block order is the same as other 
subjects (𝑛 = 390). All fMRI data were acquired on a 3T Siemens Skyra using a slice-
accelerated, multiband, gradient-eco, echo planar imaging (EPI) sequence (TR=720ms, 
TE=33.1ms, flip angle=52°, resolution=2.0mm3, multiband factor=8). Images acquired for each 
subject include a structural scan and eighteen fMRI scans (working memory (WM) task, 
incentive processing (gambling) task, motor task, language processing task, social cognition task, 
relational processing task, emotion processing task, and two resting-state scans; two runs per 
condition (one LR phase encoding and one RL phase encoding run)) split between two sessions. 
 
The UCLA Consortium for Neuropsychiatric Phenomics (CNP; Poldrack et al., 2016) dataset is 
used for replication. Similar to the standards for the HCP dataset, we restrict our analyses to 
those subjects who participated in all 5 fMRI conditions (four task, one rest), whose mean frame-
to-frame displacement is less than 0.1mm and whose maximum frame-to-frame displacement is 
less than 0.15mm. 77 healthy controls are retained. These participants performed four tasks 
(paired memory retrieval task—PAMRET, paired memory encoding task—PAMENC, spatial 
working memory task—SCAP, task switching task—TASKSWITCH). Details of the image 
acquisition parameters have been published elsewhere (Poldrack et al., 2016). In brief, all data 
were acquired on one of two 3T Siemens Trio scanners at UCLA. Functional MRI data were 
collected using a T2*-weighted EPI sequence with the following parameters: slice 
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thickness=4mm, 34 slices, TR=2s, TE=30ms, flip angle=90°, matrix 64×64, FOV=192mm, 
oblique slice orientation. Images acquired for each subject include a structural scan and seven 
fMRI scans (balloon analog risk task (BART), paired-associate memory retrieval (PAMRET), 
paired-associate memory encoding (PAMENC), spatial capacity task (SCAP), stop signal task 
(SST), task-switching task (TASKSWITCH) and breath holding task).  
 
As 2sDM requires time series to be synchronized across individuals (i.e., different individuals 
encounter the same task condition at the same time point), the language task from the HCP and 
the stop signal task, balloon analogue risk task, and breath hold task from the CNP were not 
included. These tasks are self-paced. Participants finished blocks at different times, causing the 
task block to be unsynchronized across participants.  
 
fMRI processing  
 
For the HCP dataset, the HCP minimal preprocessing pipeline was used (Glasser et al., 2013), 
which includes artifact removal, motion correction, and registration to standard space. For the 
CNP dataset, structural scans were skull-stripped using OptiBet (Lutkenhoff et al., 2014) and 
registered to the MNI template using a validated algorithm in BioImage Suite (Joshi et al., 2011; 
Scheinost et al., 2017). Slice time and motion correction were performed in SPM8. For both 
datasets, all subsequent preprocessing was performed using image analysis tools available in 
BioImage Suite and included standard preprocessing procedures (Finn et al., 2015). Several 
covariates of no interest were regressed from the data including linear and quadratic drifts, mean 
cerebral-spinal-fluid (CSF) signal, mean white-matter signal, and mean gray matter signal. For 
additional control of possible motion related confounds, a 24-parameter motion model (including 
six rigid-body motion parameters, six temporal derivatives, and these terms squared) was 
regressed from the data. The data were temporally smoothed with a Gaussian filter (approximate 
cutoff frequency=0.12Hz). Mean frame-to-frame displacement yielded seven motion values per 
subject, which were used for subject exclusion and motion analyses. We restricted our analyses 
to subjects whose maximum frame-to-frame displacement was less than 0.15mm and mean 
frame-to-frame displacement was less than 0.1mm. This conservative threshold for exclusion due 
to motion was used to mitigate the effect of motion on the embedding. We used the Shen 268-
node atlas to extract timeseries from the fMRI data for further analysis (Shen et al., 2013). 
Timeseries used for the embedding were the average of the basis of the “raw” task time courses, 
with no removal of task-evoked activity, for each node in the atlas. Finally, 2sDM was applied to 
embed a 3rd-order tensor of fMRI data (individual × region × time) onto a single low-
dimensional manifold. 
 
2-step diffusion maps (2sDM) 
 
Diffusion maps are part of a broad class of manifold learning algorithms. Specifically, diffusion 
maps provide a global description of the data by considering only local similarities and are 
robust to noise perturbations. The new nonlinear representation provided by diffusion maps 
reveals underlying intrinsic parameters governing the data (Coifman and Lafon, 2006). We 
briefly describe the diffusion maps algorithm in general and in the following its application to 
fMRI data as used in our approach. Given a dataset of n points {𝐱!}!"#$  a pairwise similarity 
matrix 𝐒 between pairs of data points 𝐱! and 𝐱% is constructed, for example using the Gaussian 
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kernel 𝑤&-𝐱!, 𝐱%/ = exp	(−6𝐱! − 𝐱%6
'/ϵ). Then the rows of the similarity matrix are normalized 

by 𝐏 = 𝐃(𝟏𝐒, where 𝐃!! = ∑ 𝐒!%%  is the degree of point 𝐱!. This creates a random walk matrix on 
the data with entries set to 𝑝-𝐱!, 𝐱%/ = 𝑤&-𝐱!, 𝐱%//𝑑(𝐱!). Taking the t-th powers of the matrix 𝐏 
is equivalent to running the Markov chain corresponding to the random walk on the data forward 
t times. The corresponding kernel 𝑝*(∙,∙) can then be interpreted as the transition probability 
between two points in t time steps. The matrix 𝐏 has a complete sequence of bi-orthogonal left 
and right eigenvectors 𝛟! and 𝛙!, respectively, and a corresponding sequence of eigenvalues 1 =
λ+ ≥ |λ#| ≥ |λ'| ≥ ⋯. Diffusion maps are a nonlinear embedding of the data points into a low-
dimensional space, where the mapping of point 𝐱 is defined as 𝚿(𝐱) =
(λ#,𝛙#(𝐱), λ',𝛙'(𝐱), … , λ-,𝛙-(𝐱)), where t is the diffusion time. Note that 𝛙+ is neglected 
because it is a constant vector. The diffusion distance 𝐷*'(𝐱, 𝐲) between two data points is 
defined as:  

𝐷*'(𝐱, 𝐲) =L
-𝑝*(𝐱, 𝐳) − 𝑝*(𝐲, 𝐳)/

'

𝜙+(𝐳).

 

where 𝛟+ represents the stationary distribution of the random walk described by the random 
walk matrix 𝐏. This measures the similarity of two points by the evolution in the Markov chain 
and the distance characterizes the probability of transition from 𝐱 or 𝐲 to the same z point in t 
time steps. Two points are closer with smaller 𝐷*'(𝐱, 𝐲) if there is a large probability of transition 
from 𝐱 to 𝐲 or vice versa, suggesting that there are more short paths connecting them. It is thus 
robust to noise as it considers all the possible paths between two points and is thus less sensitive 
to noisy connections. It was proved that the 𝑘-dimensional diffusion maps 𝚿 embed data points 
into a Euclidean space ℝ- where the Euclidean distance approximates the diffusion distance 
(Coifman and Lafon, 2006). In practice, eigenvalues of 𝐏 typically exhibit a spectral gap such 
that the first few eigenvalues are close to one with all additional eigenvalues being much smaller 
than one. Thus, the diffusion distance can be well approximated by only the first few 
eigenvectors. Therefore, we can obtain a low-dimensional representation of the data by 
considering only the first few eigenvectors of the diffusion maps. Intuitively, diffusion maps 
embed data points closer when it is harder for the points to escape their local neighborhood 
within time t. 
 
To obtain a groupwise low-dimensional representation of dynamics, a hierarchical diffusion 
maps-based manifold learning framework, 2-step diffusion maps (2sDM; Gao et al., 2019), was 
used to reduce the dimensionality of high-dimensional multi-individual fMRI time series. The 
framework is illustrated in Figure 1a. Under the assumption that individuals’ fMRI responses are 
time-synchronized, the fMRI BOLD time series data are organized as three-dimensional array 
𝐗 ∈ ℝ/×1×2(number of individuals 𝑀, number of regions or voxels 𝑉, number of time points 𝑇). 
In the first step of 2sDM, each individual is processed separately, by applying diffusion maps to 
the fMRI time series of every single individual 𝐗3⋅⋅ ∈ ℝ1×2 , thereby obtaining a 𝑑#-dimensional 
temporal embedding of each individual 𝚿3

(#) ∈ ℝ7!×2. Then, in the second step, we first 
concatenate the new representations from all individuals into a matrix 𝚿(#) ∈ ℝ(/7!)×2, such 
that each time-point is now represented by the embeddings of that time-frame aggregated from 
all M subjects. Then, a second-round diffusion embedding is performed, further reducing the 
dimensionality of every time-frame to 𝑑' and the final time-frame representation with multi-
individual similarity is 𝚿(') ∈ ℝ7"×2, where 𝑑# and 𝑑' are predetermined parameters that are 
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smaller than 𝑉. The concatenation and two-round embeddings are theoretically supported by the 
theorem that low-dimensional diffusion maps approximate the diffusion distance between time-
frames (Gao et al., 2019): The distance between two frames 𝚿(')(𝑡3) and 𝚿(')(𝑡8) approximates 
the average diffusion distance between those time-frames across all individuals. We used 𝑑# = 7 
and 𝑑' = 3 in our experiment. It is worth noting that the embedding results were robust under a 
certain range of different 𝑑# and 𝑑' (related discussion in Supplementary Materials and Figure 
S3). 
  

 
Figure 1. Schematic of manifold learning framework. a) 2sDM algorithm framework for 
time-synchronized multi-individual fMRI time series. b) 2-step out-of-sample extension 
framework with BrainSync for new fMRI time points. Mathematical notations in the figure are 
the same as those used in the corresponding Methods section. 

To reveal the progression of brain dynamics during tasks, we calculated temporal trajectories 
(Shine et al., 2019) for each task block by connecting points in the embedding in a temporal 
order. As the tasks involve the same task blocks with repetitions (i.e., WM task consists of 
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interleaved blocks of 0-back and 2-back with the same length), we averaged the time-frames 
belonging to the same task block to obtain a smoothed representative trajectory of each task. 
Time frames corresponding to the cue or fixation between tasks blocks were not included. 
 
To summarize the embedding into a more compact and easier to analyze structure, we performed 
k-means clustering based on the first three embedding dimensions to cluster time points sharing 
similar brain activation patterns into discrete brain states. The Calinski-Harabasz criterion (ratio 
between the within-cluster dispersion and the between-cluster dispersion) was used to determine 
the number of clusters, evaluating values of 𝑘 = {2,… ,10} (Caliñski and Harabasz, 1974).  
 
To illustrate that our 2sDM manifold learning framework discovers structure that linear methods 
cannot recover, we used a 2-step PCA framework, similar to 2sDM. In the first step, a separate 
PCA is applied to each individual’s fMRI time series 𝐗3,.,. ∈ ℝ1×2, resulting into a 𝑑#-
dimensional linear temporal embedding of each individual 𝐜3

(#) ∈ ℝ7!×2, where the first 𝑑# 
principal components with the maximum variances are included. Then each individual’s 
embedding is concatenated along the time dimension form to a matrix 𝐂(#) =
[𝐜#
(#), 𝐜'

(#), 𝐜;
(#), … , 𝐜/

(#)] ∈ ℝ(/7!)×2. A second-round PCA is performed to further reduce the 
dimensionality of this concatenated matrix. Each time frame is then embedded into 𝑑' 
dimensions and the final time-frame representation with multi-individual similarity is 𝐂(') ∈
ℝ7"×2. Same as 2sDM, we used 𝑑# = 7 and 𝑑' = 3 in our experiment. 
 
Dynamic connectivity  
 
To relate our task embedding to previously used handcrafted features (Shine et al., 2016), we 
calculated the participation coefficient 𝐵2 using sliding-window-based functional connectivity 
and then averaged 𝐵2 across all subjects, as described in previous literature (Shine et al., 2016). 
In this manuscript, handcrafted features refer to features that are designed manually, such as 
B<	that is used here to characterize the integration and segregation pattern of the brain network. 
The dynamic functional connectivity is calculated by the multiplication of temporal derivatives 
(MTD; Shine et al., 2015). MTD is calculated as the point-wise product of the temporal 
derivatives of paired nodes (𝑖, 𝑗)’s time series: 

𝑀𝑇𝐷38* =
#
=
∑ 7*#$×7*%$

>&$#$×>&$%$

*?=
* ,	

where 𝑑𝑡3* = 𝑡𝑠3* − 𝑡𝑠3*(# is the temporal derivative of node 𝑖 at time 𝑡 with time series (𝑡𝑠), 
𝜎7*#$ is the standard deviation of the 𝑑𝑡 and 𝑤 is the window length. At each time point, the 
dynamic functional connectivity is calculated as the averaged MTD over a sliding time window 
in order to reduce high-frequency noise. We chose the length of the sliding window length 𝑤 to 
be 15 time points, based on previous literature (Shine et al., 2016). 
 
The participation coefficient 𝐵2 characterizes the extent to which a region connects across all 
modules, where modules are normally defined a priori from community detection methods that 
identify a set of nodes as a module that are more strongly connected to each other than nodes 
from another set. The participation coefficient for a region 𝑖 at time 𝑇 is calculated as: 
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𝐵32 = 1 −Lc
𝑘3@2
𝑘32

d
'A'

@"#

	

where 𝑘3@2 is the number of links of node 𝑖 to nodes in module 𝑠 at time 𝑇, 𝑘32 is the total degree 
of node 𝑖 at time 𝑇 and 𝑁/ is the number of modules, or canonical networks in our setting. The 
participation coefficient of a region is therefore close to 1 if its links are uniformly distributed 
among all the modules and 0 if all its links are within its own module. The whole brain 
participation coefficient 𝐵2 represents the average of 𝐵32 from each region and thus represents 
the integration and segregation pattern of the brain. 𝐵2 is closer to 1 if our whole brain is more 
integrated and closer to 0 if our whole brain is more segregated. 
 
2-step out-of-sample extension (OOSE) for resting-state fMRI 
 
To investigate the generalization of the task manifold and associated brain states, resting-state 
data were embedding onto the manifold. One of the challenges in nonlinear dimensionality 
reduction is to extend new data points to the embedding space. Unlike linear dimensionality 
reduction methods like PCA, there is no explicit mapping from the original features to the new 
coordinates. Moreover, appending the new data and redoing the dimensionality reduction is often 
computationally costly. To deal with this, we specially designed a corresponding 2-step out-of-
sample extension (OOSE) framework to embed new time points onto the existing temporal 
manifold. 
 
The framework is illustrated in Figure 1b. The framework follows a similar two-step structure to 
2sDM where the Nyström extension (Fowlkes et al., 2004) (a non-parametric OOSE method, 
details provided in supplementary materials) is used to approximate the reduced representation of 
the new time series in each step. Specifically, given new fMRI time series 𝑿g3,.,. ∈ ℝ1×2( , 𝑖 =
1,… ,𝑀	from the same group of individuals used for 2sDM embedding, we first approximate the 
eigenvectors 𝚿h3

(#) for each individual using Nyström extension. Then we concatenate all the 
individuals’ eigenvectors 𝚿h3

(#) as the new data points and approximate its eigenvectors 𝚿h (') as 
the final representation.  
 
As the 2sDM algorithm requires the task designs across individuals to be the same, this prevents 
embedding multi-individual resting-state fMRI timeseries directly, which is also a problem for 
any other scans that are not time-synchronized, e.g., the language task in the HCP dataset. To 
synchronize different individual’s time series, we used BrainSync, a framework that 
synchronizes fMRI time series across individuals (Joshi et al., 2018). BrainSync synchronizes 
one individual’s time series data 𝐘 ∈ ℝ1×2 to another reference individual 𝐗 ∈ ℝ1×2 by finding 
an optimal orthogonal transformation that minimizes summed moment-to-moment squared error 
𝐎@ = arg	min𝐎∈𝐎(2)‖𝐗−𝐘𝐎*‖'. The problem can be solved by the Kabsch algorithm (Kabsch, 
1976). The 𝑇 × 𝑇 cross-correlation matrix 𝐗*𝐘 is first formed and its singular value 
decomposition can be calculated as 𝐗*𝐘 = 𝐔𝚺𝐕,. The optimal 𝐎@ can be found by 𝐎@ = 𝐔𝐕* 
and 𝐘 can be synchronized to 𝐗 by 𝐘𝐎@*. By choosing a random individual as the reference, 
BrainSync was applied to all the other individuals and their time series were synchronized to the 
reference individual. After synchronizing across individuals, we then used the 2-step OOSE 
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framework to extend them onto the task manifold and find the temporal representation of resting-
state fMRI for the reference individual.  
 
To validate the 2-step OOSE framework, we used the task fMRI data to cross-validate the 
accuracy of the OOSE framework. Using leave-one-task-out cross-validation, a single task was 
held out when generating the 2sDM manifold. The left-out task was then embedded in the new 
manifold using our OOSE framework and compared with the original embedding created using 
all tasks. If the held-out task's extended coordinates are similar to the coordinates of the original 
embedding, it suggests that the OOSE framework is accurate. 
 
Characterizing changes in brain states 
 
By utilizing the temporal order of time points, we characterized the brain dynamics across the 
four brain states by state transition probability and dwell time. State transition probabilities were 
calculated based on the temporally adjacent time points’ brain states. From these state transition 
probabilities, a stochastic matrix and the dwelling times (i.e., the stationary probability 
distribution of the stochastic matrix) were calculated and visualized as Markov chain models. 
The stationary distribution of the Markov transition matrix 𝐏𝐭𝐫𝐚𝐧𝐬 is defined as the distribution 
that does not change under application of the transition matrix 𝛑 = 𝛑𝐏𝐭𝐫𝐚𝐧𝐬, which is the left 
eigenvector of 𝐏𝐭𝐫𝐚𝐧𝐬. It represents the distribution to which the Markov process converges. It 
was used in our experiment to represent the dwell-time distribution of discrete brain states. As 
tasks putatively put a participant into certain states (as opposed to the unconstrained nature of the 
resting state), we investigated differences in the temporal dynamics of state switching during task 
and rest. We calculated entropy—a measure of the randomness—of the transition probability 
from one brain state to the other states. Entropy of a discrete probability distribution measures 
the uncertainty of the outcome. It is calculated as the negative expectation of the logarithm of the 
probability mass function’s value 𝑆 = −Σ3𝑃3 log 𝑃3 = −𝐸I[log 𝑃]. In our experiment, entropy of 
the brain state transition probability was used to assess the randomness of brain state 
transitioning with lower entropy representing more easy-to-predict brain state transition 
dynamics. Greater entropy indicates a less predictable transition from one state to another. 
 
Experimental Design and Statistical Analysis 
 
No statistical methods were used to predetermine sample sizes. Other than the stated exclusion 
criteria for motion and complete imaging data, no participants and data points were excluded 
from the analysis. Following exclusion for motion, there was no significant correlation between 
motion and the embedding dimension. Parametric statistics (e.g., t-test, correlation, and chi-
squared test) were used when appropriate.  
 
Data availability  
 
The HCP data used in this study are publicly available from the ConnectomeDB database 
(https://db.humanconnectome.org). The CNP data used in this study are publicly available from 
OpenNeuro.org (https://openneuro.org/datasets/ds000030). MATLAB scripts to run the 2sDM 
analyses can be found at (https://github.com/carricky/2sDM). BioImage Suite tools used for 
analysis can be accessed at (https://bioimagesuiteweb.github.io/). 
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Results 
Brain dynamics during tasks embed onto a low-dimensional space  
 
Although each task is different in many ways, individual time points in the fMRI data from all 
tasks mapped onto a single low-dimensional manifold (Figure 2a). Compared with the common 
goal of other low-dimensional embedding results, the advantage of our results is not in 
separating different task scans apart. Instead, we find a global representation across multiple 
tasks that positioned tasks with similar cognitive loads together. By embedding multiple tasks 
together, rather than in isolation, the closeness of different blocks and tasks in the manifold 
suggest that similar, recurring patterns of brain dynamics exist across a variety of tasks. For 
example, in the manifold, the 2-back blocks of the WM task are significantly (𝑡 = 201.9, 𝑝 <
0.01, d. f. = 175,102) closer to time points from the gambling task (Euclidean distance: 
0.0258 ± 0.0096) than the 0-back blocks of the WM task (Euclidean distance: 0.0355 ±
0.0100), despite the fact that the 2-back and 0-back blocks were collected in the same fMRI run. 
The 2-back blocks of the WM task and the gambling task both entail a higher cognitive load. In 
contrast, the 0-back blocks of WM task overlap with the motor task. These tasks are simpler 
response tasks and less cognitively demanding. Overall, these time points are positioned based 
on the similarity of the cognitive load at that time point, instead of by task. 
 
For all tasks, the average trajectories from each task are found to start near the corner where cues 
(task cues preceding each task block) reside and end in the other corner where fixation blocks 
reside. These smooth trajectories indicate that the embedding preserves proper temporal 
associations between blocks when arranging time points in discrete states. As can be expected, 
the paths of these temporal trajectories depend on the cognitive load of the task block. For 
example, the 2-back task traverses through the upper part of the manifold (higher value in terms 
of 𝛙;), and, in contrast, the 0-back task traverses through the lower part of the manifold (Figure 
2b). Moreover, as can be seen from the top 20 eigenvalues of the diffusion matrix the spectrum 
decays rapidly, which suggests that the data is low-dimensional (Figure S1). 
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Figure 2. Nonlinear embedding of fMRI time series data. a) 2sDM embedding of 6 tasks 
(relational, social, motor, gambling, emotion, working memory 2-back, and working memory 0-
back) from the HCP dataset. Four different views of the manifold are shown. Each point in these 
subplots represents a single time point and is colored by the task type. b) Averaged temporal 
trajectory of each task with the embedding colored by the corresponding brain state as the 
background. c) WM task’s 0-back and 2-back task blocks visualized separately with major cues 
and fixations points annotated. Arrows show the progression direction of the trajectory. 
Trajectory in b) and c) uses the same colormap as a). 
 
 
When projecting task fMRI time-frames into 3D space using the first three coordinates of PCA, 
no clear structure is shown from the embedding (Figure 3). The fact that 2sDM discovered the 
manifold structure, while PCA could not, validates the usage of nonlinear manifold learning 
(more detailed comparison between 2-step PCA and 2sDM embeddings are included in the 
supplementary materials, Figure S4-S7). 
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Figure 3. 2-step PCA embedding from the HCP dataset. Unlike the nonlinear embeddings, 
shown in Figure 2, no clear structure is seen for the linear embedding, which validates the usage 
of nonlinear manifold learning. 
 
Task embedding captures handcrafted features in an unsupervised manner 
 
In Figure 4a, each time point in our task embedding is colored by its subject-averaged 𝐵2, 
showing a clear pattern of decreasing 𝐵2  starting from the top left corner of the embedding; 
higher 𝐵2  at the top of the embedding (i.e., high cognitive load tasks such as social, 2back, 
relational and gambling) indicates time points of higher integration and lower 𝐵2 at the tails of 
the embedding (i.e., cues and fixations) indicates time points of higher segregation (𝑟(𝑧, 	𝐵2) =
0.610, d. f. = 3018, 𝑝 < 0.01,	where 𝑧 is the projection coordinates of points onto the diagonal of 
the triangular embedding; Figure 4b).  
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Figure 4. 2sDM embedding is related with global integration and segregation. a) 2sDM 
embedding in HCP dataset colored by the time-resolved 𝐵2. b) Scatter plot of the 𝐵2  with the 
projection onto the diagonal of the embedding structure (𝑧). Correlation of 𝑧 with 𝐵2 is shown 
with a line of best fit. Projection direction 𝑧 was determined manually as the approximate 
diagonal direction of the embedding. 
 
Operationalizing discrete, recurring brain states from task dynamics 
 
When clustering the task embedding, 𝑘 = 4 gives the largest Calinski-Harabasz score among a 
range, suggesting that the embedding has a clear interpretable structure (Figure S6). Based on the 
task contents of the temporal clusters, we labeled the four brain states as: fixation, transition, 
lower-level cognition, and higher-level cognition. Functionally reasonable and distinct patterns 
of activation during the different states are observed, e.g., canonical patterns of default mode 
network activity for the fixation state (Figure 5a). To relate these brain states to previous 
handcrafted features, we calculated the average 𝐵2  for each brain state (Figure 5b). The four 
states followed the expected patterns of integration and segregation, with the higher-level 
cognition state showing the greatest integration (𝑡 = 3.01, 𝑝 < 0.01, d. f. = 1596) and the 
fixation state showing the greatest segregation (𝑡 = 2.39, 𝑝 < 0.01, d. f. = 1420). The clustering 
results are similar with an increased number of clusters or of embedding dimensions. 
 
With the help of the four brain states, the dynamic trajectories can further reveal each task’s 
cognitive process (Figure 5c). For example, the motor task’s trajectory reveals a dynamic 
cognitive process as following: in the beginning, the individuals start from the cue state which is 
the common starting state across the other tasks. Then the individuals briefly enter the high-cog 
state, but not deep in the state and finally enter and stay in the low-cog state. Actually, it also 
reveals that on average, individuals wander towards the fixation state in the middle of the task 
block, suggesting a fatigue or practice effect. And towards the end of the task block, individuals 
return deep into the low-cog state and move towards the cue state for the next task block to start.  
 
Even for tasks like relational and social tasks that both require a certain level of high-level 
cognitive ability (Shine et al., 2016), there are differences that can be revealed by the trajectories 
(Figure 5c). The relational task starts from the transition cluster, then entered the higher-level 
cognition cluster and ends in the low-cog state, which suggests a lack of high-level cognitive 
ability involvement (adaptive to the task design) in the later stage of the relational task blocks. In 
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comparison, the social task starts near the transition cluster, goes deep into the high-cog state and 
returns to the transition state near the end of the task which suggests a constant requirement of 
higher-level cognitive ability. This trajectory view of each task enables a better understanding of 
the cognitive process and can also help in the future task designs. 
 
The transitions between states are similar for all tasks except for the motor task (which had a 
high probability of transiting into the lower-level cognition state and out of the higher-level 
cognition state; Figure 6a). Except for the WM task, which contains an equal proportion of high 
(2-back) and low (0-back) cognitive loads), dwell times for the four states exhibit a non-uniform 
distribution (𝜒' > 16.3, d. f. = 3, 𝑝 < 0.001; Figure 6b), indicating participants spent most of 
their time in certain limited states in a task-specific manner. For example, the lower-level 
cognition state occurs most frequently in the motor task, while the higher-level cognitive state 
dominates in social task time points.  
 
 

 
Figure 5 Brain states during tasks. a) Results of k-means clustering of the task manifold. 
Averaged brain activation patterns across subjects in the circled representative time points are 
shown for each brain state. b) 𝐵2 averaged over all the time points in each brain state. c) Two-
dimensional view of task trajectories with the embedding points. Trajectories are colored by each 
task and data points are colored by the brain states as in a). 
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Figure 6. Brain state dynamics differ between tasks. a) Brain state dynamics visualized as the 
Markov chain. Transition probability is visualized by the color of the directed edges. b) 
Stationary distribution probability visualized for each task and positioned by the proportion of 
higher-level cognition and lower-level cognition brain states. Chi-square test result against the 
uniform distribution is also shown. 
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Brain dynamics during rest embed onto the same recurring brain states which appeared 
during tasks 

 
Once embedded onto the task manifold, time points from the resting-state data spread across the 
whole manifold, including parts of the manifold corresponding to higher cognitive loads (Figure 
7a). To quantify the distribution of states during rest, we assigned each resting-state time point to 
one of the four previously identified brain states based on the brain state of the nearest task time 
point. As with the task data, we next calculated the brain state dwell time distribution across the 
entire resting-state scan (Figure 7b). A non-uniform dwell-time distribution is discovered, with 
fixation and transition states having a higher proportion of time points than the cognitive states 
(𝜒' = 205, d. f. = 3, 𝑝 < 0.001). Except for the lower-level cognition and the transition states in 
the social task (which have very few time points to robustly calculate entropy, see Figure 7c), all 
states exhibit higher entropy in the resting state than during a given task.  
 
In Figure S2, we plot the extension of the WM task. The 2-back and 0-back task blocks go to the 
correct higher-level cognition or lower-level cognition state respectively, while the fixation and 
cue time frames are also located in the correct brain states. The correlation between the extended 
coordinates and the coordinates from the original embedding was highly significant (𝑟 =
0.939, 𝑝 < 0.001). Holding out the other tasks produced similar results as the WM task. 
 
Replication of embedding  
 
Notably, we replicated the dimensionality reduction result using participants from the CNP 
dataset. A similar low-dimensional structure, brain states, and association with 𝐵2   (𝑟(𝜓', 	𝐵2) =
0.30, 𝑝 < 0.01, 𝑑𝑓 = 1007) were found, verifying the robustness of the observed embeddings 
(Figure 8). Moreover, the same task scans from the schizophrenia cohorts were also embedded 
separately and found to be similar to the embedding from the HCP dataset and healthy control 
cohorts in the CNP dataset (Figure S8). This laid foundation for the downstream brain dynamics 
analysis (resting-state brain dynamics) that would be based on brain states as similar brain states 
could be identified in both groups. 
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Figure 7. Resting-state extended onto the task manifold. a) Representative task activation 
patterns of each state and the neighboring resting-state activation pattern are visualized. 
Correlation of the activation between task and rest is calculated with higher correlation 
representing more accurate out-of-sample extension. b) Stationary probability distribution of the 
four brain states during resting state. c) Entropy of each brain state’s transition probability in 
different tasks. Dots are colored by tasks they represent, and the grey box plot shows the entropy 
values of resting state with BrainSync (see Methods) referenced to different individuals. 
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Figure 8. a) 2sDM embedding and k-means clustering result of CNP dataset. b) Embedding with 
the first 2 dimensions of 2sDM in CNP dataset, colored by the corresponding 𝐵2 with the same 
colormap. 

 
 

Discussion 
 

Using a novel manifold learning framework, we demonstrate that fMRI data from different tasks 
span the same low-dimensional embedding (i.e., brain states). In other words, moment-to-
moment dynamics from any of these tasks group into the same small number of representative 
patterns that are hidden from direct observation. To recover this embedding, we employed 
nonlinear methods (e.g., 2-step Diffusion Maps—2sDM) to project the fMRI data onto a 
manifold than would be possible using linear methods only. The embedding maintained proper 
temporal progression of the tasks, revealing brain states and temporal dynamics of changes in 
network integration. Further, we demonstrate that resting-state data project onto the same task 
embedding using a specially designed out-of-sample-extension method, indicating similar brain 
states are present. Finally, we validate this embedding using an independent dataset. 
 
Several other publications have organized the temporal dynamics of the brain into a low 
dimension space or into distinct brain states (Allen et al., 2014b; Saggar et al., 2018; Vidaurre et 
al., 2017) using data from resting-state or a single task to construct the embedding (Gallego et 
al., 2017; Shine et al., 2019). Together, these works suggest that a low-dimensional structure 
exists; however, it is unclear how these structures adapt to diverse cognitive loads. By projecting 
a rich repertoire of task data into a single manifold, we show that, across different tasks, parts of 
the embedding (i.e. brain states) are well characterized by network segregation (i.e. 
communication mainly within brain networks) and integration (i.e. communication mainly across 
diverse brain networks) (Deco et al., 2015). Overall, the discrete states and association with 
network segregation/integration suggest that our embedding finds an intrinsic, latent structure of 
brain dynamics. 
 
These results are in line with the theory that the brain is able to reconfigure its large-scale 
organization dynamically either between different cognitive tasks or within resting-state (Cohen 
and D'Esposito, 2016; Shine et al., 2016). Further, they emphasize that this reconfiguration is 
shared across different cognitive loads and, importantly, resting-state. In other words, the same 
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highly integrated state that characterizes a cognitively demanding task, such as a 2-back WM 
task, can be observed during resting-states and less cognitively demanding tasks, just with less 
frequency. These states can also be viewed from a dynamic system perspective (Taghia et al., 
2018). As clustering based on the eigenvectors of the normalized graph Laplacian has been used 
to find meta-stable state in the stochastic dynamical systems (Huisinga et al., 1999), the four 
brain states defined from the task scan can also be viewed as four different metastable states. 
Further, the temporal trajectories can separate different portions of tasks based on cognitive 
demand, suggesting a potential utility of the embedding for other downstream analyses of brain 
dynamics.  
 
In line with this, the dynamics between states, rather than within brain states themselves, appear 
to be the key distinguishing factor between task and rest. In support of this, how the brain 
transitions between different states is dependent on the task being performed and is less 
predictable in resting-state compared to tasks. Executing a task limits the transitions between 
states; while, during resting-state, the brain can more liberally traverse through different states. 
Though speculative, these results offer an explanation as to why task connectivity data is better 
at identifying individuals and subsequent predicting behaviors than resting-state connectivity 
data (Finn et al., 2017; Greene et al., 2018). Together, while the resting state may exhibit similar 
states as observed during task, the temporal dynamics of switching states are less predictable in 
resting state compared to task. 
 
Previous work demonstrates that brain networks fluctuate between states of low and high global 
integration during tasks as characterized by the participation coefficient (𝐵2) from sliding-
window functional connectivity. Tasks requiring higher cognitive loads, such as the 2-back 
condition in the WM task, exhibit greater integration while less cognitive load, such as the motor 
task, exhibits lower integration (Shine et al., 2016). A key drawback of these results is that they 
rely on two intermediate steps (e.g., the method used to construct dynamic functional 
connectivity and topological metrics to study), rather than the learned features from unsupervised 
methods. Together, our results suggest that the task embedding reveals latent information about 
changes in network topology without the need for handcrafted features. For example, each task 
can be effectively characterized from the proportion of time spent in lower-level and higher-level 
cognition states creating a similar ordering of task (see Figure 6b) as in (Shine et al., 2016).   
 
While resting-state fMRI is a powerful tool to map the functional organization of the brain, 
inherent limitations exist. Resting-state is often conceptualized as a single task state. Though 
emerging data, including our results, suggest that resting-state is not one single, monolithic state, 
but rather a collection of multiple states associated with different cognitive loads that also appear 
during tasks (Vidaurre et al., 2017). For example, while the majority of resting-state time points 
cluster into a single part of the manifold (such as the fixation blocks, which putatively are the 
most like “rest”), nearly a third of the time points more closely match cognitive states. Perhaps, 
more importantly different groups may have differences in “performing” rest (Buckner et al., 
2013). How best to interpret changes in resting-state connectivity in the presence of group 
differences in dynamics is still an open question.  
 
A key strength of our embedding framework is its data-driven nature. Although the only inputs 
are time-courses from task fMRI data, we demonstrated that the embedding coordinates can 
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reveal topological information originally found using dynamic functional connectivity methods 
(Shine et al., 2016). This brain topology was found without specifying common modeling 
choices in dynamic functional connectivity or fMRI, in general, such as how to model the 
functional connectivity (i.e., statistical interdependence of signals) between brain regions, an 
underlying graph/network, or even information about task stimuli (e.g., block lengths). As a 
multitude of methodological choices have been proposed to analyses (Calhoun et al., 2014; 
Hutchison et al., 2013a) (e.g., ways of estimating connectivity (Allen et al., 2014a; Chang and 
Glover, 2010; Shine et al., 2015), constructing a weighted or unweighted graph (Rubinov and 
Sporns, 2010), specific graph theory measures (Honey et al., 2007; Meunier et al., 2010; Shine et 
al., 2016; Sizemore and Bassett, 2018), our embedding framework provides an end-to-end, data-
driven approach without the need for modeling choices to investigate brain dynamics. More 
generally, handcrafted features are being substituted by more automatic feature learning-based 
nonlinear methods such as deep learning and nonlinear embedding methods (Hamilton et al., 
2017). Our results show a specific scenario in which “let the data speak for itself” is an 
achievable option for modeling fMRI data.  
 
A limitation of this work is that the embedding can only “look under the light.” That is to say 
that, while a rich amount of task data was needed to create the embedding, we could not include 
every possible task in creating the embedding. Indeed, it is highly likely that many more than 
four brain states exist and that we haven’t detected every single one. A finer grade delineation of 
states, probably through further advancement in non-linear embedding methods, is a needed 
future direction of work. Moreover, although here brain states are defined based on the k-means 
clustering result, it does not rule out other ways to define brain states. For example, at each time 
point, the brain can also be modeled as being at different states with distinct probabilities 
(Vidaurre et al., 2017), which can be achieved by a fuzzy-clustering algorithm. Moreover, the 
brain state can also be characterized by the temporal trajectory where trajectory clustering 
technique can be used to cluster trajectories into trajectory-based brain states, which takes 
account the temporal information of the embedding (Lee et al., 2007). The k-means clustering 
way of defining brain state is only one of the ways to summarize information of the embedding 
and serves as a proof-of-concept that our embedding contains information that is relevant to 
brain dynamics. Nevertheless, the observed task embedding was similar across two different 
input datasets with different tasks, suggesting that embedding is general to factors such as 
scanner, task, processing, and sample size.  
 
One of the assumptions of 2sDM is that the time frames from all individuals are temporally 
aligned so that a group-average embedding of the time frames can be obtained. However, this 
does not rule out the applicability of the task scans that has different task block lengths/orders 
across individuals (e.g., language task in the HCP dataset) or the resting-state scans, which we 
have demonstrated in the paper by applying BrainSync. Thus, task scans with distinct block 
lengths/orders can also be embedded with 2sDM by applying BrainSync first. It is worth noting 
that as BrainSync requires a specific individual chosen as the reference, by aligning all the other 
individuals to the same selected individual, the group-average embedding then will approximate 
a cleaner temporal embedding of the selected individual, which can be used to investigate 
individual-level dynamics. 
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The ability to use data-driven methods to clearly identify a low-dimensional space of brain 
dynamics, regardless of how the brain is engaged during imaging, indicates that these brain 
dynamics are robust and reliable across conditions in addition to being unique. Together, these 
advances suggest that analysis of individual fMRI data from multiple cognitive tasks in a low-
dimensional space is possible, and indeed, desirable.  
 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.25.398693doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.25.398693
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 
Ahrens, M.B., Li, J.M., Orger, M.B., Robson, D.N., Schier, A.F., Engert, F., Portugues, R., 2012. 
Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature 485, 471-477. 
Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., Calhoun, V.D., 2014a. Tracking 
whole-brain connectivity dynamics in the resting state. Cerebral cortex 24, 663-676. 
Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., Calhoun, V.D., 2014b. Tracking 
whole-brain connectivity dynamics in the resting state. Cerebral Cortex. 
Bengio, Y., Courville, A., Vincent, P., 2013. Representation learning: A review and new 
perspectives. IEEE transactions on pattern analysis and machine intelligence 35, 1798-1828. 
Buckner, R.L., Krienen, F.M., Yeo, B.T.T., 2013. Opportunities and limitations of intrinsic 
functional connectivity MRI. Nature neuroscience. 
Calhoun, V.D., Miller, R., Pearlson, G., Adali, T., 2014. The chronnectome: time-varying 
connectivity networks as the next frontier in fMRI data discovery. Neuron 84, 262-274. 
Caliñski, T., Harabasz, J., 1974. A Dendrite Method Foe Cluster Analysis. Communications in 
Statistics. 
Chang, C., Glover, G.H., 2010. Time–frequency dynamics of resting-state brain connectivity 
measured with fMRI. NeuroImage 50, 81-98. 
Churchland, M.M., Cunningham, J.P., Kaufman, M.T., Foster, J.D., Nuyujukian, P., Ryu, S.I., 
Shenoy, K.V., 2012. Neural population dynamics during reaching. Nature 487, 51-56. 
Cohen, J.R., D'Esposito, M., 2016. The Segregation and Integration of Distinct Brain Networks 
and Their Relationship to Cognition. J Neurosci 36, 12083-12094. 
Coifman, R.R., Lafon, S., 2006. Diffusion maps. pp. 5-30. 
Cunningham, J.P., Byron, M.Y., 2014. Dimensionality reduction for large-scale neural 
recordings. Nature neuroscience 17, 1500. 
Deco, G., Tononi, G., Boly, M., Kringelbach, M.L., 2015. Rethinking segregation and 
integration: contributions of whole-brain modelling. Nat Rev Neurosci 16, 430-439. 
Finn, E.S., Scheinost, D., Finn, D.M., Shen, X., Papademetris, X., Constable, R.T., 2017. Can 
brain state be manipulated to emphasize individual differences in functional connectivity? 
NeuroImage. 
Finn, E.S., Shen, X., Scheinost, D., Rosenberg, M.D., Huang, J., Chun, M.M., Papademetris, X., 
Constable, R.T., 2015. Functional connectome fingerprinting: Identifying individuals using 
patterns of brain connectivity. Nature neuroscience. Nature Publishing Group, pp. 1664-1671. 
Fowlkes, C., Belongie, S., Chung, F., Malik, J., 2004. Spectral grouping using the Nystrom 
method. IEEE Trans Pattern Anal Mach Intell 26, 214-225. 
Gallego, J.A., Perich, M.G., Miller, L.E., Solla, S.A., 2017. Neural manifolds for the control of 
movement. Neuron 94, 978-984. 
Gao, P., Ganguli, S., 2015. On simplicity and complexity in the brave new world of large-scale 
neuroscience. Current opinion in neurobiology 32, 148-155. 
Gao, S., Mishne, G., Scheinost, D., 2019. A Hierarchical Manifold Learning Framework for 
High-Dimensional Neuroimaging Data. Lecture Notes in Computer Science (including subseries 
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer 
International Publishing, pp. 631-643. 
Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, 
J., Jbabdi, S., Webster, M., Polimeni, J.R., Van Essen, D.C., Jenkinson, M., Consortium, W.-
M.H., 2013. The minimal preprocessing pipelines for the Human Connectome Project. 
NeuroImage 80, 105-124. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.25.398693doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.25.398693
http://creativecommons.org/licenses/by-nc-nd/4.0/


Greene, A.S., Gao, S., Scheinost, D., Constable, R.T., 2018. Task-induced brain state 
manipulation improves prediction of individual traits. Nature Communications 9. 
Hamilton, W.L., Ying, R., Leskovec, J., 2017. Representation learning on graphs: Methods and 
applications. arXiv preprint arXiv:1709.05584. 
Haxby, J.V., Guntupalli, J.S., Connolly, A.C., Halchenko, Y.O., Conroy, B.R., Gobbini, M.I., 
Hanke, M., Ramadge, P.J., 2011. A common, high-dimensional model of the representational 
space in human ventral temporal cortex. Neuron 72, 404-416. 
Honey, C.J., Kotter, R., Breakspear, M., Sporns, O., 2007. Network structure of cerebral cortex 
shapes functional connectivity on multiple time scales. Proc Natl Acad Sci U S A 104, 10240-
10245. 
Huisinga, W., Best, C., Roitzsch, R., Schütte, C., Cordes, F., 1999. From simulation data to 
conformational ensembles: Structure and dynamics‐based methods. Journal of computational 
chemistry 20, 1760-1774. 
Hutchison, R.M., Womelsdorf, T., Allen, E.A., Bandettini, P.A., Calhoun, V.D., Corbetta, M., 
Della Penna, S., Duyn, J.H., Glover, G.H., Gonzalez-Castillo, J., Handwerker, D.A., Keilholz, S., 
Kiviniemi, V., Leopold, D.A., de Pasquale, F., Sporns, O., Walter, M., Chang, C., 2013a. 
Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80, 360-378. 
Hutchison, R.M., Womelsdorf, T., Allen, E.A., Bandettini, P.A., Calhoun, V.D., Corbetta, M., 
Della Penna, S., Duyn, J.H., Glover, G.H., Gonzalez-Castillo, J., Handwerker, D.A., Keilholz, S., 
Kiviniemi, V., Leopold, D.A., de Pasquale, F., Sporns, O., Walter, M., Chang, C., 2013b. 
Dynamic functional connectivity: Promise, issues, and interpretations. NeuroImage. 
Jorgenson, L.A., Newsome, W., Anderson, D.J., Bargmann, C.I., Brown, E.N., Deisseroth, K., 
Donoghue, J.P., Hudson, K.L., Ling, G.S.F., Macleish, P.R., Marder, E., Normann, R.A., Sanes, 
J.R., Schnitzer, M.J., Sejnowski, T.J., Tank, D.W., Tsien, R.Y., Ugurbil, K., Wingfield, J.C., 
2015. The BRAIN initiative: Developing technology to catalyse neuroscience discovery. 
Philosophical Transactions of the Royal Society B: Biological Sciences. 
Joshi, A., Scheinost, D., Okuda, H., Belhachemi, D., Murphy, I., Staib, L.H., Papademetris, X., 
2011. Unified framework for development, deployment and robust testing of neuroimaging 
algorithms. Neuroinformatics 9, 69-84. 
Joshi, A.A., Chong, M., Li, J., Choi, S., Leahy, R.M., 2018. Are you thinking what I'm thinking? 
Synchronization of resting fMRI time-series across subjects. NeuroImage 172, 740-752. 
Kabsch, W., 1976. A solution for the best rotation to relate two sets of vectors. Acta 
Crystallographica Section A 32, 922-923. 
Kobak, D., Brendel, W., Constantinidis, C., Feierstein, C.E., Kepecs, A., Mainen, Z.F., Qi, X.L., 
Romo, R., Uchida, N., Machens, C.K., 2016. Demixed principal component analysis of neural 
population data. Elife 5. 
Lee, J.-G., Han, J., Whang, K.-Y., 2007. Trajectory clustering: a partition-and-group framework. 
Proceedings of the 2007 ACM SIGMOD international conference on Management of data, pp. 
593-604. 
Lutkenhoff, E.S., Rosenberg, M., Chiang, J., Zhang, K., Pickard, J.D., Owen, A.M., Monti, 
M.M., 2014. Optimized brain extraction for pathological brains (optiBET). PLoS One 9, 
e115551. 
Margulies, D.S., Ghosh, S.S., Goulas, A., Falkiewicz, M., Huntenburg, J.M., Langs, G., Bezgin, 
G., Eickhoff, S.B., Castellanos, F.X., Petrides, M., 2016. Situating the default-mode network 
along a principal gradient of macroscale cortical organization. Proceedings of the National 
Academy of Sciences 113, 12574-12579. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.25.398693doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.25.398693
http://creativecommons.org/licenses/by-nc-nd/4.0/


Meunier, D., Lambiotte, R., Bullmore, E.T., 2010. Modular and hierarchically modular 
organization of brain networks. Front Neurosci 4, 200. 
Mishne, G., Talmon, R., Meir, R., Schiller, J., Lavzin, M., Dubin, U., Coifman, R.R., 2016. 
Hierarchical coupled-geometry analysis for neuronal structure and activity pattern discovery. 
IEEE Journal of Selected Topics in Signal Processing 10, 1238-1253. 
Monti, R.P., Lorenz, R., Hellyer, P., Leech, R., Anagnostopoulos, C., Montana, G., 2017. 
Decoding time-varying functional connectivity networks via linear graph embedding methods. 
Frontiers in Computational Neuroscience. 
Nenning, K.H., Xu, T., Schwartz, E., Arroyo, J., Woehrer, A., Franco, A.R., Vogelstein, J.T., 
Margulies, D.S., Liu, H., Smallwood, J., Milham, M.P., Langs, G., 2020. Joint embedding: A 
scalable alignment to compare individuals in a connectivity space. Neuroimage 222, 117232. 
Poldrack, R.A., Congdon, E., Triplett, W., Gorgolewski, K.J., Karlsgodt, K.H., Mumford, J.A., 
Sabb, F.W., Freimer, N.B., London, E.D., Cannon, T.D., Bilder, R.M., 2016. A phenome-wide 
examination of neural and cognitive function. Scientific Data. 
Preti, M.G., Bolton, T.A., Van De Ville, D., 2017. The dynamic functional connectome: State-
of-the-art and perspectives. NeuroImage. 
Rubinov, M., Sporns, O., 2010. Complex network measures of brain connectivity: uses and 
interpretations. NeuroImage 52, 1059-1069. 
Saggar, M., Sporns, O., Gonzalez-Castillo, J., Bandettini, P.A., Carlsson, G., Glover, G., Reiss, 
A.L., 2018. Towards a new approach to reveal dynamical organization of the brain using 
topological data analysis. Nature Communications 9, 1-14. 
Santhanam, G., Yu, B.M., Gilja, V., Ryu, S.I., Afshar, A., Sahani, M., Shenoy, K.V., 2009. 
Factor-analysis methods for higher-performance neural prostheses. J Neurophysiol 102, 1315-
1330. 
Scheinost, D., Kwon, S.H., Lacadie, C., Vohr, B.R., Schneider, K.C., Papademetris, X., 
Constable, R.T., Ment, L.R., 2017. Alterations in Anatomical Covariance in the Prematurely 
Born. Cerebral Cortex 27, 534-543. 
Shen, X., Tokoglu, F., Papademetris, X., Constable, R.T., 2013. Groupwise whole-brain 
parcellation from resting-state fMRI data for network node identification. NeuroImage 82, 403-
415. 
Shine, J.M., Bissett, P.G., Bell, P.T., Koyejo, O., Balsters, J.H., Gorgolewski, K.J., Moodie, 
C.A., Poldrack, R.A., 2016. The Dynamics of Functional Brain Networks: Integrated Network 
States during Cognitive Task Performance. Neuron. 
Shine, J.M., Breakspear, M., Bell, P.T., Ehgoetz Martens, K.A., Shine, R., Koyejo, O., Sporns, 
O., Poldrack, R.A., 2019. Human cognition involves the dynamic integration of neural activity 
and neuromodulatory systems. Nat Neurosci 22, 289-296. 
Shine, J.M., Koyejo, O., Bell, P.T., Gorgolewski, K.J., Gilat, M., Poldrack, R.A., 2015. 
Estimation of dynamic functional connectivity using Multiplication of Temporal Derivatives. 
Neuroimage 122, 399-407. 
Sizemore, A.E., Bassett, D.S., 2018. Dynamic graph metrics: Tutorial, toolbox, and tale. 
NeuroImage 180, 417-427. 
Taghia, J., Cai, W., Ryali, S., Kochalka, J., Nicholas, J., Chen, T., Menon, V., 2018. Uncovering 
hidden brain state dynamics that regulate performance and decision-making during cognition. 
Nature Communications 9, 1-19. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.25.398693doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.25.398693
http://creativecommons.org/licenses/by-nc-nd/4.0/


Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E.J., Yacoub, E., Ugurbil, K., 
Consortium, W.-M.H.C.P., 2013. The WU-Minn human connectome project: an overview. 
NeuroImage 80, 62-79. 
Vidaurre, D., Smith, S.M., Woolrich, M.W., 2017. Brain network dynamics are hierarchically 
organized in time. Proceedings of the National Academy of Sciences 114, 12827-12832. 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.25.398693doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.25.398693
http://creativecommons.org/licenses/by-nc-nd/4.0/

