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Abstract

The current paper proposes a method to estimate phase to phase cross-frequency

coupling between brain areas, applied to broadband signals, without any a priori

hypothesis about the frequency of the synchronized components. N:m synchro-

nization is the only form of cross-frequency synchronization that allows the

exchange of information at the time resolution of the faster signal, hence likely

to play a fundamental role in large-scale coordination of brain activity. The pro-

posed method, named cross-frequency phase linearity measurement (CF-PLM),

builds and expands upon the phase linearity measurement, an iso-frequency

connectivity metrics previously published by our group. The main idea lies in

using the shape of the interferometric spectrum of the two analyzed signals in

order to estimate the strength of cross-frequency coupling. Here, we demon-

strate that the CF-PLM successfully retrieves the (different) frequencies of the

original broad-band signals involved in the connectivity process. Furthermore,

if the broadband signal has some frequency components that are synchronized

in iso-frequency and some others that are synchronized in cross-frequency, our
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methodology can successfully disentangle them and describe the behaviour of

each frequency component separately. We first provide a theoretical explanation

of the metrics. Then, we test the proposed metric on simulated data from cou-

pled oscillators synchronized in iso- and cross-frequency (using both Rössler and

Kuramoto oscillator models), and subsequently apply it on real data from brain

activity, using source-reconstructed Magnetoencephalography (MEG) data. In

the synthetic data, our results show reliable estimates even in the presence of

noise and limited sample sizes. In the real signals, components synchronized in

cross-frequency are retrieved, together with their oscillation frequencies. All in

all, our method is useful to estimate n:m synchronization, based solely on the

phase of the signals (independently of the amplitude), and no a-priori hypoth-

esis is available about the expected frequencies. Our method can be exploited

to more accurately describe patterns of cross-frequency synchronization and

determine the central frequencies involved in the coupling.

Keywords: cross-frequency synchronization, phase linearity measurement,

magnetoencephalography, electroencephalography, Kuramoto oscillators,

Rössler oscillators.

1. Introduction

Brain areas need to constantly transfer information among themselves to

put in place complex behavioural responses to the environment [1]. Functional

connectivity is defined as the presence of statistical dependencies between the

time-series representing the activity of brain regions [2, 3]. A variety of mecha-5

nisms through which this communication occurs are summarized in [4], involving

only the phase [5] or also amplitude [6]. Each of these phenomena would underlie

a specific neuro-physiological mechanism (for a review, see [7]). In the litera-

ture, a wide number of metrics have been proposed to detect each of these kinds

of communication [8, 9]. Furthermore, communication between brain areas can10

occur either in iso-frequency or in cross-frequency. Cross-frequency coupling

(CFC) is the interaction occurring between neuronal populations operating at
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different frequencies. It has been postulated that this form of synchronization

could represent a suitable option to allow large-scale synchronizations across

distant areas in the brain [10, 11], yielding the integration of distributed infor-15

mation [12]. Moreover, definite (both frequency and spatial) patterns of CFC

have been shown to be the neuro-physiological substrate underlying the recruit-

ment of areas needed for the execution of tasks such as specific kinds of learning

[13, 14, 15], segregation of interfering inputs [16], perception [17, 18], encoding

of reward [19] or sensory processing [20]. In human brain activity, two main20

forms of cross-frequency coupling have been described so far. Firstly, the phase

of slow oscillations can modulate the amplitude of faster activity [21, 22]. Fur-

thermore, phase-phase synchronization has also been described, whereby the

phases of “n” cycles of a signal are locked to “m” phase cycles of another signal

[5]. This kind of cross-frequency communication, classically defined as n:m syn-25

chronization, has been observed previously in human brain data [23] and is the

only mechanism capable of supporting CFC at high temporal resolution [24].

Several metrics have been developed to capture the presence of cross-frequency

communication. For instance, phase-amplitude coupling [9] can successfully de-

tect the presence of nested-synchronization, while metrics such as bicoherence30

[25] can detect cross-frequency, phase-phase coupling. However, bicoherence

is not a pure phase-based metrics as its value depends also on the amplitude,

preventing an unambiguous interpretation of the involved neuronal mechanisms

[22]. The biphase-locking value, while purely based on the phase, also provides

an estimate of the phase-amplitude coupling [26]. Metrics such as the phase-35

locking factor [22] detect pure phase to phase locking, but require an accurate

a priori hypothesis about the frequencies involved in cross-frequency synchro-

nization. The procedure proposed by Cohen [27], on the other hand, while not

requiring any a priori hypothesis, focuses on phase-amplitude coupling.

Each approach has its own advantages and drawbacks and, when one is40

dealing with specific task-related data, given that a specific a priori hypothesis is

available about the frequencies across which synchronization might be occurring,

the application of these metrics is effective [12]. However, when dealing with

3
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resting-state data, the situation changes because the signals contain several

frequency bandwidths interacting with each other (possibly with more than one45

of the mentioned mechanisms) at once.

Restricting the analysis to phase-to-phase coupling, we have to consider that

the bandwidth of the involved signals is so broad and complex to potentially al-

low the simultaneous occurrence of iso- and cross- frequency synchronizations at

once [12, 6, 11, 28]. Disentangling these complex signals has proven to be elusive50

when one does not know a priori if, when and where cross-frequency is occur-

ring within the brain. The aim of this paper is to develop a reliable estimation

of phase-phase cross-frequency communication between the broadband signals

of two brain regions, without a priori hypothesis on the frequencies at which

such a synchronization might occur. To do this, we build and expand upon the55

phase linearity measurement (PLM), an iso-frequency phase-based connectivity

metrics recently developed by our group [29].

One issue is related to the amount of potential combinations of frequen-

cies and areas that one should test in order to look for CFC throughout the

brain and throughout the frequency spectrum. Indeed, an attempt to iden-60

tify the frequency at which cross-frequency synchronization is present from the

data by selecting a number of combinations of possible frequencies has been

done [30],using the level of synchronization across trials in order to statistically

estimate where cross-frequency synchronization was present.

To this regard, a new method has been recently proposed, that does not re-65

quire any a priori hypothesis and can estimate cross-frequency synchronization

[31]. Such an approach estimates from the data the “candidate frequencies”

where the CFC might be occurring. However, when performing this procedure,

a maximization of the correlation between the signals is performed, hence rein-

troducing a form of dependency from the amplitude. The issue of the commu-70

nication between different frequencies has also been addressed using a multiplex

network approach [32]. The idea is that each layer of the multiplex network

represents, at a specific frequency, the iso-frequency correlations between brain

areas. However, the cross-layers links are not estimated from the data. With

4
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the methodology proposed in this paper, we aim at providing a data-informed75

estimate of which brain areas and frequencies are involved in cross-frequency

phase-to-phase coupling. The novelty of this work lies in the fact that no a

priori information is required about the frequencies and the areas involved in

the CFC. On the contrary, our technique allows to start from wide signal spec-

trum and to detect if cross-frequency is occurring and, if so, to identify which80

frequency components are involved per each signal. Firstly, we provide a the-

oretical description of the metric. Secondly, the metric is tested in a number

of synthetic analytical models. We first used Rössler oscillators, which capture

the non-linearities of the brain. Secondly, in order to simulate the simultaneous

presence of iso and cross frequency synchronization, we implemented several85

Kuramoto oscillators, and introduced a lag between the generated signals. This

procedure is known to produce the appearance of synchronization at a lower fre-

quency bandwidth as compared to the original signals [33]. Hence, we tested the

ability of the newly proposed methodology, namely cross-frequency phase linear-

ity measurement (CF-PLM), to detect and disentangle both kinds of synchro-90

nism. Furthermore, we mixed the previously produced signals linearly, in order

to obtain a case in which both iso-frequency and cross-frequency coupling are

simultaneously present, and we tested if the newly proposed approach can dis-

entangle such a situation. Finally, we tested the metrics on source-reconstructed

MEG data (acquired by the MEG laboratory in Naples), and identified brain95

areas where cross-frequency is present that are spatially consistent across the

tested subjects.

2. Methods

2.1. Definition of the interferometric signal

Let us define x(t) and y(t) as the time series related to two brain areas. By100

applying the Hilbert transform, their analytical expression is obtained:

Ax(t)eiφx(t) = x(t) + x̃(t) ,

5
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Ay(t)eiφy(t) = y(t) + ỹ(t) . (1)

where variables A and φ represent the amplitude and the phase, respectively.

According to this mathematical description, signals generated by brain areas

can be modeled as complex phasors with time-varying amplitude and phase.

According to [29], their phase-to-phase connectivity can be measured via a three105

steps procedure. Firstly, one extracts the normalized interferometric component

of the two signals z(t) by computing:

z(t) =
x(t)y′(t)

|x(t)||y(t)|
= ei∆φ(t) , (2)

where the symbol ′ indicates the complex conjugate. Note that the com-

plex interterometric function z(t) has an amplitude equal to 1 (thus it is inde-

pendent of the amplitudes of the signals Ax(t) and Ay(t)), and a phase term110

∆φ(t) = φx(t) − φy(t) ∈ [−π, π[, which is the time-varying phase difference

between the phases of x(t) and y(t). It has been shown that one can exploit

the behavior of the term ∆φ(t) in order to measure phase connectivity between

signals. Hence, the frequency analysis of the function z(t) is carried out. Three

different conditions could occur, as reported in Figure 1. In case of no synchrony115

between the sources, the interferometric phase values appear to be irregularly

spread in the [−π, π[ range (blue line in Figure 1). In case of phase coupling, the

term ∆φ(t) will be characterized by a linear trend. That is, if the two sources

have a similar oscillation frequency, the phase of the interferometric signal will

be constant or slowly varying in time (red line in Figure 1) while in case of two120

sources oscillating at different frequencies, a slope will appear (yellow line in

Figure 1). Once the complex signal z(t) has been computed, the second step

for measuring the coupling consists in computing its power spectrum by means

of the Fourier transform:

SZ(f) =

∣∣∣∣∣
∫ T

0

z(t)e−i2πftdt

∣∣∣∣∣
2

, (3)

where [0, T ] is the observation period. In order to have a more reliable125

evaluation of the PSD function, we implemented the periodogram estimator

6
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Figure 1: Interferometric phase signals in three different conditions: independent sources (blue

line), coupled iso-frequency sources (red line) and coupled sources at different frequencies

(yellow line).

with a rectangular window and confidence interval of 0.95 for the computation

of SZ(f) [34]. The shape of the power spectrum is strongly influenced by the

strength of the coupling occurring between the two sources and by their central

frequency, and hence it can be exploited to estimate them [29].130

2.2. Phase Linearity Measurement

In Figure 2, the power spectra occurring in the different scenarios are repre-

sented. The blue line does not show any peak, in accordance with the absence

of coupling between the sources. This means that the power spectrum of z(t) is

almost flat (blu line of Figure 2) if its phase term ∆φ(t) irregularly spreads in135

the [−π, π] range (blue line of Figure 1).

The red line shows an evident power peak around f = 0, which is due to a

linear behavior of the interferometric phase ∆φ(t), i.e.:

∆φ(t) = ϕxy + ∆ft , (4)

where the term ∆f is related to the different resonance frequencies of the two

sources. In the case of iso-frequency coupling (IFC), such a term is relatively140

small, resulting in a peak centered around f = 0. In this case, the last step for

measuring connectivity strength consists in computing the percentage of power

7
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Figure 2: Power spectral densities of the interferometric components(i.e. the power spectrum

of the phases of the interferometric signal) in three different conditions: independent sources

(blue line), coupled iso-frequency sources (red line), coupled sources at different frequencies

(yellow line). The presence of a power peak denotes the coupling between sources, while its

position indicates the difference in their resonant frequencies.

within a narrow band [−B,B] around f = 0:

PLM =

∫ B
−B SZ(f)df∫∞
−∞ SZ(f)df

. (5)

In [29] it has been shown that a B value of 1 Hz is a well balanced trade-

off between the discrimination capability and the estimation noise of the algo-145

rithm. The PLM approach has shown a good performance in measuring the

iso-frequency coupling, i.e. in distinguishing between the case of the blue line

and the red line in Figure 2. Nevertheless, it has to be modified in order to

make it effective in analyzing the last case, the cross-frequency coupling.

2.3. Cross-frequency PLM150

In the CFC condition, a non-minimal frequency difference ∆f occurs be-

tween the coupled components of the sources, and such difference produces a

shift in the interferometric spectrum, as shown by the yellow curve of Figure

2. In this case, the coupling is evident due to the presence of the peak, which

is now centered at f = ∆f (6 Hz in the reported case) instead of f = 0. This155

difference makes the PLM (Eq. (5)) unable to capture the coupling, as the

8
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power is no longer concentrated in the [−B,B] band. One should notice that

the knowledge of the frequency difference ∆f would solve the problem, as the

integration could be shifted accordingly into the [∆f − B,∆f + B] frequency

range. However, this kind of a priori knowledge is not available at all times,160

as it is often the case in resting-state as well as in many task-related settings.

This situation can be handled by looking for maxima (i.e. power peaks) in

the interferometric power spectrum SZ(f). Once a local maximum is identified

(besides the one centered in 0), its power and position can be easily measured.

This is what the proposed methodology implements. In other words, once the165

PSD function of Eq. (3) is computed, the global maximum is identified. By

retrieving its position, the difference between the two sources central frequencies

∆f is identified. Subsequently, the coupling strength is measured by adapting

the upper integral of Eq. (5), i.e.:

CF-PLM =

∫∆f+B

∆f−B SZ(f)df∫∞
−∞ SZ(f)df

. (6)

However, the provided information concerns the frequency difference be-170

tween the two sources, the central frequencies of the coupled components still

have to be determined. Hence, the last step is to identify the oscillation fre-

quencies of the two components involved in the CFC. To this aim, a band-stop

Gaussian-shaped frequency filter has been adopted. The stop band is centered

at fH and is 2B large. The central frequency fH is moved in order to scan the175

whole frequency range of the acquired signals, e.g. the [0.5, 48] Hz range, as

reported in Figure 3 (top). Let us focus on the signal of the first source (i.e.

x(t) of Eq. (1)). Once the filter is overlapped to frequency components involved

in the coupling and removes them, the peak of the interferometric PSD SZ(f)

disappears, as shown in Figure 3 (center). The filter position fH will reveal the180

frequency fxof x(t) involved in the coupling. The same process is repeated for

the second source y(t) for the identification of fy, according to Figure 3 (bot-

tom). After the frequency scans, the two central frequencies of the components

involved in the CFC fx and fy are identified, while the amount of coupling is

related to the peak energy and is measured via Eq. (6).185

9
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3. Results

The proposed methodology has been tested on both synthetic and real

datasets. In case of simulated data, two approaches have been adopted for

generating the cross-frequency coupled signals, exploiting Rössler attractors190

and Kuramoto oscillators, respectively. In more detail, the sensibility of the

CF-PLM metrics to coupling strength has been analyzed by means of Rössler

attractors signals to which a frequency shift has been applied. Furthermore, a

modified version of the Kuramoto oscillators implementing signals with differ-

ent central frequencies has been considered, in order to test the ability of the195

CF-PLM to identify the two frequencies involved in the coupling. As a third

analysis, real data acquisitions have been considered for the final validation of

the approach.

3.1. Rössler attractors

Two time series have been generated according to the model [35]:200

ẋ1,2 = −2πf1,2y1,2 − z1,2 + ξ1,2 + c(x2,1 − x1,2)

ẏ1,2 = 2πf1,2x1,2 + 0.15y1,2

ż1,2 = 0.2 + z1,2(x1,2 − 10) (7)

with coupling strength c varying between 0 and 0.04. A resonance frequency

f1 equal to 10 Hz has been chosen, while the duration and the sampling interval

have been set equal to 625 Hz and 420 s, respectively. The two coupled time

series x(t) and y(t) have been generated with a central frequency f1. Subse-

quently, the cross-frequency has been simulated by applying a frequency shift to205

the second attractor y(t) via the modulation property of the Fourier transform:

y∆f (t) = y(t)e−i2π∆ft . (8)

For this analysis, we considered ∆f = 7 Hz. The CF-PLM has been com-

puted between x(t) and y∆f (t). Several analyses have been conducted aiming at

10
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Figure 3: Scheme of the procedure for the identification of frequencies involved in the coupling.

When the frequency stop filters are not overlapped to the frequencies involved in the coupling,

the peak in the interferometric PSD is present (top). When one filter overlaps with the

frequency of the first (center) or the second source (bottom), the peak disappears and there

is a reduction in the power.
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evaluating the sensitivity of the proposed metrics with respect to the coupling

strength of the attractors, the SNR and the frequency shift. In Figure 4, the210

values measured by the CF-PLM as a function of attractor’s coupling strength

are reported in case of different SNR levels (using white, additive noise). In

more detail, a Monte Carlo simulation with 50 iterations has been implemented

and the mean values are reported. As expected, the CF-PLM value increases

as a function of the coupling strenght, for each of the considered noise levels.215

Moreover, we tested the CF-PLM in case of several frequency shifts, obtaining

the same curves reported in Figure 4.

Figure 4: Mean values of CF-PLM measured in case of two Rössler oscillators varying their

coupling strength from 0 (no coupling) to 0.04 (high coupling). Results are reported in case

of different SNR values between 0 dB and 30 dB.

3.2. Kuramoto oscillators

Three mutually coupled Kuramoto oscillators, namely s1(t), s2(t) and s3(t),

have been generated according to the following model [36]:220

dθn
dt

= 2πfn + k
3∑
p=1

Csin(θp(t− τ)− θn(t)) (9)

with n = 1, 2, 3, τ = 0.6 s and C = 1. The central frequencies have been set

equal to 10 Hz, 10 Hz and 17 Hz, respectively. The first oscillator (s1(t), f = 10

12
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Hz) has been compared to the second one (s2(t), f = 10 Hz), to the third one

(s3(t), f = 17 Hz) and to the sum of the last two (s2(t) + s3(t), f = 10 Hz and

17 Hz). The three PSDs of the interferometric signals SZ(f) are reported in225

Figure 5. It is evident that iso-frequency synchronization is correctly measured

in the case of two 10 Hz oscillators (the power peak centered at 0 Hz of Figure

5a), as well as the cross-frequency synchronization occurring between s1(t) and

s3(t) (the power peak centered around -7 Hz of Figure 5b). Importantly, the case

of multiple components simultaneously synchronized in iso and cross-frequency230

is correctly handled, with the two power peaks positioned at 0 Hz and -7 Hz in

Figure 5c.

Since the Kuramoto oscillators are coupled with a time delay between them,

the frequency shift depends not only on the natural frequencies of each oscillator

but also on the coupling strength between them [37, 38]. In Figure 6 we show235

that the position of the interferometric peak is shifted as a function of the

coupling strength, thus validating the existence of a cross-frequency interaction

between the oscillators.In other words, this shows that the presence of synchrony,

at the frequency that is predicted theoretically, is captured by the metric (as

opposed to merely be capturing n:m phase relationships, whose frequencies are240

not expected to be dependent from the coupling strength).

Let us now analyze how the frequencies involved in the connectivity process

are identified. According to the processing scheme previously described and

reported in Figure 3, two stop-band filters are implemented in the frequency

domain. The peak power reduction is computed when moving the central fre-245

quencies of these filters within the [0, 20] Hz range. Results are reported in

Figure 7 for all the considered cases. When the filter removes from the first

signal the frequencies involved in the coupling, a power reduction is measured

in the PSD peak. As a consequence, a horizontal dark line will appear in the im-

ages of Figure 7. Analogously, a vertical line will appear when the corresponding250

frequency of the second source is removed. The result is a cross-shaped image,

with the center identifying the two frequencies involved in the coupling. By

looking at Figure 7, it is evident that the maximum power reduction appears

13
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(a) |SZ,I(f)|, iso-freq. coupling. (b) |SZ,C(f)|, cross-freq coupling.

(c) |SZ,IC(f)|, iso-freq and cross-freq.

coupling.

Figure 5: Power spectra of the interferometric signals in case of coupled Kuramoto oscillators:

iso-frequency (a), cross-frequency (b), iso and cross-frequency (c).

14
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Figure 6: Position of the interferometric peak while varying the global coupling strength of

two Kuramoto oscillators.

at (10, 10) Hz in the case of s1(t), s2(t) coupling, at (10, 17) Hz in the case of

s1(t), s3(t) coupling, while in the simultaneous iso and cross-frequency coupling255

two couples are correctly identified at (10, 10) Hz and (10, 17) Hz, respectively.

All these results are in accordance with what we expected, as the procedure

correctly estimates both the connectivity strength and the oscillator frequencies

involved in the coupling from the interferometric spectrum.

In order to have a benchmark, the dual-frequency coherence (DFC) [39],260

which is a normalized version of the second order bispectrum [40], has been

implemented. Given the two acquired signals x(t) and y(t) and their Fourier

transform X(ω) and Y (ω), the DFC is defined as:

DCF (ω1, ω2) =
|X(ω1)Y ′(ω2)|2

[X(ω1)X ′(ω1)][Y (ω2)Y ′(ω2)]
, (10)

We computed the DFC for ω1 and ω2 in the [1, 20] Hz range in case of the

CFC Kuramoto oscillators, obtaining the result reported in Figure 8. Compared265

to Figure 7b, it is evident that the metrics is less effective in determining the

frequencies involved in the coupling as two maxima are present at a distance of

about 1 Hz.

15
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(a) IFC. (b) CFC.

(c) IFC and CFC.

Figure 7: Results of the analysis for the identification of frequencies involved in the coupling in

case of different Kuramoto oscillators: iso-frequency (a), cross-frequency (b), and simultaneous

iso- and cross- frequency (c). The center of each cross identifies the frequencies of the two

oscillators
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Figure 8: Dual-frequency coherence results in case of CFC Kuramoto oscillators.

3.3. Real data

3.3.1. Acquisition and preprocessing270

The acquisitions used for the analysis are from healthy subjects acquired at

the MEG facility in Naples. The detailed procedure used for the processing of

the acquisitions has been described in [41].

In brief, subjects were seated in a 163-magnetometers MEG system placed

in a magnetically shielded room (AtB Biomag UG - Ulm - Germany). The brain275

activity was recorded twice for 3.5 minutes, with a small break to minimize the

chances of drowsiness. After the anti-aliasing filter, the data were sampled at

1024 Hz, and filtered between 0.5 and 48 Hz with a 4th order Butterworth IIR

band-pass filter [42]. During the acquisitions, the electrocardiogram (ECG) and

the electrooculogram (EOG) were also recorded [43]. Principal component anal-280

ysis (PCA) was used to reduce the environmental noise [44, 42]. Subsequently,

noisy channels were removed manually through visual inspection by trained ex-

perts. For each subject, supervised independent component analysis (ICA) [45]

was performed to eliminate the ECG and, if present, the EOG components from

the MEG signals. MEG data were then co-registered to the native MRI of the285

subjects. We used the volume conduction model proposed by Nolte [46] and the

linearly constrained minimum variance (LCMV) beamformer [47] to reconstruct
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(a) Interferometric PSD

(b) Freq. id. - CFC-PLM (c) Freq. id. - DFC

Figure 9: Analysis of signals from areas 57 (right inferior parietal lobule) and 42 (orbital

part of the right superior frontal gyrus). (a) PSD of the interferometric signal. The peak

related to the cross-frequency coupling, located at +9.5 Hz is clearly visible. (b) Frequencies

identification via CFC-PLM. The frequencies involved are f1 = 11 (for source 57) and f2 = 1.5

(for source 42). (c) Frequencies identification via Dual-Frequency Coherence. Although a dark

area in case of f1 = 10 Hz is visible, the two frequencies cannot be identified.
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(a) Interferometric PSD

(b) Freq. id. - CFC-PLM (c) Freq. id. - DFC

Figure 10: Analysis of signals from areas 7 (left superior frontal gyrus) and 25 (left calcarine

sulcus). (a) PSD of the interferometric signal. Two main peaks are visible, located at 0 Hz

(related to the iso-frequency coupling) and -8 Hz (related to the cross-frequency coupling).

(b) Frequencies identification via CFC-PLM. The frequencies involved are f1 = 1 (for source

7) and f2 = 9 (for source 25). (c) Frequencies identification via Dual-Frequency Coherence.

A global maximum is not visible, and thus the two involved frequencies cannot be identified.
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the time-series related to the centroids of 90 regions-of-interest (ROIs), derived

from the automated anatomical labeling (AAL) atlas [48, 49, 50]. For each

source, we projected the time series along the dipole direction explaining most290

variance by means of singular value decomposition (SVD), obtaining a scalar

value per each source.

3.3.2. Connectivity measurement

The power spectra of the interferometric signal for each couple among the

90 sources have been computed.295

In the following, we selected two couples of regions, i.e. the couple with the

highest CFC peak (among all couples of regions), and a region with an average

CFC peak intensity. To show that a high CFC peak is unlikely to appear by

chance, we have validated the analysis against surrogates. Hence, the intensity

of the highest CFC peak, derived from 10000 random surrogates, obtained by300

shuffling the phase of the signal in the frequency domain, have been computed.

In Figure 13 (a), we show that, in the case of the high observed cross-frequency

peak, the peak intensity was above the 99th percentile of the surrogates. On

the contrary, in case of the average CFC peak (Figure 13 (b)), its intensity was

around the 50th percentile, as expected.305

To further check the validity of our analysis in real subjects, we went on

to estimate the anatomical consistency of the CFC peaks per each link across

subjects. To do so, we proceeded as follows: for each of 4 subjects, for each

source pair the intensity of the strongest CFC peak has been measured (|∆f | ≥ 2

Hz). Subsequently, we binarized the CFC peak matrix according to a threshold.310

To avoid a dependency of the result from the choice of the threshold, we have

repeated the analysis across a range of thresholds, i.e. from the 1st to the

99th percentile. Then, we have summed across the binary matrices obtaining

one matrix per subject which does not depend on any specific threshold (Fig.

13, a-d). Finally, the subject specific matrices were summed, showing that the315

presence of a CFC peak is topographically consistent across individuals (fig.13,

e). In Figure 11 panel A, the source couples that are beyond a high number
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of thresholds, i.e. high percentile values, are reported in progressively intense

red. The most evident points of this connectivity matrix are those related to

the strongest CFC peaks. In panel B, the delta-frequencies corresponding to320

the significant edges are reported. Finally, in panel C, the regional sum of the

peak intensity is reported.

Now we are going to focus on the couple of regions with the highest CFC

peak. In Figure 9a, the PSD of the interferometric signal related to the right

inferior parietal lobule and the orbital part of the right superior frontal gyrus325

are reported. Results are related to one epoch about 150 seconds long of a

single subject. A power peak positioned at 9.5 Hz is clearly visible, which

shows the presence of cross-frequency coupling. in the following step the sources

frequencies involved in the coupling are determined. As explained earlier, the

procedure consists in filtering the two signals and measuring the power reduction330

of the frequency peak. In Figure 9b, it is evident that the highest reduction is

found in case of f1 ≈ 11 Hz and of f2 ≈ 1.5 Hz. The result obtained by the

DCF, which is reported in Figure 9c, is not effective in identifying the involved

frequencies, as the global maximum is hardly distinguishable.

A second pair of brain regions has been considered, namely the left superior335

frontal gyrus and the left calcarine sulcus. The PSD of the interferometric sig-

nal is reported in Figure 10a. Two peaks are evident in this case, one centered

in zero, related to the iso-frequency coupling, and another one at -8 Hz, which

denotes a cross-frequency connectivity. By focusing on the latter, the identified

involved frequencies are reported in Figure 10b, and are around 1 Hz and 9 Hz.340

Also in this case, results are more convincing than the DCF (Figure 10c), which

cannot be exploited for the frequency identification.

4. Discussion

In this paper, we present a novel phase-based metrics capturing the occur-345

rence of cross-frequency synchronization in the resting-state brain. The main
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advance of this work lies in the fact that the proposed procedure detects cross-

frequency synchronization reliably, without a priori hypothesis about the fre-

quencies of the synchronized components.

It is important to notice that such a procedure lands itself nicely to study350

if and where cross-frequency synchronization is occurring in resting-state, when

no specific task is taking place, and hence no hypothesis about the frequencies of

CFC is available. Furthermore, this procedure only captures phase synchroniza-

tion, since the amplitude does not affect the estimate [5]. This is of particular

relevance, provided that a number of mechanisms are believed to operate si-355

multaneously in the brain in order to allow communication between neuronal

populations operating at different frequencies [4], but n:m synchronization is

the only neuronal mechanism by which two neuronal population can influence

each other at the temporal accuracy of the fast-operating neuronal population

[22, 8]. Hence, the results provided by our procedure are interpreted in terms360

of a defined neurophysiological mechanism (i.e. n:m synchronization), and are

very noise-resilient while being entirely independent from the amplitude of the

signals. The detection of cross-frequency coupling is specifically relevant taking

into account the phenomenon of frequency mixing, i.e. the appearance of new

frequencies in neuronal circuitry when incoming oscillations are non-linearly365

integrated [51].

4.1. Rössler attractors

Firstly, we simulated synthetic data by using two Rössler attractors, as

they retain non-linear properties that are similar to the ones displayed by real

M/EEG data [52]. In order to simulate CFC, we modified one of the two attrac-370

tors by applying a frequency shift. Similarly to what is shown in our previous

work presenting the PLM [29], one can appreciate that the peak in the inter-

ferometric spectrum grows monotonically as a function of the strength of syn-

chronization between oscillators (regardless of their frequencies). Furthermore,

one can appreciate that the interferometric spectrum peaks are at the frequency375

corresponding to the shift that had been introduced. Hence, the PSD allows the
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estimation of both the intensity of the synchronization as well as the difference

between the frequencies of the involved signals. In addition, the resiliency to

noise has been tested in this simulation, and a reliable estimate is possible also

with realistic amount of noise.380

4.2. Kuramoto oscillators

When dealing with real M/EEG signals, the case is more complicated since

each signal has a very rich frequency spectrum, where the simultaneous presence

of multiple components synchronizing in iso- and cross- frequency occurs. We

used a model based on Kuramoto oscillators to explore if the CF-PLM can385

disentangle these different contributions.

Firstly, we explored the simple synchronization between two oscillators syn-

chronized in iso-frequency (10 Hz-10 Hz). As shown by the peak centered in 0

in figure 5a, the synchronization is correctly captured as expected. Then, we

explored the case of cross-frequency synchronization of Kuramoto oscillators.390

The interferometric spectrum displays one peak in correspondence to the fre-

quency difference of the two oscillators (at -7 Hz in the example in 5b, since the

two originating signals are oscillating at 10 Hz and 17 Hz, respectively). In the

third case, one oscillator at 10 Hz has been compared to the sum of two more

oscillators at 10 Hz and 17 Hz. This simulation is intended to create a single sig-395

nal where some specific components are synchronized in iso-frequencies, while

different ones are synchronized in cross-frequency. As expected, the compo-

nents in iso-frequency produced a peak at 0 Hz in the interferometric spectrum,

while a second peak appears at -7 Hz, capturing the cross-frequency synchro-

nization. Such results show that the proposed methodology can disentangle the400

cases where multiple components are synchronized simultaneously in iso- and

cross-frequency. Similarly to the previous scheme, we have then explored the

resiliency of this estimate to the presence of noise. We show, also in this case,

that our metrics produces a noise-resilient estimate of synchronization (despite

being based solely on the phase).405

Results reported in Figure 7 show that the proposed approach effectively
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estimates the frequencies involved in the coupling, both iso-frequency (Figure

7(a)), cross-frequency (Figure 7(b)) and simultaneous iso and cross-frequency

(Figure 7(c)). More in details, the centers of all the computed crosses are

correctly positioned and allow the identification of the frequency components410

present in the oscillators and involved in the coupling process.

4.3. Real Data

The analysis with the real data is intended to show that such a cross-

frequency-coupling is happening in resting state, and can be captured by the

proposed procedure. Each interferometric peak has been statistically validated415

against surrogates, making it unlikely that it would occur by chance. Further-

more, if the peaks were occurring by chance, one would expect that no consistent

patterns of cross-frequency coupling in different subjects. However, observ-

ing the CFC analysis, one can appreciate the cross-frequency-coupling is not a

widespread phenomenon happening in any area, but, rather, specific to some420

areas. More in detail, Figure 11, left column, clearly shows that the strongest

cross-frequency connections do not spread randomly across the matrix, and a

texture appears, indicating that a specific CFC network is operating involving

specific edges, rather than being randomly spread across the brain, as one would

expected for a random phenomenon. Besides this coherent spatial distribution,425

images in the right column of Figure 11 show that also the frequency compo-

nents that are correlated are not random, but a pattern emerges. Finally, Figure

12 helps the visualization of the regions where cross frequency coupling occurs

consistently. While a systematic description of these patterns goes beyond the

scope of the current paper, one should notice that temporo-parietal regions as430

well as occipital ones, appear symmetrically involved in cross-frequency com-

munication. Roughly speaking, these regions are involved in perceptive streams

processing external stimuli. Importantly, as the ground truth is ultimately un-

known, one should be very cautious at making inference.

However, one good aspect of the proposed procedure lies in the fact that435

a form of “double-check” is possible. In fact, once the frequency on the peak
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of the interferometric spectrum is known, and the related component in signal

A has been identified, one has already a hypothesis about the frequency of

the synchronized component in signal B. Hence, if the procedure is consistent,

the filtering of signal B should confirm this hypothesis. In fact, as explained440

previously, the peak of the interferometric signal appears at a frequency equal

to the difference of frequencies between the two components. In conclusion,

with the proposed procedure we are able to determine the central frequencies of

signals A and B involved in the coupling. We made a number of tests to explore

the behaviour of the proposed procedure to different lengths of acquisitions and445

different number of epochs, confirming that this procedure is robust also with

little and/or noisy data. One aspect of interest is that our metrics does not

need the data to be split into trials, hence taking advantage of the full length

of the available data. However, even when only short or limited data segments

are available, the new procedure can still retrieve reliable results.450

5. Conclusions

In this manuscript, we propose a new metric that can estimate cross-frequency

coupling from broad-band signals with no a priori hypothesis on what the infor-

mation transfers would be. Since cross-frequency coupling is the only neuronal

mechanism that can allow fast communication between neuronal ensemble op-455

erating at different frequencies, we believe our metric can help to study the

mechanisms of cross-frequency communication in the resting-state, as well as

its topography and topology.
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Figure 11: CFC matrix (left column: peak intensity, right column: peak frequency) of 4

subjects obtained by filtering the interferometric peaks intensity. The threshold values have

been selected according to the percentiles of the distribution, spanning between 1 and 100.

The most intense red points characterizes the CFC peaks with higher intensity.
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Figure 12: Brain regions where cross frequency coupling occurs consistently.
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(a)

(b)

Figure 13: Empirical CDF of the peaks distributions obtained by shuffling the signal phases

in the frequency domain (blue lines). Values have been normalized with respect to the highest

CFC peak present in the data before shuffling (red line). The analysis refers to two cases: the

highest CFC peak found among all couples of regions (a), where the peak intensity is above

the 99% of the distribution, and a couple of regions with an average CFC peak intensity (b),

where the peak is in the middle of the distribution.
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