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Abstract 1 

Representational similarity analysis (RSA) summarizes activity patterns for a set of experimental conditions 2 

into a matrix composed of pairwise comparisons between activity patterns. Two examples of such matrices 3 

are the condition-by-condition inner product matrix or the correlation matrix. These representational 4 

matrices reside on the manifold of positive semidefinite matrices, called the Riemannian manifold. We 5 

hypothesize that representational similarities would be more accurately quantified by considering the 6 

underlying manifold of the representational matrices. Thus, we introduce the distance on the Riemannian 7 

manifold as a metric for comparing representations. Analyzing simulated and real fMRI data and 8 

considering a wide range of metrics, we show that the Riemannian distance is least susceptible to sampling 9 

bias, results in larger intra-subject reliability, and affords searchlight mapping with high sensitivity and 10 

specificity. Furthermore, we show that the Riemannian distance can be used for measuring multi-11 

dimensional connectivity. This measure captures both univariate and multivariate connectivity and is also 12 

more sensitive to nonlinear regional interactions compared to the state-of-the-art measures. Applying our 13 

proposed metric to neural network representations of natural images, we demonstrate that it also possesses 14 

outstanding performance in quantifying similarity in models. Taken together, our results lend credence to 15 

the proposition that RSA should consider the manifold of the representational matrices to summarize 16 

response patterns in the brain and models. 17 

1  Introduction 18 

Investigating the information content of brain representations helps in understanding the functional role of 19 

different brain areas. Pattern-information analysis has benefitted from a number of analysis techniques that 20 

lie at the intersection of neuroscience and machine learning. Generally, these techniques can be grouped 21 

into two main categories: pattern classifiers and representational methods. 22 

In pattern classifiers (Haynes and Rees, 2006) successful classification of activity patterns implies 23 

information about particular distinctions. In representational methods, i.e. encoding analysis (Kay et al., 24 

2008), representational similarity analysis (RSA; Kriegeskorte et al., 2008) and pattern-component 25 

modelling (PCM; Diedrichsen et al., 2011), distributed activity patterns for a number of conditions in a 26 

region are summarized by a condition-by-condition inner product matrix, aka the 2nd-moment matrix of 27 

activity patterns (Diedrichsen and Kriegeskorte, 2017).  In particular, RSA exploits representational 28 

matrices composed of (dis)similarities between activity patterns for all pairs of conditions. Some examples 29 
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of theses matrices are representational dissimilarity matrices (RDMs), stimulus-by-stimulus correlation 30 

matrices1, and also 2nd-moment matrices. 31 

2nd-moment and cross-correlation matrices, and generally all positive semi-definite (PSD) matrices, lie 32 

on a manifold.  If equipped with a Riemannian metric, the manifold is called a “Riemannian manifold”. 33 

This suggests that the relationship between different PSD matrices would be best captured if the geometry 34 

of the manifold is considered. 35 

Considering the geometry of PSD matrices as a Riemannian geometry dates back to (Pennec, 2006). 36 

He proposed an affine-invariant Riemannian metric on the manifold of PSD matrices. Several domains in 37 

neuroscience research involve correlation or covariance matrices, which are all PSD matrices thus do not 38 

form a Euclidean space in nature. Therefore, researchers have started to revise existing approaches in such 39 

areas. Examples of such areas are diffusion tensor imaging (Pennec et al., 2006), brain-computer interface 40 

classification (Barachant et al., 2012), functional connectivity (Pervaiz et al., 2020; You and Park, 2021) 41 

and covariance shrinkage techniques (Rahim et al., 2019). The proposed metric enjoys a number of 42 

properties including being affine-invariant (Pennec et al., 2019) and robust to outliers (Congedo et al., 43 

2017). 44 

As a simple demonstration, we use a toy example to show that the relationship between three PSD 45 

matrices would be different depending on whether the underlying geometry of the matrices is considered 46 

or not. Let Σଵ, Σଶ, and Σଷ be three 2 × 2 PSD matrices as illustrated in Figure 1. As these matrices are 47 

composed of three unique elements, each matrix could be visualized as a point in ℝଷ. 48 

The blue curves in Figure 1 correspond to the shortest paths connecting Σଵ to Σଷ and Σଵ to Σଶ on the 49 

Riemannian manifold. One can easily see that Σଵ is closer to Σଷ in the 3-dimensional Euclidean space (0.3 50 

vs. 0.4), while when we consider the embedding manifold of the matrices, Σଵ is closer to Σଶ (0.75 vs. 1.40).  51 

These kinds of comparisons are frequently done when representational models are being tested 52 

(Kriegeskorte and Kievit, 2013). Let it be a brain region or a layer of a computational neural network, 53 

considering the geometry can result in different relationships, and this can affect conclusions about 54 

representational similarities. 55 

 
1 A stimulus-by-stimulus correlation matrix, also sometimes referred to as a representational similarity matrix 
(RSM), is 1 - correlation-distance RDM. 
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 56 

Figure 1 | Relationship between PSD matrices can differ when the underlying Riemannian manifold is 57 
considered. A. Here, 𝛴ଵ, 𝛴ଶ, and 𝛴ଷ are three PSD matrices. The numbers written on the blue curves are 58 
the lengths of the shortest paths on the manifold of PSD matrices connecting them. It is worth noting that 59 

the lengths of blue curves are calculated according to the Riemannian metric, which is different from 60 
their lengths in the Euclidean space. In contrast, the numbers written on the red straight lines are the 61 

Euclidean distances between matrices (both diagonal and lower-diagonal elements). In this illustration, 62 
we only show the diagonal and lower-diagonal elements since the matrices are symmetric. B. 1D 63 

visualization of relative positions of 𝛴ଵ, 𝛴ଶ, and 𝛴ଷ using the Riemannian distance (blue) or Euclidean 64 
distance (red). 65 

In this paper, we investigate the advantages of considering the underlying geometry of all PSD matrices 66 

when quantifying the relationship between representational matrices. To this end, we use simulations with 67 

known underlying effects and also fMRI data from two publicly available datasets, Visual object 68 

recognition dataset (Hanson et al., 2004; Haxby et al., 2001; O’Toole et al., 2005),  and Generic object 69 

decoding dataset (Horikawa and Kamitani, 2017). 70 

We first provide a concise introduction to Riemannian geometry and the distance between two PSD 71 

matrices. Using simulations and real data, we find domains in which comparing representational matrices 72 

via the Riemannian distance significantly improves RSA.  73 

In brief, we will verify the following advantages in testing representational models with the Riemannian 74 

metric: this metric allows for more accurate representational comparisons for a relatively small number of 75 

response channels. It also yields more consistent within-subject results, thus offering higher reliability. 76 

Additionally, representational structures from different brain areas are more discriminable when compared 77 

using the Riemannian distance. We also explore the advantages of using the Riemannian metric for 78 

representational connectivity (where the aim is to compare the representational content for a set of 79 

conditions in distributed activity patterns of two brain regions). We show that our proposed metric goes 80 

beyond existing methods (Basti et al., 2020) in capturing nonlinear regional interactions as well as linear 81 

and multivariate as well as univariate functional connectivity. We then analyse image representations in 82 
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different layers of deep neural networks and show that the Riemannian metric can be used to quantify the 83 

similarity of neural network representations with higher accuracy than state-of-the-art methods (Kornblith 84 

et al., 2019). Finally, we show that when adopted for searchlight mapping, this metric performs well and 85 

offers reasonable sensitivity. 86 

2 Materials and methods 87 

Throughout the paper, we rely on one of the main points explained in-depth in (Diedrichsen and 88 

Kriegeskorte, 2017). Namely, the fact that all methods that enable testing representational models, rely on 89 

the 2nd-moment matrices. In particular, considering the stimulus-response matrix 𝑈, which is 𝑘 × 𝑝, where 90 

𝑘 is the number of experimental conditions and 𝑝 is the number of response channels, the 2nd-moment 91 

matrix, G, is defined as 𝑈𝑈்/𝑝. Now, representational dissimilarity matrices (RDMs) could be derived 92 

directly from G. Further, representational similarity matrices (RSMs), which are the 𝑘 × 𝑘 correlation 93 

matrices, could be derived from G2 as well. We have already mentioned that RSMs are closely related to 94 

correlation-distance RDMs: RSM = 1 - RDM.RDMs, RSMs, and 2nd-moment matrices could be used to 95 

characterize multivariate response-patterns of a brain region. RSMs contain the same information as 96 

correlation-distance RDMs. However, 2nd moment matrices are more general. In this manuscript we 97 

consider both RSMs and 2nd-moment matrices. The motivation for including RSMs is to relate to the classic 98 

RSA inference.    99 

2.1 Metrics for comparing representations 100 

In this section, we investigate a number of metrics for comparing representational structures.  101 

Table 1 lists the different metrics along with their descriptions and mathematical definitions to calculate 102 

the distance or correlation between two 𝑘 × 𝑘 PSD matrices, Σଵ and Σଶ. The correlation-based methods 103 

listed in Table 1 use vectorized matrices. The vectorizing operation (𝑣𝑒𝑐(. )) converts the lower triangular 104 

part of a matrix to a vector, which might include the diagonal or not depending on the type of the matrix 105 

(2nd-moment matrix or RSM; section 2.3). Let’s call the vectorized Σଵ and Σଶ, 𝐯𝟏 and 𝐯𝟐, respectively. We 106 

show the 𝑖௧௛ element of vector 𝐯𝟏 (𝐯𝟐) by 𝑣ଵ,௜ (𝑣ଶ,௜). 107 

It must be noted that by no means the list of metrics introduced in Table 1 is exclusive. There are also other 108 

ways to quantify the similarity of two PSD matrices, but in this manuscript, we have considered the mostly 109 

popular metrics or those relevant to the Riemannian distance (e.g. the Frobenius norm of the difference). 110 

 
2 This requires assuming that the origin is the same as the centre of the data points in the multivariate response 
space.  
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Table 1 | List of all investigated metrics. 111 

Metric Description Formula 

Riemannian 

distance 

The length of the 

shortest path (geodesic) 

connecting two PSD 

matrices on the 

Riemannian manifold 

ඩ෍ logଶ(𝜎௜)

௞

௜ୀଵ

 

where 𝜎௜ is the 𝑖௧௛ eigenvalue of Σଵ
ିଵΣଶ. 

Pearson correlation 

The sample covariance 

(𝑐𝑜𝑣) of two vectors 

normalized by the 

product of their 

standard deviations 

(𝑠𝑡𝑑) 

𝑐𝑜𝑣(𝐯𝟏, 𝐯𝟐)

𝑠𝑡𝑑(𝐯𝟏) 𝑠𝑡𝑑(𝐯𝟐)
 

Spearman 

correlation 

The Pearson correlation 

between rank-

transformed (𝑟𝑎𝑛𝑘) 

vectors 

𝑐𝑜𝑣൫𝑟𝑎𝑛𝑘(𝐯𝟏), 𝑟𝑎𝑛𝑘(𝐯𝟐)൯

𝑠𝑡𝑑൫𝑟𝑎𝑛𝑘(𝐯𝟏)൯ 𝑠𝑡𝑑൫𝑟𝑎𝑛𝑘(𝐯𝟐)൯
 

Kendall’s 𝜏 

correlation 

A measure of similarity 

of orderings of two 

vectors 

2

𝑛(𝑛 − 1)
෍ ෍ 𝑠𝑖𝑔𝑛൫𝑣ଵ,௜ − 𝑣ଵ,௝൯ 𝑠𝑖𝑔𝑛൫𝑣ଶ,௜ − 𝑣ଶ,௝൯

௡

௝ୀ௜ାଵ

௡ିଵ

௜ୀଵ

 

𝑛 = 𝑘(𝑘 + 1)/2  

Frobenius norm of 

the difference of 

two matrices 

The L2 norm of the 

difference of the 

matrices 

ඩ ෍ ൫[Σଵ]௜,௝ − [Σଶ]௜,௝൯
ଶ

௞

௜,௝ୀଵ

 

Centered Kernel 

Alignment (CKA) 

(Kornblith et al., 

2019) 

A normalized version 

of the Hilbert-Smith 

independence criterion 

(HSIC) (Gretton et al., 

2005) between two sets 

of multivariate patterns 

𝐻𝑆𝐼𝐶௎భ,௎మ

𝐻𝑆𝐼𝐶௎భ,௎భ
𝐻𝑆𝐼𝐶௎మ,௎మ

 

where 𝐻𝑆𝐼𝐶௎భ,௎మ
= 𝑣𝑒𝑐(𝐺ଵ)்𝑣𝑒𝑐(𝐺ଶ), 

𝐺ଵ = 𝐻𝑈ଵ𝑈ଵ
்𝐻்/𝑝, 𝐻 is the centering matrix, and 𝑝 

is the number of columns of the corresponding 

stimulus-response matrix, 𝑈ଵ. 
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2.2 An introduction to the Riemannian framework 112 

This section introduces a Riemannian metric (Pennec et al., 2006; Pennec, 2006; Carmo, 1992; Bhatia, 113 

2009) which has been used to measure distances between positive semi-definite (PSD) matrices with real 114 

elements. 115 

We begin by introducing the general definition for the length of the curve that connects two PSD 116 

matrices. Then we explain how the relatively complicated equation describing this length could be 117 

simplified using the geometrical properties of the shortest curve connecting two PSD matrices calculated 118 

with the Riemannian metric.  119 

Let 𝛾(𝑡) be a curve on the manifold of PSD matrices, connecting Σଵ to Σଶ. When 𝑡, which is a variable, 120 

moves from 0 to 1, 𝛾 moves from 𝛾(0) = Σଵ to 𝛾(1) = Σଶ (Figure 2). The length of 𝛾 is defined as: 121 

 𝐿௧ୀ଴
௧ୀଵ (𝛾) =  න ට< 𝛾ᇱ(𝑡), 𝛾ᇱ(𝑡) >ఊ(௧) 𝑑𝑡

ଵ

଴

 (1) 

where 𝛾ᇱ(𝑡) is the derivative of 𝛾(𝑡) with respect to 𝑡, and <. , . >ఊ(௧) denotes the inner product defined on 122 

𝛾(𝑡). The minimum-length curve on the manifold connecting any two arbitrary PSD matrices, here Σଵ and 123 

Σଶ, is called the geodesic curve. 124 

One way to quantify the distance between two PSD matrices, Σଵ and Σଶ, would be to compute the length 125 

of the geodesic curve connecting them (Figure 2, black curve).  126 

Two important properties of the geodesic curve help us derive a closed-form expression for its length. 127 

First, the norm of 𝛾ᇱ(𝑡), i.e. ට< 𝛾ᇱ(𝑡), 𝛾′(𝑡) >ఊ(௧) , remains constant for all 𝑡 ∈ [0,1]. Second, there is a 128 

unique geodesic curve between each pair of PSD matrices. The latter implies that the initial direction of the 129 

geodesic curve, 𝛾′(0), could also be uniquely determined. Therefore, Eq. 1 can be reduced to: 130 

 𝐿௧ୀ଴
௧ୀଵ (𝛾) =  ට< 𝛾ᇱ(0), 𝛾ᇱ(0) >ఊ(଴). (2) 

Hence, we only need the definition of the inner product and how to calculate 𝛾′(0). In the following, we 131 

will explain these two important notions. 132 

Riemannian metric. The Riemannian metric associates to each point (Σ)  of the manifold an inner product 133 

<, >ஊ in the tangent plane of the point (for a detailed definition, see Carmo, 1992). The tangent plane at a 134 

point on the manifold is the hyperplane tangent to the manifold on that point (Figure 2, blue planes). It is 135 

clear that the derivative of 𝛾(𝑡), i.e., 𝛾′(𝑡), lies in the hyperplane tangent to the manifold at 𝛾(𝑡). 136 
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There can be an infinite number of choices for defining the inner product. Pennec et al. applied a 137 

constraint that leads to a unique definition. The constraint is that the metric and consequently the distances 138 

should remain invariant under an affine transformation. A metric with this characteristic is called an affine-139 

invariant metric (Pennec et al., 2006):  140 

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒ோ(𝐴𝛴ଵ𝐴் , 𝐴𝛴ଶ𝐴்) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒ோ(𝛴ଵ, 𝛴ଶ) (3) 

where 𝑅 stands for Riemannian, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒ோ is the length of the geodesic, and 𝐴 is an arbitrary invertible 141 

matrix with the same size as Σଵ and Σଶ. If we left-multiply a stimulus-response matrix by 𝐴, its 2nd-moment 142 

matrix will be in the form written in Eq. 3. In section 3.4, we discuss one potential application of this 143 

characteristic.  144 

As we already explained, Eq. 1 can be simplified as the square root of an inner product, as in Eq. 2. 145 

Therefore, the affine-invariant property should be met at the definition of the inner product.  146 

We start by defining the inner product at the point corresponding to the identity matrix on the manifold. 147 

A choice, inspired by the definition of the inner product in the Euclidean space, would be: 148 

 < 𝑊ଵ, 𝑊ଶ >ூ≜ 𝑡𝑟𝑎𝑐𝑒(𝑊ଵ
்𝑊ଶ) (4) 

where 𝑊ଵ and 𝑊ଶ are two arbitrary matrices that lie in the tangent plane of the identity matrix, 𝐼. At the end 149 

of this section, it will be trivial that each matrix in the tangent plane is symmetric (Eqs. 7 and 8). The 150 

definition in Eq. 4, can be extended to the inner product at an arbitrary point Σ on the manifold using the 151 

affine-invariant property. Explicitly, Eq. 3 poses the following constraint on the inner product: 152 

 < 𝑊ଵ, 𝑊ଶ >ஊ =< 𝐴𝑊ଵ𝐴் , 𝐴𝑊ଶ𝐴் >஺ஊ஺೅  (5) 

If we replace 𝐴 with Σି
భ

మ, We will have: 153 

 < 𝑊ଵ, 𝑊ଶ >ஊ =< 𝛴ି
ଵ
ଶ𝑊ଵ𝛴ି

ଵ
ଶ, 𝛴ି

ଵ
ଶ𝑊ଶ𝛴ି

ଵ
ଶ >ூ =

ா௤.ସ
𝑡𝑟𝑎𝑐𝑒(𝛴ି

ଵ
ଶ𝑊ଵ𝛴ିଵ𝑊ଶ𝛴ି

ଵ
ଶ) (6) 

Having defined the inner product, we only need to calculate 𝛾′(0) to compute the length of the geodesic 154 

(Eq. 1). For that, we need to define the notion of exponential and logarithmic transformations (these are 155 

also called exponential and logarithmic maps, (Pennec et al., 2006)). 156 

We mentioned that in Eq. 1, 𝛾 is the geodesic curve that connects Σଵ, 𝛾(0), to Σଶ, 𝛾(1). As a special 157 

case, consider Σଵ = 𝐼 and Σଶ = Σ. 158 

Exponential map. It maps 𝑡𝑊 (𝑊 = 𝛾ᇱ(0), and hence 𝑊 ∈ tangent plane of 𝛾(0)), to 𝛾(𝑡). 159 

Logarithmic map (inverse of the exponential map). It maps 𝛾(𝑡) to 𝑡𝑊. 160 
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As one can see, exponential and logarithmic maps are associations between the manifold and the 161 

tangent plane. Here, we introduce a mathematical expression for the exponential map and show this is the 162 

only possible choice. The proposed exponential map is: 163 

 𝛾(𝑡) = exp(𝑡𝑊). (7) 

From linear algebra we have exp(𝑡𝑊) = 𝑈 𝑑𝑖𝑎𝑔(exp(𝑡𝑑ଵ) , … , exp(𝑡𝑑௡)) 𝑈், where 𝑊 =164 

𝑈 𝑑𝑖𝑎𝑔(𝑑ଵ, … , 𝑑௡) 𝑈் is the eigenvalue decomposition of 𝑊 so that 𝑈𝑈் = 𝐼 and 𝑑௜ is the 𝑖௧௛ eigenvalue 165 

of 𝑊. Since exp(𝑡𝑊) |௧ୀ଴ = 𝐼, and expᇱ(𝑡𝑊)|௧ୀ଴ = 𝑊 and as we have already discussed, there is only 166 

one geodesic curve with 𝛾(0) = 𝐼 and 𝛾ᇱ(0) = 𝑊. Hence, Eq. 7 is the only valid choice for the exponential 167 

map. 168 

In order to derive 𝛾′(0) we need to calculate log (Σ):  169 

 

𝛾ᇱ(0) = 𝑊              (I) 

exp(𝑊) = 𝛾(1)     (II) 

𝛾(1) = Σ                  (III) 

(୍୍,୍୍୍ )
ሱ⎯⎯⎯ሮ  𝑊 = log(Σ)

(୍)
ሱሮ 𝛾ᇱ(0) = log (Σ) 

 

(8) 

where (again from linear algebra we have that) log(Σ) = 𝑈𝑑𝑖𝑎𝑔(log (𝜎ଵ), … , log (𝜎௡)) 𝑈்.  170 

Now the Riemannian distance between 𝐼 and Σ can be derived. Also, the distance between any arbitrary Σଵ 171 

and Σଶ can be computed using the affine-invariant property, Eq. 3.   172 

The closed-form equation for the Riemannian distance is as follow:  173 

 
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒ோ(𝐼, Σ) =

ா௤.ଶ ௔௡ௗ ଼
ඥ< log(Σ) , log(Σ) >ூ   

 
(9) 

 = ඥ𝑡𝑟𝑎𝑐𝑒(𝑈𝑑𝑖𝑎𝑔(logଶ(𝜎ଵ) , … , logଶ(𝜎௡))𝑈்) 174 

=
3

ඥ𝑡𝑟𝑎𝑐𝑒(𝑑𝑖𝑎𝑔(logଶ(𝜎ଵ) , … , logଶ(𝜎௡))𝑈்𝑈) 175 

=
௎೅௎ୀூ

ට𝑡𝑟𝑎𝑐𝑒൫𝑑𝑖𝑎𝑔(logଶ(𝜎ଵ) , … , logଶ(𝜎௡))൯ 176 

= ඩ෍ logଶ(𝜎௜)

௜ୀ௡

௜ୀଵ

 177 

 
3 𝑡𝑟𝑎𝑐𝑒(𝐴𝐵) = 𝑡𝑟𝑎𝑐𝑒(𝐵𝐴) 
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where 𝜎௜ is the 𝑖௧௛ eigenvalue of Σ. From Eq. 3, we know that 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒ோ(Σଵ, Σଶ) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒ோ(𝐼,178 

Σଵ

ି
భ

మΣଶΣଵ

ି
భ

మ). Hence, if we equate Σ in Eq. 9 with Σଵ

ି
భ

మΣଶΣଵ

ି
భ

మ, we will obtain the Riemannain distance between 179 

Σଵ and Σଶ. Therefore, we have: 180 

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒ோ(Σଵ, Σଶ) = ඩ෍ logଶ(𝜎௜)

௜ୀ௡

௜ୀଵ

 (10) 

where 𝜎௜ is the 𝑖௧௛ eigenvalue of  Σଵ

ି
భ

మΣଶΣଵ

ି
భ

మ, or equivalently the 𝑖௧௛ eigenvalue of Σଵ
ିଵΣଶ.  181 

From Eq. 8 we know that log (Σ) is the image of Σ on the tangent plane of 𝐼. The first line in 9 clearly 182 

shows that the length of the geodesic connecting 𝐼 and Σ is equal to the norm of image of Σ in the tangent 183 

plane of 𝐼. Even more generally, one can show that the length of the geodesic connecting any arbitrary Σଵ 184 

and Σଶ is equal to the norm of image of Σଶ on the tangent plane of Σଵ. 185 

The above definition can be simplified for low-dimensional matrices (1 × 1 and 2 × 2). For example, in 186 

1 × 1 matrices, we have: 187 

 

Σଵ = 𝑎,  Σଶ = 𝑏 → 𝜎ଵ = eigenvalue ൬𝑎ି
ଵ
ଶ 𝑏𝑎ି

ଵ
ଶ൰ = 𝑎ିଵ𝑏 → 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒ோ(𝛴ଵ,  𝛴ଶ) = |log (𝑏) − log (𝑎)| 

 

 

which is equal to the log-distance of 𝑎 and 𝑏. 188 

 189 

Figure 2 | Riemannian manifold and geodesic curve. This figure is a conceptual illustration for the 190 
geodesic curve, the tangent plane at a point on the manifold, and the difference between the straight line 191 
and geodesic curve. The geodesic curve showed in the figure connects 𝛴ଵ = 𝛾(0), to 𝛴ଶ = 𝛾(1), and its 192 

length can be calculated using Eq. 1 and Eq. 10. We also plot tangent planes at 𝛾(0.2) and 𝛾(0.8). As we 193 
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explained in the text and is also clear in the figure, 𝛾′(t) lies in the tangent plane of 𝛾(𝑡). This figure also 194 
shows that the straight line connecting 𝛴ଵ and 𝛴ଶ (shown with a dashed red line) and the geodesic curve 195 

could have different lengths. A critical point that we mentioned in the text is that the length of the 196 
geodesic curve is equal to the length of the line connecting 𝛴ଵ to the image of 𝛴ଶ on the tangent plane of 197 

𝛴ଵ. Notice that we have depicted the manifold as a 2D surface in ℝଷ. However, the manifold of 2 × 2 198 
PSD matrices cannot be shown in ℝଷ, and hence this figure is supposed to just offer an intuition4.  199 

Riemannian Mean. Similar to the Euclidean mean, the mean of a number of PSD matrices could be defined 200 

considering their underlying manifold. This is often referred to as the Riemannian mean (Pennec, 2006). 201 

Although we do not use this notion in this manuscript, we include the definition here as there are potential 202 

applications for it in future studies.  203 

Given 𝑛 points ∈ 𝑠𝑦𝑚ା, the Riemannian sample mean (Σ௠) is defined by: 204 

 𝛴௠ = 𝑎𝑟𝑔𝑚𝑖𝑛௑ ෍ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒ோ
ଶ(𝛴௜, 𝑋).

௡

௜ୀଵ

 (11) 

We can see that for the 1-D case, this definition yields the geometric mean. 205 

2.3 Providing meaningful zero point for distance-based metrics using condition-206 

label permutation 207 

When using correlation-based metrics for comparing two representational structures, non-duplicative 208 

elements - lower triangular elements in case of RSM or lower triangular plus diagonal elements in case of 209 

2nd-moments - are vectorized, and the correlation between two vectors is calculated. It is expected that the 210 

correlation of two matrices that are not related would be zero. Therefore, a zero value for the correlation 211 

metric implies that the representations are not related. Hence, this meaningful zero point allows us to benefit 212 

from (non-)parametric statistical tests that can validate different types of hypotheses investigated in RSA 213 

(this point will be discussed in the Results section). In order to provide such a meaningful zero point for 214 

distance-based metrics, we employ a type of non-parametric test called the permutation test (Nichols and 215 

Holmes, 2002).  216 

In the permutation test, the distribution of the test statistic under the null hypothesis is obtained by 217 

calculating the values under all (or a large number of) possible equiprobable rearrangements. Figure 3 218 

shows an example of rearranging two conditions of an RSM. Here we leave one RSM unchanged and 219 

consistently permute the rows and columns of the other RSM for a large number of times and compare them 220 

in each iteration. The comparisons obtained under different permutations constitute the null distribution. If 221 

two RSMs have similar structures, we expect a few numbers of the null estimates to be more extreme than 222 

 
4 All 𝑘 × 𝑘 PSD matrices lie on the 

௞×(௞ାଵ)

ଶ
-dimensional surface. 

௞×(௞ାଵ)

ଶ
= 2 does not have an answer for 𝑘 ∈ ℕ. 
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the summary statistic obtained under neutral permutation. Note that being more extreme translates 223 

differently for distance-based and correlation-based metrics. For distance-based metrics, it refers to smaller 224 

values, and for correlation-based metrics, it refers to larger values. Therefore, we can obtain a p-value for 225 

testing the similarity of two RSMs for each metric. The p-value is the proportion of values in the null 226 

distribution that are more extreme than the summary statistic. Smaller p-values indicate RSMs that are more 227 

similar according to a metric.  228 

Now we can have the bias-correlated distance (correlation) of two RSMs by subtracting the summary 229 

statistic from the mean of the null distribution (mean of the null distribution from the summary statistic).  230 

The bias-corrected metrics are expected to have a zero mean under the null hypothesis. Hence, a 231 

meaningful zero point that allows for making inference can be achieved. Note that assuming a theoretical 232 

mean on the null distribution (e.g., zero correlation under the null) obviates the need to estimate the 233 

empirical null. However, for some metrics, such as the Riemannian distance, which are distance-based and 234 

have non-negative values, the only way to make inference would be to eliminate the bias for each estimated 235 

value. 236 

By our definition, all bias-corrected metrics, correlation-based or distance-based, estimate similarities, 237 

meaning that a significant positive deviation from zero implies similarity between RSMs. Henceforth, we 238 

use bias-corrected metrics to estimate similarities (or relatedness) between different representational 239 

matrices, to which we refer as 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦௕௖, where bc stands for bias-corrected.  240 

 241 

Figure 3 | Permutation of condition-labels. This figure illustrates a simple example of condition 242 
permutation in a 5 × 5 RSM, where the second and the fourth conditions corresponding to the second and 243 

fourth rows and columns are replaced with each other. For a 𝑘 × 𝑘 RSM, there can be 𝑘! condition-244 
permuted matrices, all of which are obtained by similarly rearranging rows and columns. However, it is 245 

not necessary to exhaustively try all different rearrangements. 246 
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3 Results 247 

3.1 The Riemannian distance captures representational relationships more 248 

accurately when there are relatively small number of response channels (e.g. 249 

voxels) 250 
Each measurement modality provides an estimate of the brain activity for a number of response channels. 251 

These response channels are voxels for fMRI, electrodes for M/EEG, and cell recordings for 252 

electrophysiological data. Generally, the larger the number of response channels per a brain region, the 253 

more accurate the estimates of its response properties. Nonetheless, there is often a sampling bias in 254 

measuring brain responses (Panzeri and Treves, 1996). In this part, we focus on the effect of that bias when 255 

dealing with 2nd-moment matrices and RSMs. Specifically, we explore whether different metrics have 256 

different levels of susceptibility to the sampling bias. 257 

Similar to encoding analysis, we treat activity profiles (vector of activities for a single voxel) for a 258 

number of conditions as points in the space spanned by experimental conditions (Diedrichsen and 259 

Kriegeskorte, 2017). Therefore, the 2nd-moment matrix can be obtained from those point clouds (one point 260 

per voxel). Having that in mind, with a larger number of response channels, we would have richer sampling 261 

and a more accurate estimate of the 2nd-moment matrices and thus the RSMs. However, in almost all cases, 262 

there is an inevitable sampling bias. Therefore, if a similarity measure can afford capturing the relationship 263 

between RSMs with few neurons/voxels, that will be count as an advantage for it. Additionally, in many 264 

cases the number of neurons/voxels are dependent on the choice of the experimenter and it would be best 265 

if these decisions have little influence on the results5. 266 

Figure 4 shows two sets of response patterns (different colors) for two experimental conditions (each 267 

axis corresponds to one condition). Each point in each panel corresponds to one voxel. While the two 268 

distributions are clearly different in Figure 4A, reducing the number of response channels can make it 269 

difficult to distinguish different structures. With a small number of samples (Figure 4B) one cannot discern 270 

between the two representational structures. However, richer sampling (Figure 4A) correctly concludes 271 

that the two are distinct.  272 

 
5 Consider a region with a certain volume. Choosing different voxel sizes would result in a different number of 
voxels for the ROI. 
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 273 

Figure 4 | Richer sampling of the condition space allows for adjudicating between different 274 
representational models. Consider the responses of two brain regions to two different stimuli. We can 275 
show the responses as points in the condition space (each color corresponds to one region). A. With a 276 

large sample size, it is evident that the two regions have distinct distributions, hence different 2nd-moment 277 
matrices. B. However, with only a few samples, the distributions of activity profiles may not be distinct. 278 

We use simulations with known underlying representational structures (i.e., RSMs or 2nd-moments 279 

depending on the analysis) to compare different metrics in terms of their dependencies on the number of 280 

response channels. Particularly, we evaluate the performances of these metrics using two different tests, 281 

namely, the relatedness and comparison tests. The former examines whether representational structures are 282 

statistically related or not, and the latter compares the similarity of different representational structures to 283 

a reference.  In the following, without loss of generality, we use RSM to refer to a representational structure. 284 

Additionally, since what we describe here is general and not specific to fMRI data, we will use voxel and 285 

response channels interchangeably. 286 

In each simulated subject, for a given number of conditions we generate two sets of response patterns, 287 

each containing 1000 samples from zero-mean multivariate Gaussian distributions with known distinct 288 

covariance matrices, 𝑅௔ and 𝑅௕ (Figure 5). We then derive various RSMs from each set of patterns by 289 

randomly sampling from the voxels (for example, 𝑅௔
(ଵ), …, 𝑅௔

(௡) in Figure 5). Intuitively, we expect that 290 

for a large number of samples (i.e., voxels), the new RSMs would be similar to their corresponding RSMs 291 

(Figure 5, dashed black arrow). Therefore, we expect the variants of the original RSMs to be significantly 292 

related to the original ones. Additionally, since the two underlying structures are distinct, we expect the 293 

new variants from each to be closer to themselves than to the two variants of the other structure (for 294 

example, in Figure 5, 𝑅௔
(ଵ)should be more similar to 𝑅௔

(ଶ) than to 𝑅௕
(ଶ)). 295 
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 296 

Figure 5 | Simulation setup for evaluating dependency of metrics on the number of response channels 297 
(e.g., voxels). Here 𝑅௔ and 𝑅௕ are two distinct RSMs that serve as ground truths for simulations. From 298 

each, we obtain response patterns with a large number of voxels. 𝑅௔
(௜) and 𝑅௕

(௜)are RSMs derived by 299 

sampling the voxels from each set of patterns. We prefer a metric for which, 𝑅௔
(௜) is closer to 𝑅௔

(௝) than to 300 

𝑅௕
(௝)(𝑖 ≠ 𝑗). For example, blue-to-blue arrows should show stronger similarity than red-to-blue arrows. 301 

Furthermore, we prefer a metric for which 𝑅௔
(௜) is “related” to the ground truth (𝑅௔). For example, the 302 

relationship depicted by the dashed arrow is preferred to be statistically significant. 303 

Testing for relatedness. For each 𝑅௔
(௜)we perform a condition-label permutation test (as explained in section 304 

2.3) to obtain a p-value for testing the relatedness of 𝑅௔ and 𝑅௔
(௜). Additionally, we repeat this for a large 305 

number of iterations (subjects) and then count the proportion of significant tests after controlling the 306 

expected FDR (Benjamini and Hochberg, 1995) at 0.01. This score would be a measure of significance 307 

mass, conceptually similar to what is explained in (Allefeld et al., 2016) and we use it to compare different 308 

similarity measures. Intuitively, we prefer a measure that can detect the relatedness despite a having small 309 

number of samples (voxel counts). 310 

Figure 6 shows the proportion of significant tests as a function of the number of voxels for different 311 

metrics. As it can be seen, the Riemannian distance shows strong superiority in comparison to others. For 312 

2nd-moment matrices, linear CKA also gives intermediate values that are better than the rest of the metrics. 313 

Note that linear CKA can only be used to quantify the relationship between 2nd-moment matrices and thus 314 

it would not be applicable to RSM comparisons. For obtaining the results of Figure 6, we used the Visual 315 

object recognition dataset (Hanson et al., 2004; Haxby et al., 2001; O’Toole et al., 2005) to define 𝑅௔; 316 

however, the results are robust to the choice of the ground truth. In fact, the standard error in Figure 6 is 317 

calculated across different choices of 𝑅௔ . We used the data from 10 visual ROIs (V1-V5, left and right) per 318 

subject for 𝑅௔. 319 
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 320 

Figure 6 | Evaluating the dependency of metrics to the number of response channels when testing for 321 
“relatedness”. For each number of response channels, points of the curves are the proportion of 322 

significant cases in which the relatedness of 𝑅௔ and each of the 20 𝑅௔
(௜)s is tested. We repeated the 323 

simulation for 10 (V1-V5, left and right) 𝑅௔s to obtain the standard error. A. Results for RSMs. The 324 
Riemannian distance shows the best performance among metrics. B. Results for 2nd-moments. The 325 
Riemannian distance has the best performance and the CKA show the second-best performance. 326 

Comparison test. The RSMs from two groups 𝑎 and 𝑏 would be discriminable (Nili et al., 2020) if the 327 

following inequalities hold: (Figure 5). 328 

 
𝑑 ቀ𝑅௔

(ଵ)
, 𝑅௔

(ଶ)
ቁ < 𝑑 ቀ𝑅௔

(ଵ)
, 𝑅௕

(ଶ)
ቁ , 𝑑 ቀ𝑅௕

(ଵ)
, 𝑅௕

(ଶ)
ቁ < 𝑑 ቀ𝑅௕

(ଵ)
, 𝑅௔

(ଶ)
ቁ 

𝑑 ቀ𝑅௔
(ଵ)

, 𝑅௔
(ଶ)

ቁ <  𝑑 ቀ𝑅௕
(ଵ)

, 𝑅௔
(ଶ)

ቁ , 𝑑 ቀ𝑅௕
(ଵ)

, 𝑅௕
(ଶ)

ቁ < 𝑑 ቀ𝑅௔
(ଵ)

, 𝑅௕
(ଶ)

ቁ 
(12) 

Here we have used the distance notion; however, one can use the correlation notion with reversed 329 

inequalities. Further, same inequalities should hold for 𝑅௔
(௜), 𝑅௔

(௝), 𝑅௕
(௜), and 𝑅௕

(௝) (𝑖 ≠ 𝑗). For distance-based 330 

metrics we can define a score as: 331 

 

𝑠𝑐𝑜𝑟𝑒 = ෍
1

4
[ 𝟙 ൬𝑑 ቀ𝑅௔

(௜)
, 𝑅௔

(௝)
ቁ < 𝑑 ቀ𝑅௔

(௜)
, 𝑅௕

(௝)
ቁ൰

௜,௝ (௜ஷ௝)

  

+ 𝟙 ൬𝑑 ቀ𝑅௕
(௜)

, 𝑅௕
(௝)

ቁ < 𝑑 ቀ𝑅௕
(௜)

, 𝑅௔
(௝)

ቁ൰ 

+𝟙 ൬𝑑 ቀ𝑅௔
(௜)

, 𝑅௔
(௝)

ቁ <  𝑑 ቀ𝑅௕
(௜)

, 𝑅௔
(௝)

ቁ൰ 

+𝟙 ൬𝑑 ቀ𝑅௕
(௜)

, 𝑅௕
(௝)

ቁ < 𝑑 ቀ𝑅௔
(௜)

, 𝑅௕
(௝)

ቁ൰ ] 

(13) 

The score will be one if all the inequalities hold. For each voxel count, we calculate the score multiple times 332 

by repeating the simulation for different choices of 𝑅௔ and 𝑅௕ and take the average. A metric that has a 333 
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higher average score is superior as it distinguishes variants of two primarily distinct RSMs with more 334 

sensitivity. 335 

Figure 7 shows the scores for different metrics. In this simulation, we use Visual object recognition 336 

dataset to obtain 𝑅௔ and 𝑅௕ (Figure 5). Scores are calculated for a range of voxel counts. Results are 337 

presented separately based on the type of the representational structure (RSM or 2nd-moment). Whether 338 

RSMs are used or 2nd-moment matrices, in almost all cases the Riemannian distance has an outstanding 339 

superiority. When RSMs are examined, all metrics except the Riemannian distance, which gives the best 340 

score, show similar performances. When 2nd-moment matrices are examined, again the Riemannian 341 

distance has the highest score and linear CKA has the second highest score. As a control measure, the 342 

Frobenius norm (another measure of the distance between two matrices) behaves poorly in comparison with 343 

other metrics (Figure 7B). So, the superiority of the Riemannian metric cannot be attributed to its distance-344 

based nature. 345 

 346 

Figure 7 | Evaluating the dependency of metrics to the number of response channels in the comparison 347 
test. For each number of voxels, curves show the scores (Eq. 13) for different metrics. The simulation has 348 
been repeated for all pairs of visual regions of the brain of an exemplar subject as seeds, and the average 349 

score is plotted. Error bars show the standard error. A. Results for RSMs. Apart from CKA, the 350 
Riemannian distance shows a clear superiority, and other measures behave similarly. B. Results for 2nd-351 

moment matrices. Again, the Riemannian distance has the highest average scores.  352 

3.2 Comparing representational structures via Riemannian distances yields higher 353 

intra-subject consistency (within-subject reliability) 354 

In this section, we compare different metrics in terms of their reliabilities. Intuitively, a metric that results 355 

in larger test-retest reliability would be preferred (Walther et al., 2016). In order to quantify the reliability 356 

of different metrics, we compare representational structures (RSMs and 2nd-moment matrices) for a subject 357 
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in different functional runs and make across-run comparisons in a range of ROIs. The across-run 358 

comparisons are summarized by a measure that we refer to as the consistency score. The consistency score 359 

determines the degree to which independent instances of representational structures, derived from different 360 

functional runs, are significantly related.  361 

For a subject, we define the consistency of a region’s representations across runs as: 362 

 𝑠𝚤𝑚̇𝚤𝑙̇𝑎𝑟𝚤𝑡̇𝑦തതതതതതതതതതതതതത
௕௖ =  ෍ ෍ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦௕௖(𝑅(௜), 𝑅(௝))

ே

௝ୀ௜ାଵ

ேିଵ

௜ୀଵ

/ ቀ
𝑁
2

ቁ (14) 

where bc stands for bias-corrected (section 2.3), 𝑁 is the number of runs, and 𝑅(௜) is the representational 363 

matrix of the 𝑖௧௛ run. In other words, 𝑠𝚤̇𝑚𝚤̇𝑙𝑎𝑟𝚤̇𝑡𝑦തതതതതതതതതതതതതത
௕௖ is the sample mean of bias-corrected values (distances 364 

or correlations), computed between RSMs or 2nd moment matrices of all pairs of runs in an ROI. The 365 

consistency score for this region is the t-statistics of 𝑠𝚤̇𝑚𝚤̇𝑙𝑎𝑟𝚤̇𝑡𝑦തതതതതതതതതതതതതത
௕௖s (tested against zero) calculated across 366 

all subjects. (Figure 8).  367 

 368 

Figure 8 | Calculation of the consistency score. First, for each subject, the average of bias-corrected 369 

values (distances or correlations) between RSMs of all pairs of runs (𝑠𝚤𝑚̇𝚤𝑙̇𝑎𝑟𝚤𝑡̇𝑦തതതതതതതതതതതതതത
௕௖  Eq. 14) is calculated. 370 

Then, the consistency score is calculated as the across-subject t-statistic of those values. This score can 371 
then be pooled across ROIs and tested against zero or be compared for different metrics. We say that one 372 

metric is more consistent than another if it results in larger consistency scores.  373 

We use two datasets for this analysis: Visual object recognition dataset, and Generic object decoding 374 

dataset, and show results for different metrics (including the Riemannian distance). When RSMs are used 375 

as representational structures (left column in Figure 9), the Riemannian distance shows a higher degree of 376 

within-subject reliability compared to other metrics. This can be deduced by the observation that the 377 

consistency scores (pooled across ROIs) of the Riemannian distance have a statistically significant larger 378 

median than the consistency scores of almost all other metrics. Each solid black line indicates the 379 

significance of the paired test (Wilcoxon signed-rank test) of consistency scores, obtained from multiple 380 
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ROIs, with the Riemannian distance and another metric. These results are also replicated for 2nd -moments 381 

(right column in Figure 9). 382 

 383 

Figure 9 | Comparing within-subject reliability (consistency) of different metrics. Results for the Visual 384 
object recognition and Generic object decoding datasets are shown in the first and second rows, 385 

respectively. Furthermore, different columns correspond to results from RSMs (left) or 2nd-moment 386 
matrices (right). For each panel of the figure, if there is a horizontal black line between the Riemannian 387 

distance and each of the other metrics, it means that the consistency scores (pooled across ROIs) 388 
attributed to the Riemannian distance has a statistically larger median (p<0.05, Wilcoxon signed-rank 389 

test) than the consistency score of another metric. Each slim gray line appearing at the background of the 390 
figure shows the consistency score of one ROI across different similarity metrics. 391 

3.3 Comparing representational structures with the Riemannian distance yields 392 

higher discriminability for representations from distinct brain regions 393 

Here we explore the extent to which distinct representations are discriminable according to various 394 

measures of representational similarity. To this end, we define a summary statistic called the 395 

discriminability score. 396 
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The discriminability score determines if independent instances of RSMs (or 2nd moment matrices) from 397 

two distinct brain regions are discriminable.  398 

We define the discriminability score for regions 𝑎 and 𝑏 in a subject as: 399 

 

𝐷௔௕ = ෍ ෍ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦௕௖ ቀ𝑅௔
(௜)

, 𝑅௔
(௝)

ቁ + 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦௕௖(𝑅௕
(௜)

, 𝑅௕
(௝)

)

ே

௝ୀ௜ାଵ

ேିଵ

௜ୀଵ

/ ቀ
𝑁
2

ቁ 

− ෍ ෍ (𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦௕௖ ቀ𝑅௔
(௜)

, 𝑅௕
(௝)

ቁ + 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦௕௖ ቀ𝑅௕
(௜)

, 𝑅௔
(௝)

ቁ)

ே

௝ୀ௜ାଵ

ேିଵ

௜ୀଵ

/ ቀ
𝑁
2

ቁ 

(15) 

where 𝑁 is the number of runs, and 𝑅௔
(௜) and 𝑅௕

(௜) are the representational matrices of the 𝑖௧௛ run of the 400 

regions 𝑎 and 𝑏, respectively. The details for computing the discriminability score is depicted in Figure 10. 401 

In the figure, 𝐷௔௕ is the difference between the average of darker arrows (bias-corrected distances or 402 

correlations of the samples of RSMs or 2nd-moment matrices from the same region) and lighter arrows 403 

(bias-corrected distances or correlations of the samples from distinct regions). If 𝐷௔௕ is large, the darker 404 

arrows in Figure 10 show substantially larger similarities than the lighter arrows. The discriminability score 405 

for regions 𝑎 and 𝑏 is the t-statistic (tested against zero) of 𝐷௔௕s calculated across all subjects. 406 

A metric has a significantly larger discriminability score than another one if its discriminability scores, 407 

pooled across all pairs of studied regions, are significantly larger than the scores of another metric. We test 408 

this hypothesis using the one-sided Wilcoxon signed-rank test. 409 

 410 

Figure 10 | Calculation of the discriminability score. For regions 𝑎 and 𝑏 of each subject, the difference 411 
between the average of the bias-corrected values between RSMs from the same region (darker arrows) 412 

and the average of the bias-corrected values between RSMs from distinct regions, 𝐷௔௕ (Eq. 15), is 413 
calculated. The discriminability score for regions 𝑎 and 𝑏 is the t-statistic (tested against zero) of 𝐷௔௕s 414 
across subjects. This score can then be pooled across all pairs of regions and compared for different 415 
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metrics. We say that one metric shows a higher degree of discriminability if it results in larger 416 
discriminability scores on average. This can be tested by a one-sided Wilcoxon signed-rank test. 417 

Similar to the previous section, we used Visual object recognition dataset, and the Generic object 418 

decoding dataset. In either case where RSMs (first column in Figure 11) or 2nd-moment matrices (second 419 

column in Figure 11) are used as the representational structure, the Riemannian distance performs best in 420 

discriminating representations from non-overlapping regions. This can be deduced by the observation that 421 

the discriminability scores (pooled across pairs of ROIs) of the Riemannian distance have a statistically 422 

significant larger median than the discriminability scores of other metrics. Solid black lines indicate the 423 

significance of the paired tests.  424 

 425 

Figure 11 | Comparing discriminability scores across metrics. The Visual object recognition dataset 426 
(first row) and the Generic object decoding dataset (second row) are used in our analysis. Column 427 

determines whether RSMs or 2nd-moment matrices are used as representational structures. For each 428 
panel of the figure, if there is a horizontal black solid line between the Riemannian distance and each of 429 
the other metrics, it means that the discriminability scores (pooled across pairs of regions) attributed to 430 

the Riemannian distance has a statistically significant larger median (p<0.05, one-sided Wilcoxon 431 
signed-rank test) than the discriminability scores of another metric. Each slim gray line appearing at the 432 

background of the figure, shows the discriminability score of a pair of ROIs across different metrics. 433 
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3.4 Motivations for using the Riemannian distance when testing for shared 434 

information: identical loss less linear transformations of activity patterns from 435 

two regions preserves their relationship 436 

Given the benefits we saw in using the Riemannian distance for comparing representations, we next explore 437 

the advantages of using it for testing shared information or representational connectivity (Basti et al., 2020). 438 

In this section, we explain a compelling property of the metric that makes it particularly useful for testing 439 

shared information. 440 

Multi-dimensional connectivity methods quantify the shared information between two sets of response 441 

patterns. Multi-dimensional connectivity can be detected and exploited via a read-out neuron. A read-out 442 

neuron that has access to both regional patterns can reveal the shared information by applying a set of 443 

weights to the activity patterns. For example, Informational Connectivity (Coutanche and Thompson-Schil, 444 

2013), the first method of this class, establishes functional connectivity if classification accuracies correlate 445 

across time in two separate regions. This would imply shared information about a particular binary 446 

distinction. Notably, this information can be detected and exploited by the read-out neuron. 447 

Importantly, it is plausible that the read-out neuron mixes the activity patterns in the two regions (or 448 

receives the mixed patterns) in the same way. Therefore, we would favor a metric that does not change with 449 

identical lossless mixing of the response patterns. Mathematically, if we denote the stimulus-response 450 

matrices of the two regions as 𝑈ଵ and 𝑈ଶ, where 𝑈ଵ is a 𝑘 × 𝑝ଵ matrix (stimulus × channels) for one region 451 

and 𝑈ଶ is a 𝑘 × 𝑝ଶ matrix of responses to the same stimuli in another region, we want to have: 452 

  𝑑(𝑀𝑈ଵ𝑈ଵ
்𝑀் , 𝑀𝑈ଶ𝑈ଶ

்𝑀்) = 𝑑(𝑈ଵ𝑈ଵ
் , 𝑈ଶ𝑈ଶ

்) (16) 

conditioned on 𝑀 being a full-rank (𝑘 × 𝑘) matrix. 453 

Interestingly, among all different metrics, the Riemannian distance is the only one that satisfies this 454 

property6. 455 

To illustrate this with an example, consider two representational spaces (e.g. two searchlight ROIs), 456 

with 2nd-moment matrices G1 and G2. These two matrices may correspond to two points in the space of the 457 

PSD matrices. Now, applying the same mixing matrix, 𝑀, to the activity patterns of the two regions, results 458 

in two new 2nd-moment matrices: G1
new and G2

new.  These two matrices might have different distances in 459 

the Euclidean space. In other words, the length of the straight lines that connect two given matrices changes 460 

due to the mixing operation. However, when considering the length of the geodesic curve that connects two 461 

 
6 This was part of the motivation for defining the metric (see section 2.2 for the mathematical derivation). 
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matrices on the Riemannian manifold, the distance between them (and hence their relationship summarized 462 

by the Riemannian distance) is unchanged after the transformation.  463 

This is a desirable property as identical full-rank linear transformations are applied to the patterns in 464 

the two regions and intuitively this should not affect their shared information. 465 

 466 

Figure 12 | Identical full-rank linear operations on activity patterns of two regions does not affect their 467 
representational similarity when the Riemannian distances are used. The figure depicts two 2 × 2 2nd-468 

moment matrices, G1 and G2, and their transformed versions, G1
new and G2

new. The length of the geodesics 469 
(solid blue curves) that connect the 2nd-moment matrices before and after linear transformations are 470 

identical (5.09 in this case) whereas their Euclidean distance changes. 471 

3.5 Advantages of using Riemannian distances when testing for multi-dimensional 472 

connectivity: detecting non-linear regional interactions with high sensitivity  473 

Representational similarity of representations from different brain regions, implies shared information, 474 

functional connectivity, and representational connectivity (Basti et al., 2020; Kriegeskorte et al., 2008). In 475 

this section, we explore the advantages of exploiting the Riemannian distance for quantifying 476 

representational connectivity. To this end, we compare the Riemannian distance with measures introduced 477 

earlier for representational connectivity: RCA (Basti et al., 2020; Kriegeskorte et al., 2008), distance 478 

correlation (dCor; Székely & Rizzo, 2014), and CKA (Kornblith et al., 2019). Since other measures 479 

discussed in this section have reserved abbreviations, we have adopted dRiem for the Riemannian distance 480 

in the following and the next section. 481 

It has been argued that 2nd-moment matrices fully capture the representational content of brain activity 482 

patterns (Diedrichsen and Kriegeskorte, 2017). For that reason, when comparing representations in two 483 
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brain regions we compute the Riemannian distance between their 2nd-moment matrices7. However, that 484 

comes with a cost as it requires the 2nd-moment matrices to be positive definite. This means that the number 485 

of conditions needs to be less than the number of voxels, which we observe in our simulations. 486 

Similar to (Basti et al., 2020), we consider simulated examples in which two regions are functionally 487 

connected. In these cases, it is expected that measures capture the functional connectivity. 488 

Let 𝑋 and 𝑌 be the response patterns of two regions (condition × voxel matrices). We have:  489 

 𝑌 = 𝑓(𝑋 × 𝑇) (17) 

In this case 𝑇 is a matrix that maps the voxels in one region into another. Additionally, 𝑓 can be an arbitrary 490 

function. We take 𝑋 from a multivariate normal distribution and use a random matrix for the mapping 491 

matrix, 𝑇. Both 𝑋 and 𝑌 are contaminated by multivariate Gaussian noise. 492 

Multivariate linear relationship. As a proof of concept, we first tested this simple linear connectivity 493 

scenario. In this case, 𝑓 is the identity operator, thus 𝑌 =  𝑋 × 𝑇 with some additive noise. We simulated 494 

data for a number of subjects (N=50) and two regions. Furthermore, we explored different combinations 495 

for the number of voxels and the number of conditions, observing the constraint that the number of voxels 496 

be larger than the number of conditions. For each set of parameters, we estimated different connectivity 497 

measures and their null values for a number of simulated subjects (section 2.3). We then obtained the bias-498 

corrected measures and their corresponding across-subject z-scores. 499 

Figure 13 shows the z-maps of different metrics for various simulation settings. Clearly, all measures 500 

can capture the simulated functional connectivity robustly and the z-scores are all highly significant.  501 

Similar to the previous sections, we could have also computed Riemannian distances between RSMs 502 

instead of 2nd-moment matrices. The reason we used 2nd-moment matrices is three-fold. First, RSMs could 503 

be directly derived from 2nd-moment matrices and thus the similarity of 2nd-moment matrices implies 504 

similarity of RSMs8. Second, the 2nd-moment matrices contain information about the overall activations as 505 

well. The diagonal elements define the 𝐿ଶ norm of the activation for different conditions. Therefore, 506 

assessing representational connectivity from the similarity of 2nd-moment matrices is a more comprehensive 507 

test that also incorporates univariate connectivity. Third, our simulations confirm that sensitivity is higher 508 

when 2nd-moment matrices are tested (Figure 14). 509 

 
7 Alternatively, we could have also computed the Riemannian distance between their corresponding RSMs. This 
distinction is elaborated later in this section. 
8 In the previous sections we intentionally included RSMs to relate our measure to classic RSA studies. 
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 510 

Figure 13 | Comparing different measures of representational connectivity for simulated data with 511 
multivariate linear connections. We simulated 50 subjects. For each subject a stimulus-response matrix 512 

in one region, 𝑋, was obtained by sampling from a multivariate normal distribution. The stimulus-513 
response matrix in the other region, Y was 𝑋 × 𝑇, with T being a constant voxel-space transformation. 514 

Each element of 𝑇 was chosen randomly from a normal distribution. 𝑋 and 𝑌 were then contaminated by 515 
i.i.d samples of additive white Gaussian noise. Panels A-D represent the z-scores of bias-corrected 516 

connectivity measures calculated across subjects. As one can see, in almost all voxel-condition counts, all 517 
metrics could detect the linear association between regions (z>1.645). 518 

 519 

 520 

Figure 14 | The Riemannian distance between 2nd-moment matrices of two linearly connected regions 521 
gives larger effect sizes (z-scores) than the Riemannian distance between their RSMs. For 20 subjects, 522 
we simulated two linearly connected regions, with a condition number of 30 and a voxel count of 40, and 523 

corrupted them with white noise. When 2nd-moment matrices are used as opposed to RSMs for 524 
characterizing the representational structures of the regions, the Riemannian distance gives larger effect 525 

sizes (z-scores) for all subjects.   526 

Non-linear multivariate relationships. Next, we explored whether our suggested measure can also capture 527 

non-linear relationships. For that, we used Rectified Linear Units (ReLU) for the function 𝑓. The choice of 528 
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nonlinearity was arbitrary here, but the results replicate for other types of nonlinear functions. Having said 529 

that, using ReLU was motivated by neural network models of brain information processing (Nair and 530 

Hinton, 2010). Figure 15(A-D) gives the simulation results for the different measures of representational 531 

connectivity. One can see that for the majority of parameter values, all measures give significant z-scores. 532 

However, when the ratio of the number of conditions to the number of voxels is small, dRiem gives higher 533 

z-scores. Figure 15E is color-coded based on the winning measure(s) for each combination of parameters 534 

(pooling across-metric tests for each combination of parameter values). We can clearly see that for relatively 535 

smaller ratios of the number of conditions to the number of voxels, dRiem outperforms all other measures, 536 

whereas when the number of conditions is large (e.g. when temporal geometries are being compared), the 537 

distance correlation performs best. In fact, in the range of relatively small condition to voxel count ratios 538 

all methods except for the Riemannian distance fail to even capture any connectivity. This is a unique 539 

advantage for the Riemannian distance when the designs are condition poor, or the ROIs consist of large 540 

numbers of voxels. For relatively larger number of conditions, where dCor performs best, other measures 541 

also give significant results. These are replicated for smaller number of simulated subjects (e.g. N = 20) as 542 

well. 543 

 544 

Figure 15 | Comparing different measures of representational connectivity for simulated data with 545 
nonlinear interactions. We simulated 50 subjects. For each subject a stimulus-response matrix in one 546 
region, 𝑋, was obtained by sampling from a multivariate normal distribution. The stimulus-response 547 

matrix in the other region, 𝑌 was 𝑅𝑒𝐿𝑈(𝑅𝑒𝐿𝑈(𝑋) × 𝑇) mimicking a typical nonlinear interaction found 548 
in neural network models. Each element of 𝑇 was chosen randomly from a normal distribution. 𝑋 and 𝑌 549 
were then contaminated by i.i.d samples of additive Gaussian noise. Panels A-D represent the average z-550 
scores of bias-corrected connectivity measures (across subjects). As one can see, in smaller condition to 551 
voxel count ratios, dRiem has larger z-scores, while in larger ratios, all metrics have z-scores that are 552 

equal to or larger than 1.645. This means that all of them are capable of detecting the nonlinear 553 
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relationship. Panel E indicates the superiority regime for each metric. Pairwise comparisons between 554 
measures is done by performing an across-subject paired Wilcoxon signed-rank test on the two sets of z-555 

scores (one per measure). Different measures are coded with different colors. If two measures are equally 556 
good at each voxel-condition count, their colors are combined (summed), and a new color is assigned 557 

(see the legend). For instance, magenta is the combination of blue (CKA), and red (dRiem) or white is the 558 
combination of all three colors. In this panel, no color is dedicated to RCA since it has the weakest 559 

performance among all metrics. 560 

3.6 The Riemannian distance outperforms existing measures in capturing similarity 561 

of neural network representations 562 

One of the main advantages of RSA is that it can also be used to compare model representations, e.g., those 563 

in artificial neural networks (Kriegeskorte, 2015). In this section, we study the performance of the 564 

Riemannian distance in capturing similarity of neural network representations. Recently Kornblith and 565 

colleagues have proposed a measure called centered kernel alignment (CKA) for quantifying the similarity 566 

of neural network representations. Here, we introduce a similar approach and compare the Riemannian 567 

distance to CKA and other measures of representational similarity.  568 

To this end, we perform almost the same analysis conducted in part 6.1 of (Kornblith et al., 2019). 569 

Consider two neural networks with a similar structure but different random initializations. The intuition 570 

underlying the method proposed by (Kornblith et al., 2019) is as follows: the stimulus-response matrix of 571 

a layer in the first network must have the highest similarity score to the stimulus-response matrix of the 572 

corresponding layer in the second network. For example, representations of layer 4 in network 1 must be 573 

maximally similar to representations of layer 4 in network 2, where networks 1 and 2 are trained with the 574 

same dataset but have different random initializations.  575 

A VGG-like convolutional network based on All-CNN-C (Springenberg et al., 2015) is used for 576 

simulations. The detail of the architecture can be found in Table E.1 of (Kornblith et al., 2019). Since our 577 

purpose is to investigate the similarities of layer representations of neural networks trained with different 578 

random initializations, we trained the networks without extensive search for optimal hyperparameters. The 579 

average accuracy of ten networks in which the weights were initialized differently was acceptable (85.08%) 580 

when these networks were used on the test dataset.  581 

We also used the CIFAR-10 dataset (Krizhevsky et al., 2009) which is composed of ten different 582 

categories of images. To construct the representations of different layers of the networks, we randomly 583 

sampled one image from each category from the training dataset. We used these ten images as input to 584 

different networks. The motivation for this was to resemble neuroscience experiments in which a random 585 

sample of all images is presented to the subject while brain responses are recorded. However, this is 586 
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different from what (Kornblith et al., 2019) did in their work. They used all training and test data as inputs 587 

and compared representation for all those conditions.  588 

For a given metric, in each pair of networks, if a layer of the first network has the most similar 589 

representation with its corresponding layer in the second network, we give a score of one to that layer and 590 

then calculate the average score for all of the layers. We repeat this procedure for all pairs of networks and 591 

calculate the average. Furthermore, we repeat the whole procedure with 100 different image samples and 592 

obtain the overall average. This is done to minimize the impact of the choice of the input images.  593 

The results are depicted in Figure 16. The heights of the bars correspond to the average scores for each 594 

metric, and the error bars show the standard deviation of the scores across many choices of input images. 595 

As can be seen, in line with (Kornblith et al., 2019) findings, we also find that CKA performs better than 596 

RCA. However, the Riemannian distance has a significantly larger score than CKA and other measures. 597 

This shows that considering the geometry of the manifold of all 2nd-moment matrices can also have major 598 

contributions to neural network research. 599 

 600 

Figure 16 | Accuracy of identifying corresponding layers based on maximum similarity in structurally 601 
similar 10-layer CNNs with different initializations. For each set of input images, which consists of one 602 
image from each category of images in the CIFAR-10 dataset (10 images in total), we obtain the score by 603 

examining each layer’s representational similarity to its corresponding layer in all pairs of networks. 604 
Each bar in this figure is the average of 100 scores obtained from 100 different choices of input images. 605 

The error bars are the standard deviations over many choices of input images.  606 

3.7 The Riemannian metric can be successfully used for searchlight mapping with 607 

acceptable sensitivity 608 

Having reported the advantages of the Riemannian framework for testing representational models in 609 

different brain regions, we next investigate its performance in continuous searchlight-based information 610 

mapping (Kriegeskorte et al., 2006).   611 
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One application of whole-brain searchlight analysis (Kriegeskorte et al., 2006) is to find brain regions 612 

in which RSMs are related to a reference RSM (e.g., a model or a reference RSM, 𝑅௥௘௙). In this analysis, 613 

for each subject, we compare 𝑅௦, the RSM for a searchlight sphere, to 𝑅௥௘௙, and assign the normalized bias-614 

corrected measure (i.e. the distance or correlation, divided by the standard deviation of the null distribution, 615 

see section 2.3 for details) between 𝑅௦ and 𝑅௥௘௙ to the central voxel of the sphere. In our setup, matrices 616 

are 8 × 8 and we use twenty permutations9. This approach results in a normalized bias-corrected 617 

distance/correlation map per subject. We can then apply statistical tests to the extracted maps to test the 618 

summary statistics across subjects and obtain a p-map (e.g., via an across-subjects right-tailed signed-rank 619 

or t-test of bias-corrected values at each voxel). Finally, we use generalized Bonferroni correction (Neuwald 620 

and Green, 1994) to control the family-wise error rate at a threshold of 0.05 and select voxels from the p-621 

map with p-values less than the corrected threshold as significant voxels.  622 

Here, we use simulations (similar setup as (Nili et al., 2014)) in which a certain, restricted part of the 623 

brain contains a known multivariate effect (i.e., it has RSMs similar to a particular reference RSM). The 624 

green square in Figure 17 illustrates a region with a known simulated effect. The voxels inside the green 625 

square have activity profiles coming from a specific known representational structure (RSMin) with some 626 

additive noise, while the activity profiles of other voxels do not follow any particular structure (RSMout). 627 

 628 

Figure 17 | An illustration of the simulation approach for the searchlight-based analysis. The green 629 
square in the figure indicates an area of the brain with a specific representational structure: each voxel’s 630 

activity profile inside the green square follows RSMin. The responses of the other voxels consist of 631 
spatiotemporally smoothed Gaussian noise; therefore, their activity profiles and thus their RSM would be 632 
non-structured, RSMout. We then run a searchlight analysis with a model RSM that is identical to the one 633 
used for the green region. So, we expect to recover the green region after testing maps across subjects 634 

and also correcting for multiple comparisons (similar to any other whole-brain fMRI searchlight 635 
analysis). 636 

 
9 Larger numbers of permutations had little effect on improving results. 
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The ideal metric would perfectly discriminate the green area from the rest. Therefore, after obtaining 637 

significant voxels from the method mentioned above, one can compare the performances of the metrics by 638 

their ability to detect the true underlying effect. We quantify the performance by the F1-score, which is 639 

widely accepted for quantifying accuracy for sparse effects (Sasaki, 2007). The score is the proportion of 640 

true positives over the sum of true positives and the average of false positives and false negatives. 641 

Figure 18 shows the output for the Riemannian metric when 20 subjects are simulated. One can observe 642 

that the analysis does, indeed, retrieve the simulated effect. It is worth noting that, to the best of our 643 

knowledge, this is the first attempt to test representational models with distance-based measures (like the 644 

Riemannian distance). The results reassure that the bias-correction step that we apply is valid and has good 645 

sensitivity and specificity.   646 

In Figure 19, we have quantitatively compared the performances of different metrics when the number 647 

of simulated subjects is 20. Here we have simulated eight independent groups of subjects, each containing 648 

20 subjects. For each group, we have obtained a p-map according to the procedure explained above and 649 

kept the significance threshold at a constant level of 0.05 after correcting for multiple testing. The boxplot 650 

shows how the F1-score of detected significant voxels varies among different simulated groups for each 651 

metric. One can see that the Riemannian metric shows superior performance to the Frobenius norm of 652 

difference and the Pearson correlation. The superiority over the Frobenius norm is another piece of evidence 653 

that shows considering the manifold of RSMs is important. Further, it has comparable performance to state-654 

of-the-art metrics such as the Spearman or Kendall’s 𝜏 correlation. Here the superiority is tested by the 655 

paired right-tailed signed-rank test of F1-scores of two metrics calculated in different groups and shown by 656 

horizontal lines on top of the figure. It should be noted that we have used normalized bias-corrected values 657 

for all metrics in our analysis in order to have a fair comparison; however, it is possible to use raw values 658 

for correlation-based metrics without losing performance (this implicitly assumes that correlations are zero-659 

centered under the null hypothesis).  660 
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 661 

Figure 18 | Sample prediction of related voxels using the Riemannian metric. Twenty subjects are 662 
simulated, and related voxels are detected using the Riemannian metric. Yellow voxels show the 663 

prediction, and red lines are the borders for the cubic ground truth effect. The family-wise error rate is 664 
controlled at 0.05. 665 

 666 

Figure 19 | Comparison of F1-scores for different metrics. For 20 subjects and a metric, a p-map is 667 
obtained by testing normalized bias-corrected maps across subjects. Then, voxels with a p-value less than 668 
corrected thresholds for the significance level of 0.05 are labeled as related (significant) voxels. The F1-669 

score of predictions are shown for each metric. Here, we have repeated the procedure for eight 670 
independent groups of subjects, each containing 20 subjects. The proposed Riemannian metric shows 671 

comparable performance to the commonly used correlation-based methods (Spearman and Kendall’s 𝜏)  672 
and is superior to others. Here, each horizontal bar shows the F1-scores obtained from different groups 673 
with the Riemannian metric are significantly larger than the other metrics when a right-tailed signed-674 

rank test is performed.  675 
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Taken together, these results suggest that the Riemannian distance can be used successfully for 676 

searchlight mapping. Since distances are positively biased, inference on the Riemannian distance requires 677 

correcting for the bias at the single-subject level, and that increases the computational load of the analysis. 678 

Future work is needed to allow accurate and computationally simple estimation of the null distribution.    679 

4 Discussion and Conclusions 680 

Pattern information analysis has played an important role in understanding the information content of brain 681 

representations and gaining insight into the underlying neural computations (Haynes and Rees, 2006; 682 

Kriegeskorte and Diedrichsen, 2019; Quian Quiroga and Panzeri, 2009). Apart from pattern classifiers, 683 

other representational methods rely on the 2nd-moment matrix of stimulus-evoked activity patterns 684 

(Diedrichsen and Kriegeskorte, 2017). Representational dissimilarity matrices (RDMs) and stimulus-by-685 

stimulus correlation matrices of activity patterns (RSMs) can both be directly derived from 2nd-moment 686 

matrices.  687 

RSA has been widely used in studies that test hypotheses about brain representations. However, 688 

inference procedures to date have been blind to the manifold that underlies the 2nd-moment matrices, RSMs, 689 

and positive semi-definite (PSD) matrices in general. The Riemannian manifold has been used in other 690 

fields of neuroscience research to better capture the relationship between PSD matrices. As both 2nd-691 

moment matrices and RSMs also reside on the Riemannian manifold, we investigate whether the framework 692 

can offer improvements to the classic RSA inference (Kriegeskorte et al., 2008; Nili et al., 2014). 693 

Since the Euclidean and Riemannian spaces employ different metrics, the relationship between sets of 694 

activity patterns, from brains or models, can be different depending on the metric. For example, we 695 

illustrated a case (section 1) where the similarity of representations is completely different in the Euclidean 696 

space and the Riemannian manifold. 697 

Given this difference, we compared distances on the Riemannian manifold with other existing metrics 698 

and found many advantages for adopting the Riemannian geometry into the RSA.  699 

First, one can think of activity profiles as points (e.g., corresponding to response channels in brain 700 

measurements) in a space where each axis corresponds to one experimental condition (e.g. stimulus). The 701 

more samples one can get from a brain region, the more accurate the estimates of the variance of the points 702 

or the 2nd-moment matrix will be. In fact, with inadequate sampling, two regions that have different 703 

functional properties can have identical fits to the same model. The discrepancy between the two regions 704 

becomes more and more clear with increasing samples. We showed that the Riemannian distance is less 705 

susceptible to this sampling bias. 706 
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Second, we explored the extent to which Riemannian distances are smaller for measurements of the 707 

same set of stimuli for a participant (within-subject reliability). We followed the same line of reasoning as 708 

(Walther et al., 2016), but instead of comparing different estimates of pattern dissimilarity, compared 709 

different RDM similarity measures. Also, we performed the comparison for two different datasets. In one, 710 

we used anatomical ROIs, and the other, we applied the analysis to functional ROIs (from an independent 711 

localizer run). We observed that in both datasets, comparisons made on the basis of the Riemannian distance 712 

yield significantly higher split-data reliability across different ROIs. Next, we provided further evidence on 713 

the superiority of the Riemannian distance by showing that it allows discriminating between 714 

representational matrices of disjoint areas of the brain as well. 715 

It might be that in these cases, different representational matrices of a subject in a brain region become 716 

farther apart in the Euclidean space but less in the Riemannian manifold. Future work can characterize the 717 

curvature of the Riemannian manifold and identify regions of the manifold in which relationships vary 718 

considerably depending on the space (i.e., localize parts of the manifold where Euclidean relationships 719 

would be maximally different from relationships on the Riemannian manifold). 720 

Making inferences on distance-based metrics faces a major difficulty. While with RDM correlations, it 721 

can be assumed that the null values are centered around zero, this type of assumption does not apply to 722 

distances. Distances are always positive, and this complicates statistical inferences on their values. Here, 723 

we followed and extended the approach taken by (Basti et al., 2020) and showed that it is indeed possible 724 

to test for significant similarities if each measure is normalized by its null value. This bias correction 725 

scheme allows for making inference on measures that have different scales and different null distributions. 726 

Our preliminary investigation shows that with 20 subjects, the results do not change considerably if the 727 

number of permutations goes as low as 20. However, this might vary with the number of subjects and needs 728 

further work to become part of the RSA inference pipeline.  729 

Brain regions do not function in isolation, and connectivity methods quantify communication between 730 

brain regions. Multi-dimensional connectivity methods test for connectivity in the information carried by 731 

different multi-dimensional measurements (Basti et al., 2020). That is in contrast to the classic univariate 732 

functional connectivity that tests the correlation between average time series of two regions (Biswal et al., 733 

1995). Given the benefits of using the Riemannian metric that we observed for model testing, we next 734 

considered its applications in connectivity analysis. We first validated our metric by showing that it can 735 

capture multivariate linear relationships with high accuracy. Then, we showed that the metric can be 736 

particularly useful for testing nonlinear regional interactions. Once again, the intuition is that nonlinear 737 

relationships can considerably move RSMs or 2nd-moment matrices in the Euclidean space, but not so much 738 

when the underlying Riemannian manifold is considered. Additionally, we showed that testing the 739 
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relationship between 2nd-moment matrices, as opposed to RSMs, is more powerful in this context. 2nd-740 

moment matrices also contain information about regional average activations (univariate effects), and 741 

therefore, our proposed measure of functional connectivity incorporates both univariate and multivariate 742 

connectivity.  743 

Another motivation for using the Riemannian distance in functional connectivity is its affine-invariant 744 

property (section 3.4). Relationships between 2nd-moment matrices are unaffected by identical full-rank 745 

linear transformations. This property can be useful for any case where sources are combined to obtain 746 

measured signals (Pham & Cardoso, 2001). 747 

One might note that a caveat of our proposed metric is that it requires the number of conditions to be 748 

less than the number of voxels. Future work can develop ways to afford analysis on the Riemannian 749 

manifold for the cases in which the number of conditions are larger than the number of voxels (surely, one 750 

way to approach that would be to reduce the dimensionality of the data, though this might not be ideal in 751 

many scenarios).  752 

Researchers are often interested in localizing multivariate effects in locally distributed activity patterns. 753 

Searchlight mapping is best suited for this purpose. Using simulations with known ground truth, we verified 754 

that the Riemannian metric works well in searchlight analysis. We showed that while it has an acceptable 755 

false positive rate, its sensitivity is either higher or equal to existing methods. Given the advantages the we 756 

have reported for the Riemannian metric, it is completely plausible that real data applications of searchlight 757 

analysis would find cases in which only the Riemannian metric can detect the presence of an effect. For 758 

example, in our simulations, response patterns in a seed region were linearly related to a particular structure. 759 

However, non-linear relationships will be best captured by the Riemannian metric (section 3.5). Thus, 760 

although our searchlight simulations were not designed so that the benefits of the Riemannian metric are 761 

best highlighted, we still find that the metric performs better and, at a minimum yields results equal to the 762 

existing methods.   763 

The analyses performed in this manuscript are conducted for both RSMs and 2nd-moment matrices (G) 764 

when possible. 2nd-moment matrices are more general and summarize the information present in response 765 

patterns as well as in regional average activations (diagonal elements of G). Similar to PCM (Diedrichsen 766 

et al., 2011), model testing in RSA using 2nd-moment matrices can lead to testing a hypothesis about 767 

functional properties that are both sensitive to univariate and multivariate distinctions. It is also plausible 768 

that model testing with G can allow the separation of the contributions of univariate average responses and 769 

fine-grained pattern effects when used in discriminating different brain states. This, in itself, can help in 770 

understanding the neural code. Future work will consolidate this and apply it to empirical data. 771 
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One main advantage of RSA is that testing computational models is integrated with the analysis of 772 

neuroimaging data. An example of this would be a testing hypothesis about RDMs/RSMs from different 773 

layers of neural networks (Khaligh-Razavi and Kriegeskorte, 2014) and how they explain brain functions 774 

(Kriegeskorte, 2015). We reasoned that if the Riemannian framework has a lot to offer to test brain data, it 775 

might also be useful in capturing the relationship between representations of artificial neural networks. We 776 

verified that the Riemannian metric is best suited for capturing the similarity of model representations. In 777 

particular, we showed that it performs significantly better when compared to a recent novel metric that was 778 

shown to be most useful in capturing representational similarity (Kornblith et al., 2019).  779 

We believe that the results from our neural network analysis go hand in hand with the other results we 780 

report in this paper. Using human data, we showed that different samples of each brain region of a subject 781 

are more similar to each other and more distinct from other regions of the same subject when the 782 

Riemannian distance is used to compare representations. With the deep-nets, model features from the same 783 

layer of networks with different initializations could be thought of as similar to brain responses of an ROI 784 

for different subjects. Future work can verify whether different initializations can explain individual 785 

differences, but in our results this intuition can link results from real data and neural network analysis 786 

(section 3.6).  787 

Although future work is required to pinpoint a priori conditions in which the Riemannian distance 788 

outperforms other metrics, we showed that the Riemannian geometry could be extremely helpful for pattern 789 

information analysis. We believe that the Riemannian geometry has a lot to offer to multivariate pattern 790 

analysis and in particular, RSA. 791 

Data and code availability 792 

Links of the datasets we used in this study: 793 

Visual object recognition dataset: https://openneuro.org/datasets/ds000105/versions/00001  794 

Generic object decoding dataset: https://openneuro.org/datasets/ds001246/versions/1.2.1  795 

Analyses scripts are publicly available at https://github.com/mshahbazi1997/riemRSA   796 

 797 

 798 

 799 

 800 
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