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Summary 

Cells are complex systems in which many functions are performed by different 

genetically-defined and encoded functional modules.  To systematically understand how 

these modules respond to drug or genetic perturbations, we developed a Functional 

Module States framework. Using this framework, we 1) defined the drug induced 

transcriptional state space for breast cancer cell lines using large public gene expression 

datasets, and revealed that the transcriptional states are associated with drug 

concentration and drug targets; 2) identified potential targetable vulnerabilities through 

integrative analysis of transcriptional states after drug treatment and gene knockdown 

associated cancer dependency; and 3) used functional module states to predict 

transcriptional state-dependent drug sensitivity and built prediction models using the 

functional module states for drug response. This approach demonstrates a similar 

prediction performance as do approaches using high dimensional gene expression 

values, with the added advantage of more clearly revealing biologically relevant 

transcriptional states and key regulators.  
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Introduction 

Cells are complex systems that have been investigated at multiple levels, including 

genomic, epigenomic, transcriptomic, proteomic and metabolomic. The varying 

concentrations and abundances of molecular species reflect diverse processes that 

regulate cell function. On the genomic level, tumors are often stratified into different 

subtypes according to the mutation status of certain genes, which are known to be 
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predictive of clinical outcomes (Papaemmanuil et al., 2016; Schmitz et al., 2018). The 

transcriptome, however, can be affected by genetic and epigenomic alterations and  is a 

more direct lens to investigate cell behavior and provide clues to understand tumor 

heterogeneity or drug response.  

 

A range of methods have been developed to measure the transcriptome at different levels 

of resolution, such as gene expression microarrays, bulk RNA sequencing (RNASeq), the 

L1000 platform (Subramanian et al., 2017) and single cell RNASeq (Zheng et al., 2017). 

These high-throughput techniques have been used to capture the transcriptomes from 

thousands of primary tumor samples and cell lines. For example, the TCGA (Knijnenburg 

et al., 2018; Thorsson et al., 2018) project measured over 10,000 tumor samples for 33 

tumor types using RNASeq, the Connectivity Map (Subramanian et al., 2017) project      

provided over one million transcriptomic profiles of different cell line samples after 

treatment of drugs or knockdown of genes using the L1000 platform, and the GDSC (Iorio 

et al., 2016) and CCLE (Barretina et al., 2012; Ghandi et al., 2019) projects measured 

transcriptional profiles of multiple cell lines before drug treatment using microarrays or 

RNASeq. The growing archive of transcriptomic data provides a rich source of information 

for defining transcriptional states and understanding the functionality of cells that are 

perturbed by genetic alterations or drug treatment.  

 

A number of methods have been developed to determine cellular states, especially in the 

area of single cell studies, such as Monocle (Trapnell et al., 2014), scEpath (Jin et al., 

2018), SLICE (Guo et al., 2017), SCENT (Teschendorff and Enver, 2017), and OncoGPS 

(Kim et al., 2017) which works with bulk data. The main differences among these methods 

are reflected in the underlying assumptions. Depending on the assumption, different 

factors, which are based on the biological questions and contexts, are chosen to interpret 

the cellular transcriptomic state. Commonly used factors include principal components  

(Tsuyuzaki et al., 2020), entropy (Jin et al., 2018) and various oncogenic transcriptional 

signatures (Kim et al., 2017). The major shortcomings of  current methods to define 

transcriptional states include: 1) dimensionality reduction without using existing biological 

knowledge, which can hamper interpretation of cell states; 2) not defining cellular 

functionalities; 3) using only one factor to represent the transcriptomic states. To 

overcome these shortcomings, we proposed a functional module states framework to 

define cell states by gene set or pathway derived factors, which are numeric values that 

estimate the overall activity of the pathway or gene set. 

 

Curated pathways, such as KEGG (Kanehisa and Goto, 2000; Ogata et al., 1999), cover 

a large number of genes and a diversity of biological processes, including DNA 

replication, transcription, energy metabolism, signaling, and others. The expression of 

genes in these pathways may provide one way to estimate the activity of such functional 
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modules. We proposed the states of cells can be defined by the overall activity profile of 

the functional modules, which we define as functional module factors (FM-factors). The 

vector of these so-called FM-factors is then used to represent the functional module 

states (FM-States). In the remainder of this work, we demonstrate the utility of the newly 

established FM-States framework by addressing the following questions, 1) are the 

transcriptomic states of a cancer cell line (MCF7) after drug treatment associated with 

drug concentration or the drug targets?; 2) can we predict targetable vulnerabilities using 

the transcriptional cell states?; and 3) can we use the functional states of cancer cell lines 

(multiple breast cancer cell lines) prior to drug treatment to predict the drug response? 

We have chosen to focus on breast cancer, but this approach is general and can be 

readily applied to other tumor types.  

Results 

Overview of the FM-States framework 

 

The goal of the functional module (FM) states framework is to define biologically 

interpretable factors from high dimensional gene expression data. The resulting FM-factor 

matrix can be used for further clustering, annotation, detecting regulators for cell states 

and supervised machine learning, such as classification. The overview of the FM-states 

framework is shown in Fig 1. We considered each of the pathways in KEGG (Kanehisa 

and Goto, 2000; Ogata et al., 1999) as a functional module. These functional modules 

cover diverse cellular activities under the categories of metabolism, genetic information 

processing, environmental information processing and cellular processes. For each 

functional module, we defined four types of factors, namely ssGSEA_score, up_strength, 

down_strength, and TF_strength. ssGSEA_score is used to represent the ranking of the 

expression level for different functional modules in a given sample (Hanzelmann et al., 

2013). The up_strength and down_strength factors estimate the ratio of genes showing 

high expression (95th percentile or z-score >1.6 ) or low expression (5th percentile or z-

score < −1.6) in one functional module for one specific sample, as compared to all other 

samples. TF_strength estimates the weighted average expression level of transcription 

factors that are predicted to regulate genes in a given functional module (see methods). 

After defining the FM-factor matrix, consensus clustering (Monti et al., 2003; Wilkerson 

and Hayes, 2010) can be used to determine the number of clusters (states), given the 

input samples. This framework provides a clear biological interpretation for each state by 

annotating states with different factors and enriched transcription factors (see methods). 

The functional module factors can also serve as features for machine learning methods, 

which can identify the key features (i.e., FM-factors) that distinguish different phenotypes 

or responses to perturbations, such as gene knockdowns or drugs, as we demonstrate.                                   
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Functional transcriptional states of breast cancer cell lines reflect 

drug response  

We applied the FM-States method to the high-throughput transcriptional profiles of MCF7 

cell lines after drug treatment available from Cmap (Subramanian et al., 2017), following 

the pipeline shown in supplemental Fig S1. MCF7 cells with available drug sensitivity data 

(EC50 values) from the Cancer Therapeutics Response Portal (CTRP2) were selected 

(Aksoy et al., 2017; Basu et al., 2013; Rees et al., 2016; Seashore-Ludlow et al., 2015), 

resulting in a dataset of 1287 gene expression profiles that represent the transcriptome 

of MCF7 cell line treated with 190 drugs or compounds in different concentrations (drug-

treated samples). A reference gene expression dataset of 1400 MCF7 samples treated 

with DMSO or H2O from CMap (Subramanian et al., 2017) was also used (drug-free 

samples).   

 

Twenty-three functional modules (supplemental table 1) and the four categories of factors 

including ssGSEA_score, up_strength, down_strength, and TF_strength were selected 

to define the functional states of MCF7 cells. FM-factors associated with drug treatment 

were selected by comparing the drug treated samples and drug free samples(Mann-

Whitney rank test followed by Benjamini-Hochberg adjustment, FDR <1e-6 and effect 

size >0.2 (up-regulated) or effect size <-0.2 (down-regulated)). The FM-factors including 

ssGSEA scores of cell cycle, replication and repair, nucleotide metabolism, transcription 

and translation were significantly down-regulated after drug treatment, while membrane 

transport, signal transduction, and lipid metabolism were upregulated after drug treatment 

(Supplemental Fig S2). FM-factors for the drug treated samples were normalized using 

reference samples without drug treatment. Then, the drug treatment associated FM-

factors were selected for further analysis with consensus clustering to define potential 

states after drug treatment. 

 

Five transcriptional states were detected for MCF7 cells after drug treatment (Fig 2A, 

Supplemental Fig S3). Compared to drug-free samples, state 1 (S1) shows up-regulation 

of the modules involved in replication and repair, transcription, translation and cell cycle, 

and down regulation of modules involved in transport and catabolism, signaling molecules 

and interaction, carbohydrate metabolism, and membrane transport (Active cell cycle 

state, Fig 2A & 2B). States 2 and 3 (S2 & S3) show no significant difference compared 

to drug-free samples (Basal state), though S3 shows a somewhat lower expression of 

cell cycle related modules (Fig 2A & 2B). Both state 4 (S4) and state 5 (S5) featured up-

regulation of transport and catabolism, carbohydrate metabolism, signal transduction, 

amino acid metabolism, and apoptosis, and down-regulation of translation, transcription, 

replication and repair, nucleotide metabolism, cell cycle and apoptosis. Specifically, S4 

features significant down-regulation of transcription factors that regulate replication and 
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repair, cell cycle and cellular senescence (High apoptosis/Low cell cycle/Cell cycle TF 

suppressed, Fig 2C). S5 features up-regulation in the transcription factors that regulate 

various functional modules including transport and catabolism, lipid metabolism, 

replication and repair, cell cycle, and cell motility (High apoptosis/Low cell cycle/Cell 

cycle TF activated). In this way, the FM-States framework provides direct annotation for 

different states by measuring the FM-factors among different states.  

 

The FM-States framework also provides annotations for the FM-States by detecting the 

transcription factors that may regulate different states. We annotated the activation or 

inhibitory effects of one transcription factor on a pathway by the  enrichment of its target 

genes with positive or negative correlation in the pathway. Fig 2D-F shows the 

transcriptional factors with (1) significant differential expression among different states 

(one-way ANOVA test, and Bonferroni multiple test correction) and (2) their target genes 

enriched in the differentially regulated functional modules. For example, FOXO1 shows 

inhibitory effects to cell cycle, and it shows lower expression in S1 (Fig 2D) and  higher 

expression in S4 and S5 (Fig 2E & 2F). This is consistent with the  observation that S4 

and S5 are low-cell cycle states. It is also supported by a previous study which showed 

FOXO1 was associated with cell cycle inhibition (Schmidt et al., 2002). The basal-like 

state (S2 & S3) didn’t show significant differences in transcription factor expression. 

Expression of JUN is reduced in S1 and increased in S4 and S5 (Supplemental Fig S4).  

 

Previous time-course studies of MCF7 cells after drug treatment showed the expression 

of JUN gene elevated after 36h after treatment of chemotherapeutic agents such as 

doxorubicin and 5-fluorouracil (Troester et al., 2004). SOX2 also shows up-regulation in 

S4 and S5 (Supplemental Fig S4). Upregulation of SOX2 has been reported to promote 

the cancer stem cell-like phenotype associated with resistance upon anti-cancer drug 

treatment (Huser et al., 2018). To further annotate the effects of each transcription factor 

to each module, we performed enrichment analysis (Fisher’s exact test) to estimate 

whether there is significant enrichment of the positive correlated target genes  or the 

negatively correlated genes. If the positively correlated target genes for one transcription 

factor were enriched in one module, we define this transcription factor has an activation 

effect to this module. Otherwise, if the negatively correlated target genes for one 

transcription factor are enriched in one module, we define this transcription factor has an 

inhibitory effect to this module. For example, the enrichment analysis of the MYC target 

genes which are positively correlated with the expression of MYC are enriched in Cellular 

Senescence pathway, suggesting MYC plays an activation effect to the module of cellular 

senescence (Fig 2E, shown in red line). Specifically, MYC shows reduced expression in 

S4 (Fig 2E, shown in blue color).  

Previous studies have suggested that the suppression of MYC induces cellular 

senescence in tumors (Wu et al., 2007). This result shows the down-regulation of MYC 
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may drive S4 as a cellular senescence state.  Similarly, FOXM1 and E2F1, which show 

activation effects for cell cycle, and replication and repair functional modules are lowly 

expressed in S4, which may drive the formation of the low cell cycle state of S4.  On the 

contrary, for S5, FOXO1, TFAP2A, ZBTB33 and NFIC, which show inhibitory effects on 

cell cycle, replication and repair are highly expressed. Previous studies have shown 

overexpression of the TFAP2A encoded transcription factor AP-2α triggered apoptosis 

(Muller et al., 2004). The difference of the regulators for the two apoptosis associated 

states S4 and S5 may suggest different biological mechanisms induced by drugs.   

Functional transcriptional states reveal dose-dependent 

responses and mechanisms of action. 

We next set out to determine whether the identified transcriptional states are associated 

with pharmacologic effects. As the MCF7 cells were treated with different drugs over a 

range of concentrations, we first asked whether the transcriptional states were associated 

with drug concentration. By mapping the drug concentration for a specific drug to the drug 

response curve measured in the CTRP2 project (Rees et al., 2016), we categorized the 

MCF7 transcriptome profile following treatment of each drug to the high-dosage-drug 

treated group if the concentration is greater than the EC50 concentration, or the low-

dosage treated group if less than the EC50. Results show that the five states induced by 

drugs are associated with drug concentrations (Chi-Squared test, P-value <0.001). 

Specifically, states S1 and S2 are more enriched in cells treated with low drug 

concentration, with drug concentration in S3 being higher, and states S4 and S5 being 

enriched in cells treated with high drug concentration (Fig 3A & 3B).  Fig 3A shows the 

example of doxorubicin. The results show that different drug concentrations induce 

different transcriptional states.  

 

We next asked whether drug induced transcriptional states are associated with drug 

targets or drug action. MCF7 cells have been classified as derived from a Luminal A 

subtype of breast cancer (Subik et al., 2010), featuring hormone-receptor (estrogen and 

progesterone-receptor) positive, HER2 negative, and carrying a PI3KCA p.E545K 

mutation (from CCLE and GDSC datasets) (Ghandi et al., 2019; Iorio et al., 2016).  

Grouping the drugs according to their targets or activity (Iorio et al., 2016), we analyzed 

the FM states of MCF7 cells treated with drugs (Fig 3C & 3D). The results show that state 

S4 is enriched in cells treated with estrogen receptor antagonists, topoisomerase II 

(TOP2) inhibitors and HDAC inhibitors (Fisher’s exact test, Benjamini-Hochberg multiple 

comparison(BH adjust), FDR <0.05, Fig 3C & 3E). The enrichment of estrogen receptor 

antagonists, and the down expression of ESR1 in S4 suggests a drug responsive state. 

HDAC inhibitors play important roles in epigenetic regulation, inducing death and 

apoptosis and cell cycle arrest in cancer cells (Kim and Bae, 2011). The enrichment of 
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the known approved anti-breast cancer drugs is also consistent with the observation that 

S4 features high apoptosis and low cell cycle. State S5 is enriched in cells treated with 

multiple kinase inhibitors, cyclin-dependent kinases inhibitors, inhibitors of RNA 

polymerase II, inhibitors of dihydrofolate reductase, and inhibitors of PI3K and mTOR 

kinase activity (Fisher’s exact test, BH adjust, FDR < 0.05, Fig 3D & 3F). Since MCF7 

cells contain the PI3KCA p.E545K mutation, the enrichment of PI3K inhibitors and the 

alteration in signaling and transduction in S5, suggests S5 is also a drug responsive state. 

These results suggest that we are able to detect state changes associated with the 

application of drugs or chemicals with different concentrations and different actions. The 

FM States annotation of the MCF7 transcriptomic states after drug treatment allows us to 

achieve more interpretability of the drug induced cell states.     

Functional module states predict therapeutic vulnerabilities  

With the classification of transcriptomic states of MCF7 cells after drug treatment, we then 

asked whether we could use the transcriptomic states to predict therapeutic vulnerability. 

We made the assumption that the knockdown or knockout of genes that drive drug-

responsive transcriptomic states would suggest that these genes are potential therapeutic 

targets. Using the CMap dataset (Subramanian et al., 2017), which includes 

transcriptome data following shRNA knockdown, we generated FM-factors and classified 

each sample into the pre-defined drug-induced states (S1- S5). K-Nearest Neighbor 

(KNN) classifier was used for the classification. We first assigned each transcriptome 

profile into one state using the KNN method (Supplemental Fig S5). As each sample 

represents the transcriptome after gene knockdown using one shRNA seed, we next 

performed enrichment analysis (Fisher’s exact test, p <0.05) of shRNA seeds for each 

gene in different states and assigned genes into different states (Fig 4A). To further 

validate the potential of target dependency, we integrated cancer dependency data from 

the DepMap project (Dempster et al., 2019; DepMap, 2019; Meyers et al., 2017), which 

measured the gene knockout effect using CRISPR. Our results show that the MCF7 cell 

line shows greater sensitivity to depletion of genes that are associated with S3, S4 and 

S5-like states (Kolmogorov-Smirnov test, P-value <0.05) (Fig 4B & 4C). We then used 

the knockout effect and the proportion of seeds that drive the states as a threshold for 

selecting the potential gene targets for inducing each state (Supplemental Table 2).  

 

For example, for state S4, our approach predicted that knockdown of the proteasome 

genes PSMA1 and PSMB2 would induce a S4-like state (Fig 4D). PSMB2 is a target of a 

well-known antineoplastic agent, Carfilzomib. The knockdown of HDAC3 is also predicted 

to contribute to the S4-like state, which is consistent with our annotation that S4 is 

associated with HDAC inhibitors. The method also selected RUVBL1, MCM3, MCM7, 

RPS6, RPL7 and CCND1 as being linked to the S4 state. Previous studies have 

suggested that a selective inhibitor of the RUVBL1/2 complex reduced growth in acute 
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myeloid leukemia and multiple myeloma (Assimon et al., 2019). For state S5, we 

predicted the knock down of ribosome protein small subunit genes (RPS15A, RPS16, 

RPS9, RPS3A, RPS7) will drive the S5-like state (Fig 4E). The knockdown of ESR1 also 

drives the S5-like state, which is consistent with the genetic background of MCF7 as an 

ER+ breast cancer cell line. The method also predicted SOAT1 as a potential target. 

SOAT1 has been investigated in hepatocellular carcinoma, which suggests it is a 

promising drug target (Jiang et al., 2019). Genes with targetable vulnerability for MCF7-

like breast cancer can be found in Fig 4D & 4E and Supplemental Table 2. Our results 

suggest that the FM-states framework, using integrative analysis of drug induced cell 

states and functional screening data, can identify potential drug targets. 

Pre-existing transcriptional functional module states are 

associated with drug response 

We next asked whether the transcriptional states of cancer cell lines prior to drug 

treatment are associated with drug response. We applied the FM-States method to define 

the cell states using the basal transcriptomic profile from the GDSC project (Iorio et al., 

2016), and analyzed the association between cell states and drug response. Using breast 

cancer cell lines, we generated the FM-factors for all 49 breast cancer cell lines in the 

GDSC project. We selected potential effective drugs based on absolute IC50 values less 

than 1 μmol in at least 5 cell lines.  

 

We estimated Spearman correlations between the functional module factors and IC50 

values for each selected drug, shown in Fig 5A. The gene expression of cell cycle, 

replication and repair, metabolism of cofactors and vitamin modules show negative 

correlations with IC50 for most drugs, suggesting that breast cancer cell lines with higher 

expression of cell cycle or replication and repair pathway will show higher sensitivity to 

most drugs if we use a lower IC50 value as the measurement of higher sensitivity (Fig 

5B). On the contrary, the gene expression in the transport and catabolism pathway, and 

carbohydrate metabolism modules show positive correlations with the IC50 of most drugs 

(Fig 5A & 5C). In contrast, some functional modules such as cell motility, signaling 

molecules and interaction, signaling transduction modules show different patterns of 

associations. Cells with overall high expression of these pathways are sensitive to drugs 

that target the ERK MAPK signaling pathway (anti-correlated), but at the same time are 

resistant (positive correlated) to drugs that target RTK signaling, PI3K signaling, and 

chromatin histone acetylation (Fig 5A & 5D). The functional state associated drug 

response suggests the functional module factors can be used for drug sensitivity 

prediction.  
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Finally, we wanted to assess whether using functional module factors alone, rather than 

all gene expression data, would provide comparable performance. We used the Random 

Forest (RF) algorithm to build predictive models for the sensitivity of cell lines for each 

drug. The median prediction accuracy for the bootstrapped RF models for all the drugs is 

0.8 (Fig 5E).  The prediction accuracy using the FM-factor based RF models is 

comparable with the prediction models using the gene expression data (Fig 5E-G).  

Discussion 

The FM-States method considers preliminary knowledge (functional modules or 

pathways), and defines  the FM-factors for any given sample. It helps to generate low 

dimensional representative features and represents biologically relevant transcriptional 

states. Further, the FM-States method determines key transcriptional regulators of 

different states. 

 

Large data sets from consortium projects are rich resources for characterizing the 

transcriptional states of different cell lines before and after drug treatment or gene 

knockdown. We showed that FM-States, a simple and biologically interpretable method, 

is able to predict drug targets and drug response through integrative analysis of multiple 

data sets. Using the FM-States method, we determined the drug induced transcriptional 

states for the breast cancer cell line MCF7 using large public gene expression data from 

the CMap. Different transcriptional states were associated with drug concentration and 

drug class. We further identified potential targets through integrative analysis of 

transcriptional states after drug treatment and gene knockdown. By combining the 

transcriptional states and gene knockdown efficacy, we predicted potential targets for 

MCF7-like breast cancer, while recognizing the challenge of genetic and non-genetic 

intra-tumoral heterogeneity. Using the functional module factors as features to represent 

the transcriptional states, the method revealed transcriptional state dependent drug 

sensitivity and resistance and exhibited similar performance in a drug response prediction 

task to a model that uses all gene expression data.   

 

This functional module framework also allows users to extend the analysis to other cell 

lines or patient derived samples. This work underscores the power of integrating large 

public data resources to understand and predict drug response.  
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Figure Legends 

Fig 1. Overview of FM-States framework.  

 

Fig 2. Five states were revealed for MCF7 breast cancer cell line transcriptome after 

drug treatment using the FM-Factors and transcriptional factors. A. Heatmap of  relative 

FM-factors for MCF7 breast cancer cell lines after treatment of different drugs in 

different concentrations normalized by the reference MCF cell line without drug 

treatment. Five states are defined by consensus clustering methods. X-axis shows the 

1287 drug treated MCF7 cells; y-axis shows the relative FM-factors scaled by row. B. 

Functional modules with FM-factors (ssGSEA, up-strength and down-strength) showing 

significant differences between one state to at least three other states using Wilcoxon 

rank-sum test in the scipy.stats library (P <0.01 is considered as threshold for 

significance here), and with size effect greater than 1 or smaller than -1(see methods). 

Functional modules with effect size between one state and all others greater than a 

threshold (Effect size >1) in the category of ssGESA, up-strength, or smaller than -1 in 

the down-strength are considered up-regulated; effect size smaller than -1 in ssGESA, 

up-strength, or greater than 1 in down-strength are considered as down-regulated. The 

label of dysregulated represents a module with alteration on both sides. C. Differential 

TF strength among different states using the same threshold as Fig 2B.  D-F. 

Transcriptional regulatory network which may drive the transcriptional states, D(S1), 

E(S4), F(S5). Transcriptional factors which show enrichment of their target genes in the 

functional module that show significant difference in the FM-factors among different 
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states, and the transcriptional factors themselves show differential expression between 

each state to all the other states are shown in D, E and F. The red color represents 

highly expressed (Effect size  >1), and the blue color represents low expressed (Effect 

size  <-1). Arrow means activation (enrichment of positive correlation target genes for 

the TF in the functional module), and the solid hammer line means suppression 

(enrichment of negative correlation target genes for the TF in the functional module).  

 

Fig 3. Annotation of MCF7 states after drug treatment using drug dosage and drug 

targets. A, Mapping of MCF7 cell line profile treated with Doxorubicin in different 

concentrations to the drug response curve of Doxorubicin for MCF7 as measured in the 

CTRP2 project, samples treated with concentration greater than greater than EC50 are 

considered as high-dosage samples, and samples treated with concentration smaller 

than EC50 are considered as low dosage samples. Samples with different states are 

colored the same as Fig 3B. B. Histogram of the ratio of high dosages samples over low 

dosage samples for all drugs compared to the EC50 value for each drug. C-D. 

Percentage of samples treated with drugs with different targets or actions. C(S4), D(S5). 

E-F. Enrichment of drug targets for each state using the one-sided Fisher exact test. 

Results are shown which show P-value smaller than 0.05. 

 

Fig 4. Predicting potential targets for Breast cancer (MCF7 cell line-like). A. Number of 

genes which are predicted as the knockdown of these genes are associated with each 

state. B. Boxplot of the gene knockout (KO) effects of state associated genes(Data from 

Depmap 2019 Q3, Achilles_gene_effect. Median nonessential KO effect is scaled to 0 

and the median essential KO effect is -1). C. Cumulative density curve for gene 

knockout effects in different states, the curve for ‘ALL’ represents the cumulative density 

curve for the gene knockout effects for all the genes measured in the Depmap project. 

D, Predicted targets associated with S4 like states, x-axis shows the knockout effect as 

measured in Depmap data, y-axis shows the proportion of shRNA seeds for this gene 

which are associated with this state. E. Predicted targets associated with S5 like states, 

the labels are similar with D. 

 

Fig 5. Predicting drug responses using FM-factors. A. Spearman correlation between 

the FM-factors and drug response (log(IC50)), colored scale by spearman correlation 

coefficient, * represents significant correlations with threshold P-value <0.05. B-D. 

Volcano plot of Spearman correlation between FM-factors and drug response. The x-

axis represents the Spearman correlation coefficient, and the y-axis represents the P-

values (-log10 transformed). E. Histogram of prediction accuracy of drug response on 

the testing sets (ratio of samples between training set and testing set is 4:1) using the 

Random forest model using the FM-factors as features. Each bin displays the bin's raw 

count divided by the total number of drugs (n = 57) and the bin width (width = 0.1). F. 
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Distribution of prediction accuracy of drug response using gene expression values as 

features.  G. The comparison of prediction accuracy between the RF models using the 

FM-factors and all the gene expression values for each drug; each point represents the 

median prediction accuracy for the 100 bootstrapped RF models using the features of 

FM-factors and the gene expression values for each drug.  

 

STAR Methods  

Selection of functional modules 

We consider KEGG processes or pathways as functional modules. The KEGG pathways 

were annotated in a hierarchical structure, with four main categories:  “Metabolism”, 

“Genetic Information Processing”, “Environmental Information Processing”, and ”Cellular 

Processes”. These categories include the functional gene sets that cover 20 cellular 

processes: ‘Replication and repair’, ‘Transcription’, ‘Translation’, ‘Folding, sorting and 

degradation’, ‘Cellular community’, ‘Cell growth and death’, ‘Transport and catabolism’, 

‘Cell motility’, ‘Membrane transport’, ‘Signaling transduction’, ‘Signaling molecules and 

interaction’, ‘Amino acid metabolism’, ‘Metabolism of other amino acids’, ‘Lipid 

metabolism’, ‘Carbohydrate metabolism’, ‘Metabolism of cofactors and vitamins’, 

‘Xenobiotics biodegradation and metabolism’, ‘Glycan biosynthesis and metabolism’, 

‘Energy metabolism’, and ‘Nucleotide metabolism’. Each of the 20 cellular processes 

includes several different pathways, such as the process of ‘cell growth and death’, which 

includes the pathways ‘Cell cycle’,  ‘Apoptosis’, ‘Cellular senescence’, and  ‘p53 

signaling’.  The 23 functional modules in this manuscript include the 4 pathways in the 

process of cell growth and death and the other 19 cellular processes out of all the 20 

processes shown above. These functional modules cover the main functionalities of cells 

and constitute 5,453 genes and cover most  KEGG pathway genes.  

Definition of the FM-factors 

To define the FM-factors for each sample, we used four categories of factors: 

ssGSEA_score, TF_strength, up_strength, and down_strength. ssGSEA_score is 

measured using the ssGESA method from the python package of gseapy 0.9.16. The 

ssGSEA_score measures the gene set enrichment score per sample as the normalized 

difference between the empirical cumulative distribution function of gene expression 

ranks inside and outside the gene set (Hanzelmann et al., 2013). The TF_strength is 

defined as the average expression of transcription factors whose target genes are 

enriched in each functional module. It is determined by following these steps: 
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1) Transcription factor - target gene pairs (TF-Target) that show evidence in either 

literature-curated resources, ChIP-seq peaks or TF binding motifs on promoters were 

collected (Garcia-Alonso et al., 2019).  

2) TF-target pairs with either curated/high confidence (confidence level A) or likely 

confidence were selected for further analysis (confidence level B) (Garcia-Alonso et al., 

2019).  

3) As the states of transcriptional regulatory networks exhibit tissue type or cell type 

specificity, we further measured the correlation between the transcription factors and their 

target genes using the input gene expression matrix (e.g., gene expression of MCF7 after 

drug treatment in the CMap data), and kept only those pairs that showed significant 

correlation in a given context, such as tumor type (absolute Pearson correlation 

coefficient >0.2, P value <0.05).  

4) With the list of TF-target gene pairs, we used the one-tailed Fisher exact test to 

assess whether the target genes for one TF are enriched in a pathway, and only those 

TFs that showed significant enrichment in a module were selected as the signature TFs 

for that module.  

5) We then measured the TF regulation weight using the following equations (Equations 

1-3) for a specific TF, labeled TF_A: 

 

RatioInPath = 
𝑁𝑇𝐹_𝐴 𝑡𝑎𝑟𝑔𝑒𝑡 𝑔𝑒𝑛𝑒𝑠 𝑖𝑛 𝑜𝑛𝑒 𝑚𝑜𝑑𝑢𝑙𝑒

𝑁 𝑇𝐹𝑠 𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 𝑔𝑒𝑛𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑢𝑙𝑒
                 (1) 

 

RatioInTFs = 
𝑁𝑇𝐹_𝐴 𝑡𝑎𝑟𝑔𝑒𝑡 𝑔𝑒𝑛𝑒𝑠 𝑖𝑛 𝑜𝑛𝑒  𝑚𝑜𝑑𝑢𝑙𝑒

𝑁𝑇𝐹_𝐴 𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 𝑔𝑒𝑛𝑒𝑠
                   (2) 

 

weight  = RatioInPath * RatioInTFs                    (3) 

 

where 𝑁𝑇𝐹_𝐴 𝑡𝑎𝑟𝑔𝑒𝑡 𝑔𝑒𝑛𝑒𝑠 𝑖𝑛 𝑎 𝑚𝑜𝑑𝑢𝑙𝑒represents the number of target genes for TF_A in one 

module, 𝑁 𝑇𝐹𝑠 𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 𝑔𝑒𝑛𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑢𝑙𝑒represent the number of genes that have been 

regulated by all the TFs, and 𝑁𝑇𝐹_𝐴 𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 𝑔𝑒𝑛𝑒𝑠represents the number of target genes 

regulated by TF_A for all selected modules.  

6) We normalized the weight in each pathway to make the sum of TF regulation weights 

equal to 1.  We then calculated the average transcriptional strength by summing up the 

normalized weights, multiplied by the expression level for the master transcription factors 

(Equation 4), where M represents the number of TFs that are estimated to significantly 

regulate the pathway, and 𝐸𝑥𝑝𝑟(𝑇𝐹𝑖) is the gene expression level for the Transcriptional 

factor i which regulates genes in the module.  

 

TF_strength = 
1

𝑀
∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑖

𝑀
𝑖=1 × 𝐸𝑥𝑝𝑟(𝑇𝐹𝑖)            (4) 
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Up_strength (Up-regulation Strength) and Down_strength (Down-regulation Strength) are 

used for estimating the ratio of genes showing high or low expression (|z-score| > 

threshold) in one functional module for one specific sample compared to all other samples 

(Equations 5 and 6). 

With the absolute gene expression matrix, z-score normalization was performed across 

all samples for each gene. After the z-score normalization, we define the Up_strength 

and Down_strength as follows (Equation 5 and 6): 

Up_strength for each module is defined as the proportion of up-regulated genes in each 

module that have z-score above the upper threshold (threshold = 1.6 for our case 

studies): 

Up_strength = 
𝑁𝑢𝑝−𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 𝑔𝑒𝑛𝑒𝑠 𝑖𝑛 𝑜𝑛𝑒 𝑚𝑜𝑑𝑢𝑙𝑒

𝑁𝑎𝑙𝑙 𝑔𝑒𝑛𝑒𝑠 𝑖𝑛 𝑜𝑛𝑒 𝑚𝑜𝑑𝑢𝑙𝑒
            (5) 

 

where 𝑁𝑢𝑝−𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 𝑔𝑒𝑛𝑒𝑠 𝑖𝑛 𝑜𝑛𝑒 𝑚𝑜𝑑𝑢𝑙𝑒 is the number of up-regulated genes in a module, 

and 𝑁𝑎𝑙𝑙 𝑔𝑒𝑛𝑒𝑠 𝑖𝑛 𝑜𝑛𝑒 𝑚𝑜𝑑𝑢𝑙𝑒is the number of genes in that module. 

Down_strength is defined as the negative fraction of down-regulated genes in a module, 

with a z-score below the lower threshold:  

 

Down_strength = -1 × 
𝑁𝑑𝑜𝑤𝑛−𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 𝑔𝑒𝑛𝑒𝑠 𝑖𝑛 𝑜𝑛𝑒 𝑚𝑜𝑑𝑢𝑙𝑒

𝑁𝑎𝑙𝑙 𝑔𝑒𝑛𝑒𝑠 𝑖𝑛 𝑜𝑛𝑒 𝑚𝑜𝑑𝑢𝑙𝑒
          (6) 

 

Where 𝑁𝑑𝑜𝑤𝑛−𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 𝑔𝑒𝑛𝑒𝑠 𝑖𝑛 𝑜𝑛𝑒 𝑚𝑜𝑑𝑢𝑙𝑒 is the number of down-regulated genes in a 

module. 

 

Annotation of transcriptional states 

Consensus clustering 

We applied the R package of ConsensusClusterPlus (Wilkerson and Hayes, 2010) which 

uses the consensus clustering method (Monti et al., 2003) to classify the FM-matrix into 

different clusters, namely FM-states. We select the number of states (clusters) by 

inspection of the heatmap of the consensus matrix using different ‘K’s (K is the number 

of clusters), the empirical cumulative distribution function (CDF) corresponding to the 

entries of the consensus matrix, and the relative change in the area under the CDF with 

the increase of K. When 𝐾𝑡𝑟𝑢𝑒 is reached, further increase in the number of clusters does 

not lead to a corresponding marked increase in the CDF area (Monti et al., 2003).  
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Annotation using the FM-factors  

The functional module factors can be easily translated into meaningful biological 

annotations for each state. To have a better understanding of the functional activity in 

each state, we detected the key features for each state. Using the Wilcoxon rank-sum 

test, we tested whether one FM-factor in one state is different from all of the other states. 

The difference of FM-factors between one state and all the other states are measured 

using Effect size (Equation 7).  

 

 Effect size = 
𝑀𝑒𝑎𝑛(𝐹𝑀𝐹𝑖) − 𝑀𝑒𝑎𝑛(𝐹𝑀𝐹𝑗) 

√𝑠𝑑(𝐹𝑀𝐹𝑖) + 𝑠𝑑(𝐹𝑀𝐹𝑗)  / (𝑁𝑖 +  𝑁𝑗 − 2)
         (7) 

 

Where 𝐹𝑀𝐹𝑖 is the vector of functional module factors for state i, 𝐹𝑀𝐹𝑗 is the vector of 

functional module factors for all the other samples, 𝑁𝑖 is the number of samples in 

states i, and 𝑁𝑗 is the number of samples in all the other samples.  

We selected the FM-factor for each state showing significant difference (P <0.001 for 

MCF7 data) and with an effect size greater than a threshold (|effect size| >1 for MCF7 

data) between this state and all the other states. The factors ssGSEA_score, 

up_strength, and down_strength can be used for the annotation of high or low 

expression of each functional module for each state. TF_strength can be used for the 

annotation of the overall transcriptional regulation strength for each functional module for 

each state.  

Annotation using transcriptional factors 

To annotate which transcription factors contribute to the regulation of the states, we first 

identified which transcription factors play activation roles or inhibitory roles for each 

functional module by 1) selecting the transcription factor -- target gene pairs with positive 

correlation or negative correlation; 2) selecting transcription factors that show 

overrepresentation of their target genes in functional modules; 3) identifying transcription 

factors that show significant (adjusted P-value <0.05) differences among different states 

using the one-way ANOVA test followed by Bonferroni multiple-test correction. Effect size 

was estimated as the difference of expression of the transcription factor between samples 

in one state and other states. The generated TF-functional module regulation network 

was then visualized using Cytoscape (Shannon et al., 2003). 

Defining functional module states for MCF7 cells following drug treatment 

FM-factors were generated that cover the four categories of factors for the twenty-three 

functional modules as described before (see section “Definition of the FM-factors”). 
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1) Get the relative FM-factors for drug treated samples compared to reference 

samples 

MCF7 transcriptional profiles from the CMap (Subramanian et al., 2017) level 5 data 

following drug treatment which has reported drug response measurement in the CTRP2 

(Rees et al., 2016) were selected, resulting to 1287 drug treated MCF7 profiles. 

Transcriptional profiles for the DMSO or H20 treated MCF7 samples were selected as 

reference samples, resulting to 1400 reference samples. Functional module factors (FM-

factors) were calculated for both drug treated MCF7 samples and reference MCF7 

samples. The FM-factors for drug treated samples are then normalized using the 

distribution of reference sample FM-factors, which use the ranking method for the Up-

strength, Down-strength and z-score method for ssGSEA and TF_strength.  

 

2) Clustering of the functional module based factors 

Consensus clustering method(Monti et al., 2003; Wilkerson and Hayes, 2010) was used 

to cluster the FM-factor matrix into stable clusters by inspection of the CDFs’ shape and 

progression as the number of  clusters, K, increases. The most stable classification is 

considered as the K-solution with the smallest proportion of ambiguous clustering. 

 

3) Annotation 

 

3a) Annotate cell states using the functional module factors 

We tested whether a given FM-factor in one state is different from other states using the 

Wilcoxon rank-sum test. Effect size of difference between one state and all the other 

states was measured. We selected the FM-factor for each state which showed a 

significant difference (P-value <0.001) and with effect size greater than a threshold 

(|Effect size| >1) between this state and the other states for the interpretation of each 

state.  

 

3b) Select the most discriminative transcriptional factors  

Activating pairs and inhibitory pairs of transcription factor and target genes were defined 

by correlation analysis (activating pairs: positive correlation (P-value <0.05, cor >0.2), 

inhibitory pairs: negative correlation (P-value <0.05, cor <-0.2)). Transcription factors in 

the activating TF-target pairs or inhibitory TF-target pairs that show an overrepresentation 

of their target genes in each functional module were then selected. One way ANOVA test 

followed by Bonferroni multiple-test correction was then performed to identify whether the 

transcription factors show a significant (adjusted P-value <0.05) difference among 

different states. We used Cytoscape (Shannon et al., 2003) to visualize the network of 

transcription factors and functional modules that show differences among different states. 

The effect size measures the extent to which the TF is high- or low-expressed in each 

state. 
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3c) Annotate cell states with external factors 

Drug responses (EC50) of MCF7 for different drugs were extracted from the Cancer 

Therapeutics Response Portal v2 (CTRPv2) (Rees et al., 2016; Seashore-Ludlow et al., 

2015). We considered drug concentrations greater than its EC50 values as high 

concentrations, and drug concentrations smaller than its EC50 values as low 

concentrations. We measured the ratio of high drug concentration samples to low drug 

concentration samples and statistically tested whether the distribution of high drug 

concentration samples and low concentration samples differs among different states 

using the chi-squared test. The target or action of compounds (drugs) were also from the 

CTRPv2. Pie plots were used to visualize the distribution of samples with different targets 

or activity for each state. Fisher’s exact test was used to assess whether one class of 

drug target is overrepresented in a specific state. 

Use of FM states to predict targetable cancer vulnerabilities  

Association of gene knockdown to different states 

Gene expression profiles of MCF7 after shRNA knockdown are taken from CMap 

(Subramanian et al., 2017), with each sample treated with one shRNA seed mapping to 

a specific gene. FM-factors (ssGSEA_score, TF_strength, up_strength and 

down_strength) for all the 23 modules were generated for each sample using the FM-

state method. K-nearest neighbors(KNN) classifier (KNeighborsClassifier in the sklearn 

library in python3) (Pedregosa et al., 2011) was used to assign each sample to one of the 

defined states after drug treatment. FM-factors (features) which show significant 

differences (Wilcoxon rank-sum test, P-value <0.01 and |effect size| >1) across five states 

were selected for the KNN models. To select a proper K for the prediction model, we 

compared the prediction accuracy using five-fold cross validation with K from 1 to 30, 

increased by 2. K = 5 was selected as the model shows relatively higher prediction 

accuracy (mean = 0.73) and smaller derivation (standard deviation = 0.05). We then used 

the KNN model to assign the shRNA treated sample to one of the defined states after 

drug treatment. Samples predicted as each state with a probability equal to or greater 

than 0.6 were selected for further analysis and the rest samples with ambiguous 

prediction results were excluded.  As one gene can have different seeds, we further 

assigned one gene to one state by estimating the enrichment of seeds for this gene in 

one specific state using Fisher’s exact test. Genes with shRNA seeds enriched (Fisher’s 

exact test, p <0.05) in one state are assigned to this state.  

 

Cancer dependent analysis 

Gene knockout effect was downloaded from the DepMap portal (Dempster et al., 2019; 

DepMap, 2019; Meyers et al., 2017), which contains the results of genome-scale CRISPR 

knockout screens for 18,333 genes in 625 cell lines. Gene knockout effect data for MCF7 
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was selected from this dataset. Kolmogorov-Smirnov statistical test was performed to 

compare the distribution of target genes that drive each state and all genes in the 

genome-scale CRISPR knockout screen.  

 

Selection of potential target genes 

For each gene, we calculated the proportion of seeds which are predicted in one state, 

and we also used the gene knockout effect for the MCF7 cell line. Genes which are 

predicted to drive a specific state with a gene knockout effect smaller than 0 are selected 

as target genes that could drive to this state.  

Define basal FM-states of breast cancer cell lines to predict drug sensitivity  

We collected gene expression data for all the 49 breast cancer derived cell lines from the 

GDSC project (Iorio et al., 2016), and applied the FM-States method to this dataset to 

generate the functional module based factors (FM-factors) for all the 49 breast cancer 

cell lines. The functional module based factors include ssGSEA_score, TF_strength, 

up_strength, down_strength for all the 23 pathways were calculated.  

 

Correlation analysis between drug response and FM-factors 

Drug response data (log(IC50)) was derived from the GDSC datasets (Iorio et al., 2016). 

As not all of the drugs show efficiency to the breast cancer cell lines, we select potential 

effective drugs with the filtering criteria: 1) number of cell lines with log(IC50) smaller than 

zero is greater or equal to 5; 2) number of cell lines tested is greater or equal to 25 (more 

than half of the samples). Using the selected drugs, we then performed correlation 

analysis to compare the association between the FM-factors and drug response 

(log(IC50)) using Spearman correlation.  

 

Drug sensitivity prediction models using the FM-factors and gene expression. 

For each drug, we binarized the drug response for each sample to either sensitive 

(log(IC50) <-1) or resistant (log(IC50) >-1) response and built a Random Forest (RF) 

classifier using the python library sklearn (Pedregosa et al., 2011) to predict the drug 

response using either  the feature of FM-factors or gene expression for all the genes. 100 

bootstrapped RF models were built, with 80% of the data used for training, 20% for 

testing. Features importance scores greater than zero are selected for the final models 

for each drug.  

 

Data and Code Availability Statements 

  

The code generated during this study is available at https://github.com/IlyaLab/FMStates. 

All datasets used for the case studies in this study can be found at 

https://osf.io/34xnm/?view_only=5b968aebebe14d4c97ff9d7ce4cb5070.  
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