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Abstract 11 

The receptive field of a neuron describes the regions of a stimulus space where the 12 

neuron is consistently active. Sparse spiking outside of the receptive field is often considered to 13 

be noise, rather than a reflection of information processing. Whether this characterization is 14 

accurate remains unclear. We therefore contrasted the sparse, temporally isolated spiking of 15 

hippocampal CA1 place cells to the consistent, temporally adjacent spiking seen within their 16 

spatial receptive fields (“place fields”). We found that isolated spikes, which occur during 17 

locomotion, are more strongly phase coupled to hippocampal theta oscillations than adjacent 18 

spikes and, surprisingly, transiently express coherent representations of non-local spatial 19 

representations. Further, prefrontal cortical activity is coordinated with, and can predict the 20 

occurrence of future isolated spiking events. Rather than local noise within the hippocampus, 21 

sparse, isolated place cell spiking reflects a coordinated cortical-hippocampal process consistent 22 

with the generation of non-local scenario representations during active navigation.  23 

 24 

Main text 25 

 The concept of a receptive field (Sherrington 1906, Hartline 1938, Spillmann 2014) 26 

provides a fundamental model for how neural spiking can convey information about features in 27 

the external environment. In the hippocampus, many cells show spatially tuned receptive fields 28 

(O'Keefe and Dostrovsky 1971, O'Keefe 1976). The spiking rate of these “place cells” rises and 29 
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then falls as an animal traverses specific locations in an environment. Locations with high 30 

spiking rates are defined as a cell’s “place fields” (O'Keefe 1976, McNaughton, Barnes et al. 31 

1983), and place field-associated spiking of place cells conveys sufficient spatial information to 32 

estimate the animal’s location with high accuracy (Muller and Kubie 1989, Wilson and 33 

McNaughton 1993, Brown, Frank et al. 1998, Zhang, Ginzburg et al. 1998).  34 

Although the majority of place cell spiking occurs when an animal is moving within the 35 

cell’s place fields, occasional spiking occurs when the animal is at locations outside the fields 36 

(O'Keefe 1976, McNaughton, Barnes et al. 1983, Muller, Kubie et al. 1987, Thompson and Best 37 

1989). These “isolated” spiking events can occur during movement and are distinct from sparse 38 

spiking observed during Sharp Wave/Ripples (SWRs) seen during immobility (Buzsáki 2015). 39 

Importantly, isolated spikes are not locked to specific locations. As a result, standard analyses 40 

that average activity across many passes through the same location (Olton, Branch et al. 1978, 41 

Hill and Best 1981, Thompson and Best 1989, Wilson and McNaughton 1993, Frank, Brown et 42 

al. 2000, Jensen and Lisman 2000) effectively exclude these spikes from further consideration. 43 

Whether these spikes reflect unreliable, noisy processes that merit exclusion or whether they 44 

instead reflect coherent, meaningful signals (Stein, Gossen et al. 2005, Faisal, Selen et al. 2008, 45 

Masquelier 2013) remains unknown.  46 

Noise in neural networks can arise from stochastic cellular events that cause the 47 

membrane voltage to occasionally exceed the action potential threshold, even without upstream 48 

input (Stein, Gossen et al. 2005, Faisal, Selen et al. 2008). While the spatially selective inputs to 49 

a place cell raise the membrane voltage closer to the action potential threshold when an animal 50 

approaches the cell’s place field (Epsztein, Brecht et al. 2011), stochastic events causing 51 

occasional increases in membrane potential could result in spiking outside of a cell’s place field. 52 

However, previous observations indicate that at least some spiking outside of a cell’s typical 53 

place fields reflect mnemonic processes rather than noise. CA1 and CA3 place cells can emit 54 

spikes outside of their place fields as an animal approaches choice points (Johnson and Redish 55 

2007, Kay, Chung et al. 2020) and during vicarious trial and error (Johnson and Redish 2007), or 56 

when an animal is travelling in the opposite direction over a location with a place field (Kay, 57 

Chung et al. 2020). These events are hypothesized to reflect non-current scenarios, such as 58 
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simulating possible future scenarios when a decision needs to be made (Johnson, Fenton et al. 59 

2009, Kay, Chung et al. 2020).  60 

How can we determine whether isolated spiking outside of a place cell’s spatially tuned 61 

receptive field reflects information processing in the hippocampal circuit as opposed to activity 62 

that does not reflect information processing or noise? Spiking due to stochastic cellular events is 63 

expected to be local to individual neurons. By contrast, spiking associated with information 64 

processing would be expected to co-vary in a consistent manner across neurons in both local and 65 

distributed networks (Masquelier 2013). Thus, if spiking outside of the classical place field 66 

conveys information, we would expect it to (1) be coordinated across multiple hippocampal 67 

neurons, (2) contain coherent spatial information and (3) be coordinated with activity outside the 68 

hippocampus. 69 

We therefore examined spiking both within the hippocampus and across the hippocampus 70 

and prefrontal cortex (PFC), focusing on activity during movement. The PFC is anatomically 71 

connected to the hippocampus through both direct and indirect projections (Swanson and Cowan 72 

1977, Swanson 1981, Jay, Glowinski et al. 1989), and coordinated activity across these networks 73 

reflects their engagement during memory processing (Schacter, Addis et al. 2007, Preston and 74 

Eichenbaum 2013, Eichenbaum 2017). For example, network level coherence between prefrontal 75 

cortex and hippocampus increases during periods when memory retrieval occurs (Hyman, Zilli et 76 

al. 2005, Jones and Wilson 2005, Benchenane, Peyrache et al. 2010, Sigurdsson, Stark et al. 77 

2010, Place, Farovik et al. 2016, Guise and Shapiro 2017, Myroshnychenko, Seamans et al. 78 

2017, Zielinski, Shin et al. 2019). Whether PFC activity differs systematically at the time of 79 

isolated spiking in the hippocampus remains unknown.  80 

Our examination of isolated spiking of place cells revealed that these events reflect the 81 

coherent activation of hippocampal representations of physically distant locations, and that these 82 

events are coordinated with ongoing activity in the PFC. These findings suggest that isolated 83 

spikes are a signature of distributed and coherent information processing in the brain. 84 

Results 85 
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In order to understand the extent of isolated spiking during active behavior and to identify 86 

a potential function of this activity, we took an unbiased approach where we surveyed CA1 place 87 

cell spiking across all movement periods (animal speed >2cm/s) as animals performed a spatial 88 

navigation task (Yu, Kay et al. 2017, Yu, Liu et al. 2018) (Figure 1A-B, Figure S1). In the 89 

hippocampus the temporal structure of spiking during locomotion is strongly influenced by the 90 

endogenous ~8Hz theta rhythm (O'Keefe and Recce 1993), and bouts of higher rate spiking 91 

corresponding to place field traversals spanned multiple, adjacent cycles of theta (Fig. 1C). As 92 

expected, we also observed isolated spikes where a neuron would be silent for many theta cycles, 93 

emit a small number of spikes on a single theta cycle, and then return to being silent (Fig. 1D) 94 

(Olton, Branch et al. 1978, Hill and Best 1981, Thompson and Best 1989, Johnson and Redish 95 

2007).  96 

The standard approach to defining place field spiking relies on averaging spiking rates 97 

across many traversals of a location. This average provides a useful experimental summary of 98 

spiking, but information averaged across traversals is not directly available to downstream 99 

neurons. We therefore we used a criterion to distinguish between “adjacent” and “isolated” 100 

spiking based on the local temporal organization of spiking. Specifically, given the importance 101 

of theta in organizing hippocampal activity (Vanderwolf 1969, O'Keefe and Recce 1993, 102 

Buzsaki 2002), we calculated the interval between neighboring theta cycles with spiking (in 103 

cycles, mean of nearest three) (Fig. 1E, Fig. S2). As expected, the majority of spike-containing 104 

theta cycles are near another spike-containing cycle. The remaining spike-containing theta cycles 105 

are separated from neighboring spike-containing cycles by up to hundreds of cycles, reflecting 106 

their temporal isolation. When plotted on a log scale, the underlying distribution was bimodal, 107 

and based on this distribution we chose a threshold of 8 cycles of mean separation to each theta 108 

cycle with spiking to define “adjacent” or “isolated” activity (n=301 cells, Fig. 1F). This 109 

separation captured intuitive notions of within- and extra-place field activity: adjacent activity 110 

was spatially concentrated, as expected from place-field spiking (Fig. 1E); isolated activity was 111 

spatially sparse and lack the high spiking rates observed for place field activity (Fig. 1G). We 112 

also verified that isolated activity spikes, although sparsely emitted, were very unlikely to be 113 

spike clustering errors (Fig. S3). 114 
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One previously described form of extra-field spiking occurred around choice points and 115 

coincides with overt deliberation behavior (Johnson and Redish 2007). Isolated activity, in 116 

contrast, was not more frequent around choice point locations (Fig. S4A), nor were there 117 

differences in the speed (Fig. S4B) or angular velocity (Fig. S4C) of the animal at times of 118 

isolated as compared to adjacent spiking. Thus, isolated spiking is not restricted to specific active 119 

behavioral states or locations, such as path choice points. Isolated spiking was also not associated 120 

with SWRs, which are transient network oscillations observed in the local field potential (LFP) 121 

predominantly found when the animal is moving slowly or is immobile (Buzsáki 2015). We 122 

excluded SWRs from our analyses (see methods) and also independently confirmed the isolated 123 

spiking events did not occur during SWRs by comparing the hippocampal LFP associated with 124 

excluded spiking (low speed periods and SWRs) with the LFP associated with isolated spiking. 125 

The LFP associated with excluded spiking showed a network spectral signature consistent with 126 

SWRs (Fig. S5A left column, B), with power in the slow gamma (~30Hz) and ripple frequencies 127 

(~150-250Hz). In contrast, the LFP associated with isolated spiking shows a different network 128 

spectral signature, with power in the theta band (Buzsaki, Leung et al. 1983) (Fig. S5A center 129 

column, B). Indeed, the network spectral signature of isolated spiking is very similarity to the 130 

LFP associated with adjacent spiking, and even has slightly higher theta power (Fig. S5A right 131 

column, B). 132 

Isolated spiking was also highly concentrated within each theta cycle, a potential 133 

signature of an information containing signal (Masquelier 2013). Place field-associated spiking 134 

displays strong phase-coupling to the hippocampal theta rhythm, where the maximum probability 135 

of spiking occurs in earlier phases near the trough of theta (Buzsaki, Leung et al. 1983, O'Keefe 136 

and Recce 1993). By contrast, the entrainment of isolated spiking preferentially occurred in the 137 

late phases of theta (Fig. 2A-B). Isolated spiking was also more tightly phase locked to theta 138 

compared with adjacent spiking (Fig. 2C). 139 

Spiking during the late phases of theta has been associated with the expression of non-140 

local representations, including to be visited locations or locations previously visited (Skaggs, 141 

McNaughton et al. 1996, Redish 2016, Kay, Chung et al. 2020). Could isolated spiking be a 142 

signature of a coherent non-local representation? If so, then we would expect that pairs of 143 

neurons that are co-active during periods of adjacent spiking (e.g. cells likely to have 144 
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overlapping place fields) would also be co-active within a theta cycle containing isolated spiking 145 

events. We examined this possibility by using an approach that has been used to demonstrate 146 

reactivation of non-local spatial representations during SWRs, where a pair of place cells is more 147 

likely to spike together if their place fields overlap (Karlsson and Frank 2009, Singer and Frank 148 

2009) (Fig. 3A). First, we calculate the likelihood of co-spiking for a pair of place cells that had 149 

isolated spiking within the same theta cycle. We then quantified the overlap in their adjacent 150 

spiking activity.  151 

We found that cells that fired together during periods of adjacent spiking were also more 152 

likely to fire together during isolated spiking events. Across the population, lower lags in spiking 153 

during adjacent activity were correlated with greater co-spiking during isolated events (Fig. 3B, 154 

R=-0.28, R2=0.077, p=6.40x10-9). These findings support the notion that isolated spikes reflect 155 

the structured and coherent activation of a remote spatial representation.  156 

As a further test of the hypothesis that isolated spiking contains information, we asked 157 

whether these spiking events in the hippocampus marked the time of specific activity patterns in 158 

PFC. Given the anatomical and functional connectivity between these regions, evidence of 159 

coordination between hippocampus and PFC would argue that these events are not the result of 160 

local noise in the hippocampus but instead reflect coherent and structured activity across brain 161 

regions. An example of such hippocampal-cortical engagement occurs during SWRs, where 162 

hippocampal reactivation is accompanied by the coordinated reactivation of cortical 163 

representations (Remondes and Wilson 2015, Jadhav, Rothschild et al. 2016, Wang and Ikemoto 164 

2016, Rothschild, Eban et al. 2017, Yu, Kay et al. 2017, Yu, Liu et al. 2018). If such 165 

coordination is seen around the times of isolated spikes, we should be able to identify PFC 166 

neurons that spike differently around times of isolated activity in the hippocampus than at 167 

comparable periods where isolated spiking was not observed. 168 

We first selected theta cycles with isolated spiking for a given CA1 cell. Next, we found 169 

matching theta cycles from other times when the animal was moving through the same locations 170 

in the same direction at a similar speed, but where the CA1 cell was not active (e.g. did not have 171 

isolated spiking) (Fig. S6). This was possible because, in our task, the animal traversed the a 172 

given location multiple times, providing a pool of theta cycles, of which only a subset contained 173 
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isolated spiking. Importantly, none of the matching cycles contained adjacent spiking, 174 

confirming that the isolated spiking events were not simply events on the edge of a place field. 175 

We then compared the spiking of simultaneously recorded PFC neurons between cycles with 176 

isolated activity and these matched control cycles (Fig. 4A). We note that theta coordinates 177 

activity in hippocampal-cortical networks (Hyman, Zilli et al. 2005, Jones and Wilson 2005), 178 

allowing us to continue to use theta cycles as the temporal reference to relate activity across 179 

structures.  180 

 We found PFC cells whose spiking rate differed depending on whether or not there was 181 

an associated period of isolated spiking for a given CA1 cell (Fig. 4B). We expect that only a 182 

small fraction of PFC cells would show a significant difference in spiking relative to the isolated 183 

spiking of a given CA1 cell, but nonetheless, across the population (n=2798 PFC-CA1 cell 184 

pairs), the difference in PFC firing rates between isolated and matched control periods was 185 

significantly larger than the permutation control (Fig. 4C). This difference indicates coordination 186 

between CA1 and prefrontal cortex around the time of CA1 isolated activity. Interestingly, this 187 

coordination was not limited to the specific isolated theta cycle: the difference remained 188 

significant even in a window of 4-8 theta cycles before the isolated spiking event, indicating that 189 

PFC activity could play a causal role in driving isolated spiking events in the hippocampus.  190 

Under this hypothesis, the ensemble activity of PFC neurons should predict the future 191 

occurrence of hippocampal isolated activity (Fig. 5A). To test that prediction for a given CA1 192 

cell, we used the spiking activity from all simultaneously recorded PFC ensembles (Median 193 

n=20, IQR=8 PFC cells per CA1 cell) to build cross-validated Generalized Linear Models with 194 

elastic net regularization. We compared the ability of the models to predict the occurrence of 195 

isolated activity related to a permutation control (see Methods, Fig. S7). We then carried out that 196 

analysis for all CA1 cells (n=158) with isolated spiking. 197 

We found that PFC activity can predict the occurrence of isolated spiking in CA1 at 198 

above chance levels, even in a window 4-8 theta cycles before the isolated spiking (Fig. 5B). We 199 

also asked whether there was any evidence consistent with isolated spiking in CA1 influencing 200 

subsequent PFC activity (Fig. 5C). We found that the coordination between hippocampus and 201 

prefrontal cortex persists after the occurrence of isolated activity but is weaker compared to 202 
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intervals immediately before and during cycles with isolated activity (Fig. 5D). We also noted 203 

the average prediction gains were small in magnitude, which has previously been observed for 204 

prediction gains relating auditory and hippocampal activity around the times of SWRs 205 

(Rothschild, Eban et al. 2017). This is not surprising given the relatively small numbers of 206 

simultaneously recorded PFC cells that were available to predict the activity of any given CA1 207 

unit. We can therefore regard these cross-validated predictions as lower bounds on the actual 208 

values that would be obtained if it were possible to sample the entire PFC population. Indeed, 209 

examining the values for individual PFC ensemble - CA1 models revealed a number of cases 210 

with prediction gains between 2.5 and 5% (Fig. S7). Thus, our results demonstrate that 211 

information expressed by prefrontal and hippocampal cell populations is coordinated around the 212 

time of isolated activity. 213 

Importantly, the predictive PFC activity patterns were specific for individual CA1 cells. 214 

We examined the correlation between b-coefficients of PFC predictors across predictive models. 215 

If the spiking of specific PFC cells was strongly predictive of isolated spiking of a particular 216 

CA1 cell but not of other CA1 cells, this b-coefficient correlation should be low, indicating that a 217 

given PFC cell would predict the spiking in one model (e.g. one CA1 cell) but not another. By 218 

contrast, if a subset of PFC cells consistently predicted isolated spiking across CA1 cells, then 219 

these correlations would be high, as the same PFC cells would show similarly b-coefficients 220 

across models.  221 

We found that the mean correlation coefficient was not significantly different from 0 222 

(Median=-0.021, IQR=0.16, Wilcoxon rank sum test p=0.431). This indicates that the PFC 223 

ensembles predicting the occurrence of isolated activity for different CA1 cells are distinct, and 224 

argues for specificity in PFC-CA1 coordination around the occurrence of isolated activity. 225 

Discussion 226 

We examined spiking outside of a place cell’s place field relative to local hippocampal 227 

network activity and to activity in prefrontal cortex. We found that this isolated spiking 228 

preferentially occurs during the late phase of theta oscillations, recapitulates coherent spatial 229 

representations, and is coordinated with prefrontal cortical activity. Our findings argue that 230 

seemingly spontaneous and sparse activity, previously considered as noise in the hippocampus, 231 
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are actually precisely timed spikes that reflect coordinated activity both within the hippocampus 232 

and across the hippocampal-prefrontal networks. 233 

We found evidence for CA1 isolated spiking reflecting structured information processing 234 

rather than noise within the hippocampal network at both the single cell and pairwise level of 235 

analysis. At the single cell level, isolated CA1 spiking is highly concentrated during in the late 236 

phases of theta, pointing to the segregation of current versus non-current scenarios between the 237 

early and late phase of theta respectively (Sanders, Renno-Costa et al. 2015). This is in line with 238 

previously described place cell spiking associated with non-local representations including 239 

possible future locations, travel in the non-current direction (Wang, Foster et al. 2020), and 240 

activity on non-preferred trajectories (Kay, Chung et al. 2020), all of which are seen 241 

preferentially during the late phases of theta. Our results also extend previous findings of non-242 

local spiking associated with vicarious trial and error behavior seen near choice points or at the 243 

edges of place fields (Johnson and Redish 2007, Redish 2016). We found that isolated spikes 244 

occur throughout the environment and are not concentrated at the edges of place fields or near 245 

choice points. These spikes also occurred in association with high movement speeds. Pairwise 246 

analyses further demonstrated that isolated spikes are coordinated across hippocampal neurons: 247 

cells that fired together during adjacent spiking periods were also more likely to fire together 248 

within an isolated spiking event. This is consistent with a brief, coherent activation of a remote 249 

spatial representation, indicating that these events could support deliberative processes 250 

associated with the evaluation of distant physical locations. 251 

Our analysis of isolated CA1 place cell spiking relative to PFC activity provided 252 

additional evidence that these events could support deliberative processes. At the single pair 253 

level, we identified individual PFC neurons that spiked differently in association with an isolated 254 

CA1 spiking event as compared to periods matched for location, direction of movement, and 255 

speed. At the ensemble level we found that these differences were significant not only during the 256 

theta cycle associated with isolated CA1 spiking, but also 4-8 cycles before the isolated spiking 257 

event. Moreover, ensemble PFC activity could predict the occurrence of a theta cycle with 258 

isolated CA1 spiking, and these predictions remained significant for PFC activity occurring 4-8 259 

cycles before the isolated spiking. These predictions were also specific: a particular set of PFC 260 
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cells were strong predictors of a given CA1’s cells isolated spiking, while a different set of PFC 261 

cells might predict isolated spiking in a different CA1 cell. 262 

These findings indicate that isolated spiking events in CA1 are very unlikely to be the 263 

product of local, stochastic fluctuations in the hippocampus. Instead, our findings indicate the 264 

presence of a slow (~1s) change in PFC activity that could trigger an isolated spiking event in 265 

CA1. Interestingly, the changes in rate in PFC and the strength of the PFC-CA1 coupling is 266 

greatest during the cycle with isolated spiking but remains greater than expected by chance well 267 

after the CA1 spiking, suggesting the possibility that the CA1 spiking drives a subsequent 268 

change in PFC activity. Thus, our findings point to a potential cortical-hippocampal-cortical of 269 

information flow, conceptually similar to the cortical-hippocampal-cortical information flow 270 

seen around SWRs during sleep (Rothschild, Eban et al. 2017).  271 

Our results also suggest that information exchange between cortex and hippocampus may 272 

occur frequently during active behavior. This extends previous findings of hippocampal- 273 

prefrontal coupling from imaging (Squire, Ojemann et al. 1992, Buckner, Petersen et al. 1995, 274 

Schacter, Alpert et al. 1996, Polyn, Natu et al. 2005, St Jacques, Kragel et al. 2011, Rugg and 275 

Vilberg 2013, Schedlbauer and Ekstrom 2019) and neural recording experiments (Tomita, 276 

Ohbayashi et al. 1999, Kyd and Bilkey 2003, Hyman, Zilli et al. 2005, Jones and Wilson 2005, 277 

Benchenane, Peyrache et al. 2010, Sigurdsson, Stark et al. 2010, Hok, Chah et al. 2013, Place, 278 

Farovik et al. 2016, Guise and Shapiro 2017, Myroshnychenko, Seamans et al. 2017, Zielinski, 279 

Shin et al. 2019) on the role of prefrontal cortex in modulating both cortical and subcortical 280 

structures during mnemonic processes (Tomita, Ohbayashi et al. 1999, Simons and Spiers 2003, 281 

St Jacques, Kragel et al. 2011, Eichenbaum 2017). Our results also complement findings 282 

demonstrating coherent spiking activity patterns across hippocampus and PFC in the context of 283 

both SWRs and locomotion-associated spiking (Jadhav, Rothschild et al. 2016, Shin, Tang et al. 284 

2019, Zielinski, Shin et al. 2019).  285 

Interestingly, the communication latency between PFC and HP is hypothesized to be 286 

~26-28ms, or approximately ¼ of a theta cycle (Place, Farovik et al. 2016). We were therefore 287 

surprised to find PFC spiking can predict whether isolated spiking will occur up to 4-8 theta 288 

cycles, or approximately 500ms – 1s, later, an interval much longer than what is needed for 289 
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direct information transfer. Although the channel for communication between PFC and 290 

hippocampus may have a short latency, our results suggest the expression of isolated 291 

hippocampal spiking likely involves coordinated activity between these regions (Squire, 292 

Ojemann et al. 1992, Buckner, Petersen et al. 1995, Schacter, Alpert et al. 1996) that evolves 293 

over time (Polyn, Natu et al. 2005, Rugg and Vilberg 2013, Schedlbauer and Ekstrom 2019). 294 

This is consistent with human imaging studies that show cortical activity change can precede 295 

memory recall on the order of seconds (Polyn, Natu et al. 2005). This long duration may in part 296 

be explained by the timescale of cortical processing where spiking time constants are >100ms 297 

(Murray, Bernacchia et al. 2014). The long timescale may reflect additional intracortical 298 

communication necessary to integrate information across multiple theta cycles, which eventually 299 

triggers the expression of hippocampal representations. 300 

We hypothesize that these exchanges may serve to modulate ongoing hippocampal-301 

cortical network representations corresponding to current experience with internally generated 302 

representations corresponding to non-current scenarios. Additionally, we hypothesize that 303 

through this mode of communication, PFC could drive the expression of non-current scenario 304 

representations from memory in the hippocampus, which in turn, feeds back to cortical regions 305 

as a part of an evaluation loop (Yu and Frank 2015). This coordination could be involved in 306 

covert evaluation of potential trajectories or goal locations for decision making in the future. The 307 

cortical drive could potentially underly previously reported extra-place field spiking and non-308 

current spatial representations in the hippocampus associated with approach to a choice point 309 

(Kay, Chung et al. 2020), during vicarious trial and error (Johnson and Redish 2007), and 310 

spiking during travel in the non-preferred direction of place fields (Kay, Chung et al. 2020). 311 

Both cortical and hippocampal spiking patterns display noise-like variation, even when 312 

the animal performs repeated tasks or actions (Tolhurst, Movshon et al. 1983, Fenton, 1998 313 

#2585, Shadlen and Newsome 1998). However, cortical discharge can also be highly 314 

reproducible given a consistent input (Mainen and Sejnowski 1995), and behaviors can reflect a 315 

degree of accuracy consistent with very low levels of noise in the brain (Osborne, Lisberger et al. 316 

2005). In the context of signal versus noise, our findings indicate that the sparse spiking of 317 

hippocampal place cells is better understood as a signal that express non-current representations 318 

consistent with alternative scenarios. These transient injections of non-current representations 319 
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could signal processes that update ongoing hippocampal representations. Thus, the hippocampal 320 

place cell spiking during active behavior may dynamically reflect both externally driven and 321 

internally generated, non-current representations, which we hypothesize can collectively guide 322 

ongoing behavior. 323 

 324 

Author contributions 325 

J.Y.Y and L.M.F. designed the analysis and wrote the manuscript. J.Y.Y analyzed the data. 326 

Acknowledgements 327 

We thank A. Comrie, A. Gillespie, J. Guidera, A. Joshi and K. H. Lee for comments on the 328 

manuscript, and D. Liu, A. Loback and I. Grossrubatscher for assisting in the collection of the 329 

original data. This work was supported by a Jane Coffin Childs Memorial Fund for Biomedical 330 

Research postdoctoral fellowship (J.Y.Y.), the Howard Hughes Medical Institute, and University 331 

of California Office of the President Lab Fees Award #LF-12-237680 (L.M.F.). 332 

 333 

Data Availability 334 

Data used for this manuscript can be accessed at: https://crcns.org/data-sets/hc/hc-13/about-hc-13 335 

 336 

Code Availability 337 

Statistical analysis was performed using standard MATLAB, Scipy, Numpy modules listed in the 338 

methods and text. Figures were generated using MATLAB and Matplotlib. The code is available 339 

upon request. 340 

 341 

Figures and legend 342 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.11.23.395012doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.395012
http://creativecommons.org/licenses/by-nc-nd/4.0/


 343 
Figure 1. Isolated and adjacent spiking activity of hippocampal CA1 place cells.  344 
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A. Occupancy normalized spiking rate maps for spiking activity during active movement 345 

(animal speed >2cm/s) across behavior sessions for each day for four example CA1 cells.  346 

B. Location of spiking (black dots) and animal trajectory (gray) for occupancy maps in A. Spike 347 

count shown below each panel. 348 

C. Spike raster and corresponding location for a bout of spiking activity over adjacent theta 349 

cycles. Raw (orange) and theta frequency filtered (black) local field potential are shown 350 

below the spike raster. The corresponding location on the maze for the bout is shown on the 351 

right. 352 

D. Spike raster and corresponding location for spiking isolated from other spiking activity. The 353 

corresponding location on the maze for the bout is shown on the right. 354 

E. Distribution of mean separation between theta cycles with spiking. Separation is defined as 355 

the mean cycle count to 3 nearest neighbor cycles with spiking. 356 

F. Population distribution of mean separation between a theta cycles (n=301 cells). 357 

G. Location of spiking classified as adjacent activity (<8 mean cycles of separation) or isolated 358 

activity (≥ mean 8 cycles of separation) for the 4 example cells in A. Spike count shown 359 

below each panel. 360 

 361 
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 362 
Figure 2. Isolated and adjacent spiking activity show distinct phase locking to hippocampal 363 

theta oscillation. 364 

A. Separation versus mean spike theta phase preference for each theta cycle with spiking. A 365 

separation threshold of 8 cycles between isolated and adjacent is based on Fig. 1. Histogram 366 

shows the mean spiking phase for each theta cycle. Examples correspond to the 4 cells from 367 

Fig. 1. Circular median test between the isolated and adjacent distributions: top left 368 

p=1.4x10-5; top right p=8.9x10-8; bottom left p=2.4x10-4; bottom right p=5.3x10-2. 369 

B. Mean theta phase preference distribution for adjacent and isolated spiking for the CA1 place 370 

cell population (n=279 cells). Gray line illustrates theta phase. Circular median test: p=0. 371 
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C. Mean theta phase concentration distribution for adjacent and isolated spiking for the CA1 372 

place cell population (n=279 cells). Wilcoxon rank-sum test: p=4.4×10-26 373 

 374 

 375 

 376 

 377 

 378 
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 379 
Figure 3. Reactivation of spatiotemporal place field activity relationships during theta 380 

cycles with isolated spiking activity. 381 

A. Three pairs of CA1 cells with overlapping adjacent activity. The place fields (occupancy 382 

normalize spiking rate > 5Hz) for each cell as well as their spatial overlap are shown. 383 

Example spiking bouts of adjacent and isolated activity are shown with raw and theta 384 

frequency band filtered LFP as well as their corresponding locations. 385 
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B. Normalized coactivity (z) for CA1 cell pairs during theta cycles with isolated activity (n=425 386 

pairs) grouped by the mean separation in time (mean lag) between their adjacent activity 387 

(R=-0.28, R2=0.077, p=6.40x10-9). 388 

 389 
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Figure 4. PFC activity is coordinated with hippocampal isolated activity. 391 

A. Schematic illustrating potential CA1 and PFC activity around the time of isolated spiking. 392 

Changes in PFC spiking around the time of CA1 isolated spiking may reflect coordination 393 

between the two regions. 394 

B. Example spike raster and spiking rate (Mean ± SEM) for pairs of co-recorded hippocampus 395 

CA1 and PFC cells. Each raster shows spiking aligned to isolated hippocampal activity 396 

(cycle 0) and matched control trials. Spiking is plotted relative to the cycles of the 397 

hippocampal theta rhythm. For CA1 cells, red indicates spikes and spiking rate for intervals 398 

with isolated spiking at cycle 0. Black indicates control intervals without isolated spiking at 399 

cycle 0. For PFC cells, purple indicates spikes and spiking rate for intervals with isolated 400 

spiking at cycle 0. Black indicates control intervals without isolated spiking at cycle 0. 401 

C. Violin plots and quantification of spike rate differences between control and actual intervals 402 

for PFC-CA1 cell pairs (n=2798) in time windows relative to CA1 isolated activity. Rate 403 

difference, original data (black) and permuted (gray), is expressed the z-score of the absolute 404 

observed difference relative to its own permuted distribution. The Wilcoxon signed-rank test 405 

(*** p<0.001) was used to compare the original and permuted groups: p=4.7x10-8, 3.6x10-12 406 

and 2.2x10-10 for each group respectively.  407 

  408 
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 409 
Figure 5.  410 

A. PFC activity leading up to isolated spiking is used to predict the future occurrence of isolated 411 

spiking in one CA1 place cell. 412 

B. Prediction gain (Mean ± SEM) of GLMs where PFC spiking activity is used to predict 413 

whether an upcoming CA1 theta cycle contains isolated or non-isolated control spiking 414 

activity for a given CA1 place cell (n=158). Pairwise permutation test (** p<0.05) for mean 415 

with multiple comparison correction: p=0.079, p=0.0027, p=0.0006 and p<0.0002 for each 416 

group respectively. 417 

C. PFC activity after isolated spiking is used to predict the previous occurrence of isolated 418 

spiking in one CA1 place cell. 419 

D. Prediction gain (Mean ± SEM) of GLMs where PFC spiking activity is used to predict 420 

whether a previous CA1 theta cycle contained isolated or non-isolated control spiking 421 

activity for a given CA1 place cell (n=162). Pairwise permutation test (** p<0.05) for mean 422 
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with multiple comparison correction: p=0.0071, p=0.0002 and p=0.0053 for each group 423 

respectively. 424 

 425 

 426 
Figure S1. Task schematic. 427 

The maze has 4 potential reward locations (wells) located on the corners of the maze but 428 

only 2 will deliver reward for a given contingency. The animal needs to find the 2 wells that 429 

deliver reward (red circles) and alternate between the two to continuously receive reward. All 430 

reward wells are connected by paths (gray) and the rat is free to choose any path. The locations 431 

of the rewarded wells change within session, between sessions and/or between days. The pairs of 432 

wells that are rewarded vary across sessions and the rat needs to learn the locations of the 433 

rewarded wells for every contingency by trial and error. 434 

 435 
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 436 
Figure S2. Adjacent and Isolated activity. 437 
 438 
 Classification of adjacent versus isolated activity based on temporal separation between 439 

theta cycles with spiking. 440 

 441 
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 442 
Figure S3. Isolated spiking activity is not due to spike assignment errors. 443 

A. Minimum Euclidean distance between the spike waveform of adjacent activity spikes within 444 

each cell versus all other place cell recorded on the same tetrode (n=260 individual cells 445 

compared to all other cells on the tetrode). Wilcoxon signed-rank test: p=2.9x10-51. 446 

B. Minimum Euclidean distance between the spike waveform of spikes classified as isolated 447 

activity within each cell versus all other place cell recorded on the same tetrode (n=260). 448 

Wilcoxon signed-rank test: p=8.8x10-51. 449 

 450 
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 451 
Figure S4. Animal location and movement correlates are similar for isolated and adjacent 452 

spiking.  453 

A. Normalized spatial distribution of theta cycles with adjacent (left) or isolated (center) 454 

spiking. Normalized difference between the spatial distributions (right). 455 

B. Distribution of animal speed (Mean ± SEM) at the time of adjacent or isolated activity (top). 456 

Significance of the difference (z) between the two distributions as determined using a 457 

permutation test (bottom). Dotted lines indicate ± 2z. 458 

C. Distribution of animal angular acceleration (Mean ± SEM) at the time of adjacent or isolated 459 

activity (top). Significance of the difference (z) between the two distributions as determined 460 

using a permutation test (bottom). Dotted lines indicate ± 2z. 461 

 462 

 463 
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 464 
Figure S5. Network spectral signature around unclassified, adjacent and isolated spiking 465 

activity. 466 

A. Mean spike triggered spectrogram for unclassified (left), adjacent (center), and isolated 467 

(right) spiking activity (n=170 cells). Top panels show frequency ranges 50-250Hz. Bottom 468 

panels show frequency ranges 2-50Hz. 469 

B. Mean spectral power for a 50ms window centered at 0ms lag (Median ±95% CI). 470 

 471 
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Figure S6. Each theta cycle with isolated place cell activity is matched with non-isolated 473 

cycles for speed, trajectory and location. 474 

A. Speed match profiles for examples in Figure 4B. 475 

B. Distribution of mean difference in speed between matched and isolated cycles. Speed profile 476 

of matched cycles were on average within -0.06 standard deviations of the speed profile of 477 

the isolated cycles. The difference is expressed as a z-score normalized against the speed 478 

distribution of isolated cycles.  479 

C. Location match profiles examples in Figure 4B. 480 

D. Distribution of the mean distance in cm between matched and isolated cycles. The location of 481 

the animal on matched cycles was on average 7.5cm from the location of the isolated cycle. 482 

 483 

 484 
Figure S7. Model quality controls for GLMs using PFC activity to predict CA1 isolated 485 

activity. 486 

A. Input predictor count for actual and permuted datasets. Wilcoxon rank-sum test p=1.0. 487 
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B. Prediction gain is not significantly correlated with the total number of input predictors used 488 

for prediction. Data: R2=0.00121, p=0.384; Permutation control: R2=0.00387, p=0.118. 489 

C. Models using actual data have higher proportions of predictors with non-zero b coefficients. 490 

Wilcoxon rank-sum test p=1.22x10-16. 491 

D. Prediction gain is positively correlated with the proportion of input predictors with non-zero 492 

beta coefficients. This is found in both actual (left) and permuted (right) datasets. Data: 493 

R2=0.133, p=3.10x10-21; Permutation control: R2=0.0537, p=0.3.80x10-9. 494 

 495 

Each point in the scatter represents a single fold of each model with 5 folds in total. All time 496 

points and models are shown.  497 

 498 

Methods 499 

The data used in this study came from the same dataset used in previous publications (Yu, Kay et 500 

al. 2017, Yu, Liu et al. 2018). 501 

 502 

Animal and behavior 503 

Experiments followed guidelines from the University of California San Francisco 504 

Institutional Animal Care and Use Committee and US National Institutes of Health. Six Long-505 

Evans rats (male, 500-700g, 4-9 months of age) were first trained to traverse a linear track (1m) 506 

for reward (evaporated milk, Carnation brand, with 5% added sucrose). Next, the animals were 507 

trained on a foraging task ~21 days after surgery (Yu, Kay et al. 2017, Yu, Liu et al. 2018). 508 

Briefly, the task has four possible reward well locations, only two were chosen to deliver reward 509 

at a given time. The rat is trained to visit the two rewarded location in alternation to receive 510 

reward. The rewarded well locations changed within or between sessions, or between days. Two 511 

to three session (15-45 minutes) were performed each day with interleaved rest sessions (20-60 512 

minutes). Reward was delivered (100-300µl at 20ml/min) using a syringe pump (NE-500 513 

OEM, New Era Pump Systems Inc.) after the animal breaks an infrared beam at the well 514 

location. 515 

 516 

Implant  517 
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The recording drive was 3D printed (PolyJetHD Blue, Stratasys Ltd.) and contained up to 518 

28 individually movable tetrodes. Tetrodes (Ni-Cr, California Fine Wire Company) were gold 519 

plated to 250kOhm at 1kHz. 520 

The implanted recording drives targeted both dorsal CA1 (7 tetrodes) and dorsal PFC 521 

(14-21 tetrodes, housed in one cannula angled at 20 degrees toward the midline). CA1 AP: -522 

3.8mm and ML: 2.2mm. PFC (anterior cingulate cortex and dorsal prelimbic cortex): AP: 523 

+2.2mm, ML +1.5mm and DV between 1.88mm to 2.72mm depending on the AP and ML 524 

coordinates of each tetrode. 525 

Initially, tetrodes were adjusted to reach the target DV coordinate (PFC) or guided by 526 

LFP and spiking patterns (CA1), every 2 days. Once the target was reached, tetrodes were 527 

adjusted (~30µm) to improve cell isolation at the end of an experiment day  528 

 529 

Histology 530 

Recording sites were marked with electrolytic lesions by passing current through each 531 

tetrode (30µA, 3s) at the end of the experiment. Animals were perfused after 24 hours with 532 

paraformaldehyde (4% in PBS). The brain was removed, fixed (24 hours at room temperature), 533 

cryoprotected (30% sucrose in PBS at 4°C) and sectioned (coronal, 50µm). Cresyl Violet was 534 

used to stain the sections to identify sites of electrolytic lesions. 535 

 536 

Recording 537 

Data were recorded with the NSpike system (LMF and J. MacArthur, Harvard 538 

Instrumentation Design Laboratory). Dim lighting was used during the experiment. An infrared 539 

LED array was mounted on the headstage amplifier to for position tracking. Video was recorded 540 

at 30Hz. We recorded LFP (0.5-400Hz at 1.5kHz) and spiking activity (600-6000Hz or 300-541 

6000Hz at 30kHz) from each tetrode channel. For spike detection referencing, a tetrode located 542 

in corpus callosum was used for CA1 and a local tetrode without detected spikes was used for 543 

PFC. 544 

 545 

Data preprocessing 546 

Manual spike clustering was performed based on peak amplitude, spike width and wave-547 

form principal components (MatClust, https://bitbucket.org/mkarlsso/matclust/src/master/).  548 
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To reconstruct the position of the animal, the centroid of the front and back diodes from 549 

the LED array was automatically extracted from the video. 550 

 551 

Spike clustering quality 552 

To assess clustering quality, we analyzed the similarity in spike waveform within and 553 

across different units. We expect a well clustered unit to have spikes with waveforms that are 554 

similar to other spikes assigned to the same unit compared with spikes assigned to other units. 555 

Potential spike misassignment can occur only for spiking events detected on the same tetrode. 556 

We therefore compared spike waveforms from a given unit to spikes from all other units on the 557 

same tetrode. We computed the Euclidean distance between the spike waveforms (4 channels) 558 

for all pairs of spikes. Next, we compared the minimum waveform distance between spikes 559 

belonging to the same unit, and between that unit and all other units. This was done separately 560 

for spikes associated with isolated or adjacent theta cycles. 561 

 562 

Spatial spiking rate 563 

The occupancy-normalized rate was calculated by dividing the number of spikes by the 564 

occupancy of the animal per spatial bin (2cm by 2cm) in the environment. A 2-dimensional 565 

symmetric Gaussian kernel (s=2cm and 12cm spatial extent) was then used for smoothing. 566 

 567 

Theta cycle definition and classification 568 

The theta-frequency component of the raw LFP signal was extracted using an equiripple 569 

finite impulse response band-pass filter (6-12Hz). Given theta is associated with movement 570 

states (Vanderwolf 1969), we used two criteria to exclude activity associated with immobility 571 

periods. First, we exclude periods when the speed of the animal was less than 2cm/s. Second, we 572 

excluded periods with Sharp Wave/Ripples, which occur during immobility or periods of slow 573 

movement, using previously described methods (Yu, Kay et al. 2017, Yu, Liu et al. 2018). For 574 

SWR detection, we used a speed threshold of <4cm/s to ensure SWRs occurring during 575 

intermediate speeds (>2cm/s but <4cm/s) are excluded. Spikes occurring during these excluded 576 

periods are classed as “Excluded”. 577 

For spiking during the included periods, we classified each theta cycle and spikes 578 

belonging to that cycle as “isolated” or “adjacent” activity. This was done per place cell. The 579 
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classification was based on the mean number of cycles separating a given cycle with spiking to 580 

its nearest 3 other neighboring cycles with spiking. A mean separation of 8 cycles is the 581 

threshold for classification as adjacent as opposed to isolated. This is based on the distribution of 582 

cycle separation across the entire place cell population. 583 

 584 

Theta cycle spatial distribution 585 

To determine if isolated spiking occurred more frequently at certain locations in the 586 

environment compared with adjacent spiking, we first plotted the normalized spatial distribution 587 

of theta cycles containing each type of activity for each cell, averaged across the population. The 588 

spatial distribution of isolated and adjacent theta cycles for each place cell was calculated using 589 

the spatial spiking rate method described above, except with their respective cycles instead of 590 

spikes. To determine whether there are areas in the environment where the occurrence of 591 

adjacent and isolated activity differ, we applied a permutation technique. This involves first 592 

permuting the identity of each theta cycle labeled as having adjacent or isolated activity. The 593 

spatial distribution of the two permuted sets were calculated and subtracted from each other to 594 

obtain the difference. This was done 500 times to generate an expected distribution of 595 

differences. The actual difference in spatial distribution between isolated and adjacent activity 596 

was compared to the expected distribution and a z-score was calculated. 597 

 598 

Theta cycle movement correlates 599 

To determine whether isolated and adjacent activity were associated with distinct 600 

movement correlates, we compared the distribution of animal speed and angular velocity at times 601 

of theta cycles containing each type of activity. This was done for each place cell and then 602 

averaged across the population. To determine if the two distributions were significantly different, 603 

we used a permutation approach. For each place cell, the identity of the theta cycle, whether it 604 

contains isolated or adjacent, was permuted. The difference between the two distributions 605 

permuted data sets was the recalculated. This was repeated 1000 times to obtain a distribution of 606 

expected differences. The actual difference was expressed as a z-score relative to the expected 607 

distribution. 608 

 609 

Theta phase locking analysis 610 
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The theta phase of each spike is relative to the phase of the reference signal obtained 611 

from the tetrode located in the corpus callosum. The mean phase preference for spiking activity 612 

for each place cell is the circular mean of the phases of all spike. Theta phase concentration is the 613 

magnitude of the vector sum of all spikes, where each spike is a unit vector with angle 614 

corresponding to the phase of theta.  615 

 616 

Time aligned spectrogram 617 

To compute the spectral properties of network activity around spiking events we first 618 

used a bank of bandpass filters (center frequency ± 1Hz) to filter the LFP signal across the 619 

frequency range 2-250Hz. Each filtered signal normalized by subtracting the mean and dividing 620 

by the standard deviation. For each place cell, we then selected the normalized signal in a 500ms 621 

window centered on the time of each spiking event and averaged across spikes. This was 622 

repeated for spikes classified as belonging to isolated, adjacent theta cycles or excluded from 623 

analysis (see Theta cycle definition and classification). We ensured equal number of spikes 624 

were used to generate the average across spike types for each cell by sampling without 625 

replacement to match the type with the lowest count. The average for each place cell was then 626 

used to generate the mean for the entire population. 627 

 628 

Spiking coactivity 629 

We quantified the likelihood a pair of place cells having isolated activity in the same 630 

theta cycle relative to the expected probability, similar to what has been done for SWRs (Cheng 631 

and Frank 2008, Singer and Frank 2009, Yu, Kay et al. 2017). The expected probability is the 632 

frequency of observing spiking from two cells in the same theta cycle given their relative 633 

frequency of spiking. For each cell, its spike count during a theta cycle with isolated activity was 634 

first binarized, where the cell was either spiking or not spiking in that theta cycle. The proportion 635 

of all theta cycles where both cells spiked was the observed coactivity. The expected coactivity 636 

was calculated by permuting the participation of each cell across all theta cycles with isolated 637 

activity. This was repeated 1000 times and to generate a distribution expected proportion of theta 638 

cycles with both cells have isolate activity. The observed proportion was converted to a z-score 639 

by subtracting the mean and dividing by the standard deviation of the expected distribution. This 640 
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method accounts for the differences in the number of theta cycles with isolated activity for each 641 

cell in the pair.  642 

To determine the temporal relationship between adjacent activity for a pair of place cells, 643 

we computed the cross-correlation between theta cycles with adjacent activity for a given cell 644 

pair. First, we assigned each theta cycle of a given cell as having adjacent spiking or not. Then, 645 

we cross-correlated the assignment for a pair of place cells, where the lag is measured in the 646 

number of cycles. We then found the absolute lag with the maximum cross-correlation value 647 

with for each place cell pair. 648 

 649 

Cycle matching 650 

For each place cell, we matched each theta cycle with isolated activity with control theta 651 

cycles without spiking. These control cycles were drawn from other task trials from the same 652 

session and matched as closely as possible for trajectory, speed, and location. Two control cycles 653 

were selected for each actual cycle. Trajectory matching only included task trials where the 654 

animal performed the same trajectory and ensured the same direction of travel across all matched 655 

cycles. The speed matching process started with generating a reference speed profile distribution 656 

for a time interval around a theta cycle with isolated activity for a given cell. For each theta cycle 657 

with isolated activity, we then chose two candidate theta cycles without spiking. The speed 658 

profile for each candidate cycle around the same interval was compared with the reference 659 

distribution. The candidate cycle was accepted if the mean speed deviation compared with the 660 

reference distribution is <1σ The next inclusion criteria for the candidate cycle was having a 661 

location < 10cm from the theta cycle with isolated activity. This selection process was done 662 

without replacement. Only place cells with greater than 100 input cycles, including both isolated 663 

and matched cycles, were included in the analysis. 664 

 665 

Spiking normalization to theta cycles 666 

For illustration purposes in Figure 4A, we converted PFC and CA1 spiking times to 667 

hippocampal theta cycle phases. Spiking times were transformed using linear interpolation from 668 

time to theta phase relative to the start of the theta cycle with isolated activity. The mean spiking 669 

rate was calculated with respect to theta cycles. 670 

 671 
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Spiking rate comparison 672 

We asked whether PFC spiking rate leading up to and including theta cycle with isolated 673 

compared with matched control cycles. For each CA1 cell, we first identified cycles with isolated 674 

spiking and control cycles without isolated spiking (see above). We next found all PFC cells that 675 

were simultaneously recoded with the CA1 cell. For each of these PFC cells, we compared the 676 

spike count in time intervals leading up to the theta cycle with or without isolated spiking from 677 

the CA1 cell. Under the null hypothesis, the difference between the two sets of spike counts will 678 

not be significantly different than chance. To estimate the significance of the spike count 679 

difference, we used a permutation test where we permuted the theta cycle identity 1000 times 680 

and calculated the difference between the PFC spiking for each permutation. The actual 681 

difference was expressed as a z-score relative to this permuted distribution by subtracting the 682 

mean and standard deviation of the permuted distribution. As an additional control to estimate 683 

the expected difference between the groups, we repeated the analysis by first generating a 684 

permuted data set where the theta cycle identity (with or without isolated spiking) was permuted. 685 

This difference in the spiking rate of this permuted data set, expressed as a z-score, was 686 

calculated as the actual data set. 687 

 688 

Generalized Linear Models 689 

We asked whether spiking activity from simultaneously recorded PFC cells can predict 690 

the occurrence of isolated activity from a CA1 cell. We built cross-validated Generalized Linear 691 

Models (GLMs) (Binomial distribution with logit link function) with elastic-net regularization, 692 

which combined LASSO and Ridge regularization to reduce overfitting (Zou and Hastie 2005). 693 

To do this, we first identified theta cycles with isolate spiking for a CA1 cell. We next identified 694 

another control set of theta cycles when the CA1 cell did not spike. These control cycles were 695 

matched for animal speed, movement direction and location (see Cycle matching). We created a 696 

model for each CA1 cell to determine whether PFC spiking activity can distinguish between 697 

cycles with or without isolated spiking in a time window relative to the cycle with isolated 698 

spiking. We first modelled using activity in the 12 cycles previous to the cycle with isolated 699 

activity and then the 12 cycles after the cycle with isolated activity. We ensured no other isolated 700 

activity occurred in this window used for prediction. A 4-cycle bin size was used for grouping 701 

PFC activity since PFC activity shows relatively long autocorrelation times. 702 
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 703 

Modelling parameters 704 

MATLAB’s lassoglm function was used (‘distr’=‘binomial’, ‘Link’=‘logit’). The 705 

optimization was equally weighed between LASSO and Ridge methods (‘alpha’=0.5). Shrinkage 706 

parameter (l) optimization was done using 3-fold cross-validation (‘CV’=3) with 5 Monte Carlo 707 

repetitions (‘MCReps’=5). We used 5-fold cross validation and averaged the outcome across the 708 

5 cross-validations. 709 

 710 

Prediction gain 711 

Prediction gain describes the whether the models can predict the outcome above chance. 712 

For the actual dataset (Prediction gainData), we did this by first calculating the mean absolute 713 

error (MAE) between the predicted and actual outcome for the validation partition (MAEData). To 714 

estimate chance performance, we repeated the prediction 5000 times, each time with the outcome 715 

permuted, and calculated the MAE. The chance MAE is the mean MAE of the 5000 control 716 

predictions (MAEPermuted). The prediction gain is log10(MAEPermuted/MAEData). A positive 717 

prediction gain means the Data group had a smaller error, or better prediction, compared with the 718 

Permutated group (Rothschild, Eban et al. 2017). 719 

We also used a second approach to estimate chance prediction. Instead of building the 720 

model using actual data, we permuted the trial identity of PFC input, which preserves the input 721 

spiking distribution but destroys any potential relationships between trials and the outcome in 722 

CA1. We repeated the entire modelling procedure using permuted data and calculated the 723 

prediction gain (Prediction gainPermuted).  724 

To estimate whether there is significant above chance prediction of CA1 isolated activity 725 

from PFC activity, we performed a permutation test (n=10000 permutations) on the mean 726 

prediction gain between the actual (Prediction gainData) and permuted (Prediction gainPermuted) 727 

datasets. The Bonferroni correction was used to adjust the significance of the prediction to 728 

account for multiple comparisons between time windows. 729 

 730 

PFC predictive ensemble correlation 731 

To determine whether there is specificity in the coordination between PFC and CA1 732 

around the time of isolated activity, we asked if isolated activity for each CA1 cell was predicted 733 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.11.23.395012doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.395012
http://creativecommons.org/licenses/by-nc-nd/4.0/


by activity from distinct combination of PFC cells. This was done by calculating the Pearson’s 734 

correlation between the b coefficients of CA1 models that were generated from data recorded on 735 

the same day. We selected models that yielded a prediction gain >1, had a minimum of 5 736 

predictors and had at least 2 CA1 models from the same day. This produced a dataset from 17 737 

days, with a median of 3 (Q1: 2, Q3: 5) models per day, with 21 (Q1: 19, Q3: 23) predictors per 738 

model, and with a median prediction gain of 1.014 (Q1: 1.0015, Q3: 1.026).  739 

 740 

Model quality assessment 741 

We checked the quality of our models by examining the relationship between prediction 742 

gain and the contribution of predictors to the model. For these linear models, we used the value 743 

of the b coefficient to indicate the contribution of a predictor to the prediction, where predictors 744 

with non-zero b coefficient may contribute to the prediction. We examined how the prediction 745 

value varied with the proportion of predictors with non-zero b coefficients, or the total number of 746 

input predictors, using linear regression. We also compared these relationships between models 747 

with actual data or permuted data. Models with greater predictive power are expected to have 748 

higher proportion of predictive features whereas the number of input predictors should not affect 749 

the outcome. 750 

 751 

Statistical Analyses 752 

 753 

Circular statistical analyses were performed using the Circular Statistics Toolbox in MATLAB 754 

(Berens 2009). Statistical tests were performed using standard MATLAB modules and Scipy 755 

Statistical Functions (scipy.stats). All tests were two-sided. 756 

 757 

 758 

 759 

 760 

 761 

 762 

 763 
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