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Abstract 

Motivation: The structure and function of diverse microbial communities is underpinned by 

ecological interactions that remain uncharacterized. With rapid adoption of metagenomic 

sequencing for studying microbiomes, data-driven inference of microbial interactions based 

on abundance correlations is widely used, but with the drawback that ecological 

interpretations may not be possible. Leveraging cross-sectional metagenomic datasets for 

unravelling ecological structure in a scalable manner thus remains an open problem.  

Methods: We present an expectation-maximization algorithm (BEEM-Static) that can be 

applied to cross-sectional datasets to infer interaction networks based on an ecological model 

(generalized Lotka-Volterra). The method exhibits robustness to violations in model 

assumptions by using statistical filters to identify and remove corresponding samples.  

Results: Benchmarking against 10 state-of-the-art correlation based methods showed that 

BEEM-Static can infer presence and directionality of ecological interactions even with 

relative abundance data (AUC-ROC>0.85), a task that other methods struggle with (AUC-

ROC<0.63). In addition, BEEM-Static can tolerate a high fraction of samples (up to 40%) 

being not at steady state or coming from an alternate model. Applying BEEM-Static to a 

large public dataset of human gut microbiomes (n=4,617) identified multiple stable equilibria 

that better reflect ecological enterotypes with distinct carrying capacities and interactions for 

key species. 

Conclusion: BEEM-Static provides new opportunities for mining ecologically interpretable 

interactions and systems insights from the growing corpus of metagenomic data. 
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1. Introduction  

Microbial communities represent complex systems that impact various aspects related to 

human health, e.g. agriculture (Mohanram and Kumar, 2019), food processing (De Filippis et 

al., 2018), disease biology (Chng et al., 2016; Clemente et al., 2012) and healthcare (Chng et 

al., 2020). Interactions between members of a microbial community determine emergent 

phenomena such as homeostasis in the ecosystem (Gould et al., 2018; Cordero and Datta, 

2016) and overall function of the microbiome (Fraune et al., 2015). Correspondingly, 

ecological modeling of microbiomes is a key step towards understanding community function 

(Buffie et al., 2014; Röttjers and Faust, 2018), forecasting dynamics (Xiao et al., 2020; 

Angulo et al., 2019) and rationally designing interventions that alter community structure and 

function (Stein et al., 2018).  

Advances in high-throughput sequencing and metagenomics have enabled several data-

driven approaches to infer microbial interactions, bypassing limitations of experimental 

approaches in terms of time, resources and cultivability (Faust and Raes, 2012; Li et al., 

2016). In particular, correlation-based methods are widely used for their convenient 

applicability to cross-sectional datasets (Berry and Widder, 2014; Faust and Raes, 2012), 

despite their inability to capture directionality of ecological interactions such as predation and 

parasitism (Faust and Raes, 2012). Recent studies have also highlighted other pitfalls in 

correlational analysis, particularly the accuracy of interactions identified even when the data 

reflects known modes of microbial interactions (Hirano and Takemoto, 2019; Carr et al., 

2019). 

Predictive and dynamic modeling of microbiomes based on first-order differential 

equations (e.g. with generalized Lotka-Volterra models or gLVMs) has found increasing 

usage and provided useful insights into microbial interactions and dynamics (Buffie et al., 

2014; Bucci et al., 2016; Venturelli et al., 2018). Wider adoption of such techniques has been 

hampered by the need for large datasets (as the number of parameters grows quadratically 

with the number of species) and dense longitudinal sampling to adequately capture fine-

grained dynamics (Silverman et al., 2018). Theoretical assumptions such as the availability of 

data where all species are at equilibrium, and where absolute abundances are accurately 

known, make the determination of gLVM parameters from cross-sectional data solvable in 

principle (Xiao et al., 2017). In practice, metagenomic data provides relative abundances and 

scaling these accurately enough for gLVM parameter estimation can be challenging (Li et al., 

2019). Furthermore, real-world datasets often contain a mixture of perturbed and unperturbed 
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microbiomes where the equilibrium status is unknown, and where data may even come from 

multiple models (Arumugam et al., 2011). 

Here we show that an expectation maximization algorithm which couples gLVM parameter 

inference with scaling factor estimation (BEEM – originally designed for longitudinal data 

[Li et al., 2019]) can be transformed to work with cross-sectional data from communities that 

are at or near equilibrium (BEEM-Static). In benchmarking comparisons with simulated 

communities against 10 other methods that infer microbial interactions from cross-sectional 

data, we noted that while all other methods only improved slightly over random predictions 

(AUC-ROC<0.63), BEEM-Static exhibited high accuracy similar to estimation using true 

scaling values (AUC-ROC>0.88). Similar observations were made with synthetic 

communities based on all-pair co-culture experiments, where BEEM-Static accurately 

recapitulated nearly all known interactions and their directionality. Based on statistical filters 

to identify non-model and/or non-equilibrium samples in real and simulated datasets, we 

show that BEEM-Static can be robust to up to 40% of data violating these assumptions. 

Applying BEEM-Static to a large public collection of human gut microbiome profiles 

(n=4,617) identified multiple stable equilibria that appear to better reflect ecological 

enterotypes with distinct carrying capacities and interactions for key species (e.g. Prevotella 

copri) compared to prior clustering based definitions (Arumugam et al., 2011). BEEM-Static 

thus provides new opportunities for mining ecologically interpretable interactions and 

systems insights from the growing corpus of metagenomic data in the public domain.  

2. Methods 

2.1 Estimating biomass and gLVM parameters with cross-sectional data 

The gLVM model is a set of differential equations describing the instantaneous growth rate 

of each species (������/dt) as a function of absolute cell densities (�����) of the 	 species in 

a community: �������� 
 ������� � 
 ��������������

���

 

where �� is the intrinsic growth rate of species � and ��� are interaction terms that define the 

strength of the influence of species � ’s abundance on species � ’s growth. In general, 

estimating gLVM parameters (�� and ���) requires longitudinal data to measure ������/��. 

However, at the non-trivial equilibrium (������/�� 
 0 and �� � 0): 
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�� � 
 ������

���


 0,  
where the time parameter � now becomes implicit in the equation. Dividing both sides by -���  

and the biomass �, rearranging terms, and re-parameterizing the equation we get: 

��� 
 ��� � 
 �������

���,���

,  
where �� 
 ���/ ��� , ��� 
 ����/ ���  and ���  is the relative abundance of species �  at 

equilibrium (��  is also known as the carrying capacity of the species). This equation allows 

us to estimate gLVM parameters (through ��  and ���) from cross-sectional data, assuming 

that samples are at equilibrium, and absolute abundances are known (�� 
 ����).  To account 

for the fact that metagenomics provides relative abundances and biomass is typically not 

measured, BEEM-Static extends the following EM framework to jointly estimate model 

parameters and biomass (Li et al., 2019): 

Estimating model parameters (E-step): BEEM-Static estimates model parameters 

(��

�	
and ����	
 ) for each species �  with sparse regression (implemented with the ‘glmnet’ 

package in R) in iteration �: 

���~ 1��	��

· ��

�	
 � 
 ����	
����

���,���

. 
Estimating biomass (M-step): for a sample, the equation for each species � provides an 

estimate for the biomass, and BEEM-Static takes the median of estimates across species as a 

robust estimator for the biomass of the sample: 

��	
 
 median $� ��

�	
∑ �
��

�	
����

���

& . 
Initialization and termination: BEEM-Static initializes biomass values based on 

normalization factors from cumulative sum scaling (CSS; Paulson et al., 2013), with a user 

defined scaling constant as the median of biomass values (kept constant through EM 

iterations). The EM process is then run until the maximum number of iterations specified 

(200 by default) or until convergence when the median of relative changes in biomass values 

is <10-3. Confidence values (Z-scores) for the final interaction matrix (non-zero off-diagonal 

entries) were calculated for each species � using forward stepwise regression (implemented in 

R package “selectiveInference”; version 1.2.5; Akaike information criterion as the stopping 

criterion). 
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2.2 Statistical filters to detect violations of modeling assumptions 

BEEM-Static uses the following filters to identify and remove samples that violate modeling 

assumptions and could thus impact model inference: 

Equilibrium filter: to identify samples that may not be at equilibrium, BEEM-Static first 

predicts the abundances of species at equilibrium (based on the current model) for all species 

that are present: 

'(� 
 � 1��	��

�)��*�, 

where + is the matrix form of  �,���	
 (= estimate for ����	
), * is a column vector taking the 

value of �-��	
  (= estimate for ��

�	
 ) and '(�  is a vector of predicted relative abundances at 

equilibrium for each species (����is set to 0 if species � is not present). Samples with median 

relative deviation above a user defined threshold (.�) from these equilibrium values were 

then excluded as being potentially not at equilibrium (median�|��� � ����|/���� � .� , ��� 0 0 

and .� 
 20% by default). 

Model filter: to account for cases where some samples may come from an alternate gLVM, 

BEEM-Static calculates the median of squared errors for each sample 3 with respect to the 

current model parameter estimates (�-��	
 and �,���	
): 
4
 
 median

�����
56��� � � 1��	��


· �-��	
 � 
 �,���	
����

���,���

�7�8 

This is done in the E-step for each iteration and samples with large median squared error, i.e. 94
 � median�4
�:/IQR�4
� � .�  where IQR is the inter-quartile range and .�  is a user 

defined parameter (default value of 3), are then removed for the next iteration’s E-step.  

2.3 Selecting shrinkage parameters for sparse regression 

The shrinkage parameter λ in the sparse regression penalizes the number of parameters to 

avoid overfitting and is selected based on five-fold cross-validation in each iteration 

(selecting the value one standard error away from the best λ; Friedman et al., 2010). In the E-

step of iteration �, a crude selection of >�
�	
 is made in BEEM-Static from a large range from 

10-10 to 10-1, and then refined with a fine-grained sequence from >�
�	
/10 to 10>�

�	
. 

2.4 Generating simulated datasets 

Simulated gLVM data was generated based on previously described procedures (Berry and 

Widder, 2014; Bucci et al., 2016). Specifically, to parameterize distributions for generating 
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model parameters, MDSINE (Bucci et al., 2016) was used to estimate the mean and standard 

deviations of growth rates and inter-/intra-species interaction parameters from the C. difficile 

infection experiment data provided with the software. Growth rates and intra-species 

interactions were sampled from normal distributions (forced to be positive and negative 

respectively to model logistic growth). The interaction network structure was generated by 

randomly adding edges from one species to another (with probability ranging from 0.1 to 0.5) 

and the magnitude of the interactions was sampled from a normal distribution (with 0 mean 

and standard deviation estimated from real data as noted above). Initial abundances of 	 (30) 

species were sampled from a uniform distribution (from 0.001 to the mean carrying capacity ��/���  of all the 	 species), with each species having a probability of π to be absent from a 

sample (π was estimated as the average rate of absence for the top 	 most prevalent species in 

all healthy gut microbiome profiles from the database curatedMetagenomicData [Pasolli et 

al., 2017]). A dataset with ? samples was generated by numerically integrating the gLVM 

with the same parameters until equilibrium, starting with ?  different initial abundance 

profiles. The abundances of a random time point along the numerical integration (>20% away 

from the abundance at equilibrium for >50% of the species) was selected as a sample not at 

equilibrium. Poisson noise was added to the abundance of each species to simulate 

experimental variability. 

2.5 Generating datasets based on growth curves and co-culture experiments 

Microbiome profiles for co-culture experiments were taken from a previous study (Venturelli 

et al., 2018) and the relative abundances were scaled using the corresponding biomass 

measurements (OD600). Six species pairs were randomly selected, and one of the three 

conditions were randomly picked for each pair in each sample: (1) only the first species was 

present, (2) only the second species was present and (3) both species were present. For the 

first two cases, a random timepoint (last 6 timepoints near the equilibrium) was taken from 

the growth curve (measured by OD600) of species present. For the last case, the scaled 

abundances of the two species near the steady state (randomly taken from the three 

replicates) were used. Abundances were re-scaled to relative abundances and the process 

repeated to generate a dataset with 500 samples. The interaction matrix reported in Venturelli 

et al (Venturelli et al., 2018) was treated as the ground truth  (“M-PW1-PW2”). 

2.6 Evaluation metrics 

We computed the median of relative errors to assess the accuracy of predicted parameters as: 
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median @ AB, � BAmax9AB,A, |B|:D , 
where B, and B are the estimated and true parameters (*, E and F) respectively. The area 

under the receiver operating characteristic curve (AUC-ROC) was computed for the 

interaction matrix. Z-scores were used to rank interactions (off-diagonal entries only) 

predicted by BEEM-Static. Sensitivity for predicting the signs of interaction was calculated 

as the fraction of interactions with correctly predicted signs in the true interaction matrix 

(non-zero off-diagonal entries only). Sign precision was computed as the fraction of 

interactions with correctly predicted signs. 

2.7 Benchmarking with correlation-based methods 

The following correlation-based methods for infering interactions from microbiome data 

were tested:  

• Pearson and Spearman correlations calculated directly from relative abundances 

• CCREPE (Faust et al., 2012; v1.2.0; 1000 iterations) corrected Pearson and Spearman 

correlation 

• SparCC (Friedman and Alm, 2012; commit id: 9a1142c; default parameters) 

• CCLasso (Fang et al., 2015; v1.0; default parameters) 

• REBACCA (Ban et al., 2015; 

http://faculty.wcas.northwestern.edu/~hji403/REBACCA/REBACCA_main.R; 

nbootstrap=50, B=500, FWER=0.01) 

• MInt (Biswas et al., 2014; v1.0.1; default parameters) 

• SPIEC-EASI (Kurtz et al., 2015; v0.1.4; “mb” and “glasso”; lambda.min.ratio=0.01, 

nlambda=20, rep.num=50) 

• BAnOCC (Schwager et al., 2017; v1.0.1; default parameters) 

• gCoda (Fang et al., 2017; commit id: 584bd07; default parameters) 

The -log(p-value) or edge stability were used to rank CCREPE and SPIEC-EASI 

correlations, respectively, while the absolute values of correlation coefficients were used for 

the other methods. AUC-ROC was calculated from the lower triangle of the inferred 

correlation matrix (an inference was considered correct if there was an interaction between 

the corresponding species regardless of the interaction direction). Sensitivity and precision of 

signs were calculated as described above, excluding positive-negative interactions as they 

cannot be differentiated from positive-positive and negative-negative interactions using 

correlation analysis. 
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2.8 Analysis of gut microbiome data 

Healthy gut microbiome profiles from the database curatedMetagenomicData were 

preprocessed and used as the standard dataset for learning gLVMs by removing (1) replicate 

samples, (2) timepoints other than the first timepoint in longitudinal studies, (3) samples 

under antibiotic treatment and (4) samples from infants. In addition, we included two 

validation datasets to evaluate different aspects of the model learned by BEEM-Static: (1) all 

samples from Raymond et al (Raymond et al., 2016) to validate BEEM-Static’s estimated 

growth and (2) samples from healthy infants (only the first timepoint for each subject) with 

ages below 12 months to evaluate BEEM-Static’s biomass estimation. Both datasets were 

also used to validate BEEM-Static’s ability to filter out samples violating model assumptions. 

To make the number of parameters tractable with the number of data points available, we 

only kept core species that were present (relative abundance >0.1%) in more than 30% of 

samples and subsequently removed samples where none of the core species were found, 

resulting in 42 core species and 4,617 samples overall. BEEM-Static was applied with the 

“model filter” (.� 
 0.9) to learn two models (1,995 and 1,145 samples for each model) in 

two iterations, in which samples violating the filter were removed. BEEM-Static was then 

rerun without the filter on samples assigned to each model separately to re-learn parameters. 

2.9 Estimating in situ growth using BEEM-Static and GRiD 

With BEEM-Static, in situ growth can be estimated as the deviation from equilibrium: 

�-� � �H 
 �,������

���

 , 
where �-� , �H  and �,��  are estimated parameters. In addition, species replication rates for 

samples not under antibiotic treatment in Raymond et al (Raymond et al., 2016) were 

estimated with the high-throughput mode of GRiD (v1.2.0; default parameters) (Emiola and 

Oh, 2018). Gut microbiome associated genomes provided with GRiD were used as references 

and read reassignment using pathoscope2 (Hong et al., 2014) was enabled (parameter “-p”) to 

resolve ambiguous mappings. 

2.10 Code availability 

BEEM-Static is available as an R package at https://github.com/CSB5/BEEM-static under the 

MIT license. 
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3. Results 

3.1 Accurate inference of ecological interactions from cross-sectional metagenomic data 

To evaluate if ecological interactions can be inferred from cross-sectional data we first began 

by conducting extensive benchmarks on complex simulated communities where the truth is 

known (using gLVMs, number of species=30, equilibrium conditions; Methods). Consistent 

with prior reports (Hirano and Takemoto, 2019; Carr et al., 2019), we noted that all 10 state-

of-the-art correlation-based methods provided performances that were only slightly better 

than random predictions in identifying true interactions, even while ignoring directionality 

(AUC-ROC<0.63; Fig. 1A, Sup. Fig. 1). The ability to correct for compositionality of 

metagenomic data (CCREPE, SparCC, CCLasso, REBACCA), or reduce false positives from 

transitive correlations (MInt, SPIEC-EASI, BAnOCC and gCoda), did not notably change 

performance compared to naïve correlation calculations (Pearson or Spearman) when 

inferring ecological interactions. In contrast, BEEM-Static was able to infer the interactions 

with notably higher sensitivity and specificity than all correlation-based methods (AUC-

ROC=0.88; Fig. 1A, Sup. Fig. 1). Although BEEM-Static only used noisy relative 

abundances for gLVM inference, its performance matched that of a positive control that 

assumes noise-free biomass values to scale relative abundances to absolute abundances (Fig. 

1A, Sup. Fig. 1, BEEM-Static vs. true biomass), an assumption that is unlikely to be met in 

realistic settings (Li et al., 2019).  

In addition to knowing that two species are interacting, a key aspect of ecological 

interactions is the directionality/sign of interactions, with correlation-based methods either 

exhibiting low sensitivity (REBACCA, SPIEC-EASI) or low precision (Pearson, Spearman, 

CCREPE, SparCC, CCLasso, MInt, BAnOCC, gCoda) despite the exclusion of predatory 

interactions (positive-negative) when calculating their performance (Fig. 1B; Methods). 

BEEM-Static addresses this issue by providing high sensitivity (>80%) and precision (nearly 

100%) using cross-sectional metagenomic data (Fig. 1B). These observations were 

recapitulated in a wide range of simulated datasets with varying network structure and edge 

sparsity, highlighting BEEM-Static’s robustness (Sup. Fig. 2, Sup. Fig. 3). Furthermore, 

BEEM-Static provides estimates for biomass values that were found to be consistently 

accurate (relative error <10%) and can be used to provide meaningful biological insights (Li 

et al., 2019). 

We extended the evaluations to experimental data, using all-pair co-culture and isolate 

growth curves for 12 species (Venturelli et al., 2018) to create synthetic communities where 
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the interaction network is known, albeit sparse (Fig. 1C; Ground truth). Not surprisingly, 

recapitulating the structure of such a simple interaction network was not difficult for most 

correlation-based methods, with BAnOCC having the best performance overall (AUC-

ROC=0.9, Sup. Fig. 4). However, determining directionality of interactions was still a 

challenge, despite the simplicity of the network. For example, in the case of BAnOCC the 

commensalistic interaction between DP and FP was captured as a negative correlation, while 

the predatory interaction between BH and ER was captured as a positive correlation (Fig. 1C; 

BAnOCC). BEEM-Static, on the other hand, was able to capture all interactions and their 

directionality correctly, except for one false positive (FP to DP) and one false negative (BT to 

EL) involving interactions with weak strength (Fig. 1C; BEEM-Static). BEEM-Static’s 

utility in such datasets was consistently observed in comparison to correlation-based methods 

with AUC-ROC close to 1 (Sup. Fig. 4).  

3.1 Statistical filters in BEEM-Static provide robustness to violations in modeling 

assumptions 

While the simulations in the previous section account for experimental errors, they assume 

that all samples come from equilibrium states, an unlikely situation for most real datasets. 

Relaxing this assumption, we noted that with as little as 5% non-equilibrium samples, AUC-

ROC decreased by >10%, and with 15% non-equilibrium samples AUC-ROC performance 

degraded to match that of correlation-based methods (Naïve algorithm, Fig. 2A, Sup. Fig. 

5A; Methods). Incorporating a statistical filter in BEEM-Static that compares estimated 

species relative abundances at equilibrium with observed abundances (equilibrium filter; 

Methods) helped identify samples that were not at equilibrium with high sensitivity and 

specificity (Sup. Fig. 5A). This in turn allowed BEEM-Static to be robust to having nearly 

half of the samples (45%) in the dataset being at a non-equilibrium state (performance 

reduction <5%; Fig. 2A, Sup. Fig. 5A, BEEM-Static). 

We next investigated the impact of relaxing the “universal model” assumption i.e. that all 

samples have the same ecological conditions and model parameters. This assumption may not 

hold true in many real-world settings (e.g. gut microbiome samples from different 

enterotypes [Arumugam et al., 2011]), and as expected relaxing it had a strong impact (30% 

reduction in AUC-ROC) even with slight deviations (5%, Naïve algorithm; Fig. 2B, Sup. 

Fig. 5B; Methods). In addition, AUC-ROC performance continued to decrease beyond 60% 

even after nearly half the samples (40-45%) were derived from a different model. To address 

this, BEEM-Static implements a filter that identifies samples that have poor goodness-of-fit 
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to the current model (model filter; Methods) and excludes them in subsequent iterations of 

model inference. This approach was found to provide robustness to up to ~40% of samples 

from a different model (performance reduction <20%, BEEM-Static; Fig. 2B, Sup. Fig. 5B). 

Finally, we employed real microbiome datasets to test BEEM-Static’s robustness where a 

subset of samples is known to violate modeling assumptions i.e. some subjects undergoing 

oral antibiotic treatment or samples from newborn infants, where the majority of samples are 

from adults who are not undergoing antibiotic treatment. BEEM-Static was able to identify 

such samples with high sensitivity (>80%) using its model filter (Fig. 2C, D), and the filtered 

samples were significantly enriched for those from antibiotic-treated adults and infants 

(Fisher’s Exact test p-value<10-22). 

3.2 BEEM-Static analysis of human gut microbiomes identifies distinct ecological 

configurations 

To further assess BEEM-Static’s utility we evaluated the concordance of parameters learnt 

during the training process with orthogonal information for a large human gut microbiome 

dataset (N=4,617; Methods). In particular, we noted that biomass estimates from BEEM-

Static were significantly higher for adults versus newborn infants (~2×; Wilcoxon test p-

value <10-15; Fig. 3A), consistent with our understanding of a maturing gut microbiome 

(Tsuji et al., 2018; Hopkins et al., 2005). Additionally, we used deviations from equilibrium 

(������/�� 
 0) to estimate instantaneous growth (population increase or decrease) of each 

species in each sample (Methods), and assessed concordance with an in silico approach to 

estimate DNA replication rates (Emiola and Oh, 2018). Despite the fact that growth rates are 

also impacted by death rates, we observed that species predicted to grow based on BEEM-

Static analysis were also found to have significantly higher DNA replication rates (GRiD 

values; Wilcoxon test p-value=3×10-4; Fig. 3B). 

Using an iterative approach to train a new model on samples excluded from the first model, 

we observed that BEEM-Static classifies a majority of the samples to two models (1995 for 

model 1 and 1145 for model 2; Sup. Table 1). Visualizing the expected microbial 

composition for each sample at equilibrium, we noted three distinct clusters in a principle 

component analysis plot (Fig. 3C), where samples in clusters 1 and 2 largely correspond to 

profiles from models 1 and 2, respectively. Analysis of carrying capacities highlighted that 

the clusters were defined by Prevotella copri, which has higher carrying capacity in cluster 1 

vs 2 and is absent in samples from cluster 3 (Fig. 3D). Several other species were also found 

to have divergent carrying capacities in the two models, including Bifidobacterium 
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adolescentis, Collinsella aerofaciens and Coprococcus comes (enriched in model 2), some of 

which have variations associated with fiber intake (Adamberg et al., 2020; Wu et al., 2011). 

Overall the ecological models identified here have distinct sets of interactions (Sup. Table 1) 

and do not appear to match earlier definitions of enterotypes (Arumugam et al., 2011) based 

on principle coordinate analysis and clustering (Sup. Fig. 6). 

Discussion 

As microbiome research increasingly moves from descriptive studies to those that seek to 

provide a mechanistic understanding of microbial communities, the ability to infer microbial 

interactions from metagenomic data is an important capability. In particular, the directionality 

and sign of interactions provide biologically interpretable information that is missed by 

correlation-based approaches. BEEM-Static provides an alternative avenue to infer this, with 

the caveat that it assumes a specific model (generalized Lotka-Volterra) for community 

dynamics. In addition, as we show here, other values obtained from BEEM-Static models can 

have utility, including the strength of interactions, biomass estimates, deviation from 

equilibrium, and fit to model.  

    In addition to accounting for relative abundance estimates from metagenomic data, the 

statistical filters employed by BEEM-Static make it robust to some of the violations in model 

assumptions that can be expected in real datasets. These features make BEEM-Static widely 

applicable, and also extends the use of ecological models with metagenomic data. For 

instance, our analysis of large public metagenomic datasets provides an alternate perspective 

to the discussion on microbial enterotypes (Arumugam et al., 2011) and universality of 

microbiome dynamics (Bashan et al., 2016). The ecological types observed here are 

characterized by distinct carrying capacities that might be a function of the environment (e.g. 

host factors or diet). Fiber rich diets are known to have a strong impact on the gut 

microbiome (Wu et al., 2011) and have been linked to some of the species with differential 

carrying capacities in our models (Adamberg et al., 2020). We anticipate that the 

incorporation of such environmental factors into future models would be an exciting avenue 

to study  their influence on microbial community structure in vivo. Finally, hybrid methods 

that learn models from both longitudinal and cross-sectional data represent another promising 

direction to explore for studying general and individual specific microbiome dynamics (Li et 

al., 2019).  
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Figure Legends 

Fig. 1.  Benchmarking performance for network structure and edge directionality. Note 

that CCREPE has two versions with Pearson and Spearman correlations (CCREPE.P and 

CCREPE.S), while SPIEC-EASI using “mb” and “glasso” algorithms is represented as 

SE.mb and SE.glasso, respectively. (A) ROC curves for different correlation based methods, 

the regression method using true biomass values and BEEM-Static for one simulated dataset 

with 30 species and 500 samples. (B) Boxplots showing precision and recall for 

directionality/sign of interactions for 30 different simulated communities with 30 species and 

500 samples each. (C) True interaction network for a synthetic community based on all-pair 

co-culture data (Ground truth), inferred correlation network by BAnOCC and inferred 

interaction network by BEEM-Static. 

Fig. 2.  BEEM-Static robustly filters samples violating modeling assumption in 

simulated and real datasets. (A-B) Performance reduction for BEEM-Static (with filters) 

and the naïve algorithm (without filtering of samples) as the percentage of samples at (A) 

equilibrium or (B) generated from the main model, decreases. Reduction is measured relative 

to BEEM-Static with no filters and all data from the model and at equilibrium. Points denote 

the means while error bars denote the standard deviation across 30 simulations each. (C-D) 

Principle coordinates plots (Bray-Curtis dissimilarity) representing gut microbiome 

taxonomic profiles from 4,617 samples. Points represent samples from individuals taking 

antibiotics (C) or from newborn infants (D), while crosses represent samples from adults who 

are not undergoing antibiotic treatment.  Points that were filtered by BEEM-Static are colored 

blue and red otherwise. 

Fig. 3. Analysis of human gut microbiomes with BEEM-Static. (A) Violin plots showing 

the significant difference in BEEM-Static biomass estimates for adults and newborn infants. 

(B) Boxplots showing differences in DNA replication rates (GRiD estimates) for species 

predicted to decrease and increase in population size, respectively, by BEEM-Static. Each 

point represents one species in a sample. (C) Scatter plot showing the first two components 

from a principle component analysis of equilibrium abundances for samples (as predicted by 

BEEM-Static). (D) Predicted carrying capacities (square root transformed) of species in the 

two models. Species with divergent carrying capacities (ratio is >2 standard deviations from 

1) in the two models are marked with stars. 
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