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Abstract

Long-range spatial interactions among genomic regions are critical for regulating gene expression
and their disruption has been associated with a host of diseases. However, when modeling the effects of
regulatory factors on gene expression, most deep learning models either neglect long-range interactions
or fail to capture the inherent 3D structure of the underlying biological system. This prevents the field
from obtaining a more comprehensive understanding of gene regulation and from fully leveraging the
structural information present in the data sets. Here, we propose a graph convolutional neural network
(GCNN) framework to integrate measurements probing spatial genomic organization and measurements
of local regulatory factors, specifically histone modifications, to predict gene expression. This formu-
lation enables the model to incorporate crucial information about long-range interactions via a natural
encoding of spatial interaction relationships into a graph representation. Furthermore, we show that our
model is interpretable in terms of the observed biological regulatory factors, highlighting both the histone
modifications and the interacting genomic regions that contribute to a gene’s predicted expression. We
apply our GCNN model to datasets for GM12878 (lymphoblastoid) and K562 (myelogenous leukemia)
cell lines and demonstrate its state-of-the-art prediction performance. We also obtain importance scores
corresponding to the histone mark features and interacting regions for some exemplar genes and validate
them with evidence from the literature. Our model presents a novel setup for predicting gene expression
by integrating multimodal datasets.

1 Introduction
Gene regulation determines the fate of every cell and its disruption leads to diverse diseases ranging from
cancer to neurodegeneration [1–3]. Although specialized cell types – from neurons to cardiac cells – exhibit
different gene expression patterns, the information encoded by the linear sequence of DNA remains virtually
the same in all non-reproductive cells of the body [4, 5]. Therefore, the observed differences in cell type must
be encoded by elements extrinsic to sequence, commonly referred to as epigenetic factors [6]. Epigenetic
factors found in the local neighborhood of a gene typically include histone marks (also known as histone
modifications). These marks are naturally occurring chemical additions to histone proteins that control how
tightly the DNA strands are wound around the proteins, and the recruitment or occlusion of transcription
factors [7]. However, in recent years, the focus of attention in genomics has shifted increasingly to the
study of long-range epigenetic regulatory interactions that result from the three-dimensional organization of
the genome [8, 9]. Although sometimes separated by hundreds of kilobases along the DNA strand, DNA
sequences known as enhancers increase the expression of their target genes by being brought into close
spatial proximity by proteins such as CCCTC binding factor (CTCF) and cohesin [2, 9]. These enhancer
sequences have been estimated to account for about 16% of the human genome [10].

Many diseases have been attributed to the disruption of the long-range transcriptional regulation of
genes. For example, some early studies showed that chromosomal rearrangements disrupted the region
downstream of the PAX6 transcription unit causing Aniridia (absence of the iris) and related eye anomalies
[11–14]. These rearrangements were located as far as 125 kilo-basepairs (kbp) beyond the final exon of the
gene [11, 13, 15]. Thus, chromosomal rearrangement can not only affect a gene directly but can indirectly
disrupt a gene located far away by disrupting its regulatory (e.g., enhancer-promoter) interactions. This ob-
servation indicates that while local regulation of genes is informative, studying long-range gene regulation is
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Figure 1: Overview of the proposed GCNN model. Our framework integrates information from both hi-
stone modification signals and long-range spatial interactions to predict and understand gene expression.
Inputs to the model include Hi-C maps for each chromosome as well as ChIP-seq levels for five core his-
tone marks (H3K4me1, H3K4me3, H3K9me3, H3K36me3, and H3K27me3). We subdivide the Hi-C maps
uniformly into genomic regions of 10 kilo-basepair (kb) intervals. The row (or equivalently, column) corre-
sponding to each genomic region is represented as a node in the graph. Each node’s initial feature embedding
is a vector of length five, as determined by the average ChIP-seq signals for the histone marks in each region.
Edges between nodes are added based on the Hi-C interaction frequency of the corresponding genomic re-
gions. For nodes with regions containing a gene, the model performs repeated graph convolutions over the
neighboring nodes to yield a binarized class prediction of whether the gene is expressed or not.

critical to understanding cell development and disease. Experimentally testing for all possible combinations
of long-range and short-range regulatory interactions that could control gene expression for∼ 20, 000 genes
is infeasible, given the vast size of the search space. Therefore, computational and data-driven approaches
are necessary to efficiently search this space and reduce the number of testable hypotheses due to the sheer
scope of the problem.

Various machine learning models investigating gene regulation have been introduced to attempt to ad-
dress this need. Some examples include support vector machines [16], random forests [17], and elaborations
on classical regression techniques [18–20]). However, in all these cases, the researcher must directly select
the relevant features that lead to the target predictions. One way to overcome this limitation is to use a deep
learning framework, which refers to a multi-layered neural network. Among their many advantages, deep
neural networks perform automatic feature extraction by efficiently exploring feature space and then finding
nonlinear transformations of the weighted averages of those features. This formulation is especially relevant
to complex biological systems since they are inherently nonlinear. Hence, nonlinear feature transformations
are often more strongly predictive of the output than the raw feature values [21].

Recently, deep learning frameworks have been applied to predict gene expression from histone mod-
ifications, and their empirical performance has often exceeded the machine learning methods referenced
above. Singh et al. [22] introduced DeepChrome, which used a convolutional neural network (CNN) to
aggregate five types of histone mark ChIP-seq signals in a 10, 000 bp region around the transcription start
site (TSS) of each gene. This same data setup was then used in AttentiveChrome [23], in which the authors
implemented a long short-term memory neural network (LSTM) for each histone mark. They then applied
an attention-layer to focus on the most relevant features selectively. Agarwal et al. [24] employed a CNN
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Computational Study Local Epigenetic Factors Feature-level
Interpretation

Long-Range
Interactions

Underlying
Spatial Structure

Edge-level
Interpretation

CNN [22, 24] X X
Attention + LSTM [23] X X
Attention + CNN + LSTM [25] X X
Densely connected CNN [28] X X X
GCNN (Our model) X X X X X

Table 1: Comparison of the properties of previous deep learning models predicting gene expression
from histone modifications with our GCNN framework. The proposed method incorporates 3D DNA
information, capturing the underlying spatial structure, and highlights both the important node-level (histone
modifications) and edge-level (long-range interactions) features.

framework that operated on the promoter sequences of each gene and other annotated features associated
with mRNA decay to predict steady-state mRNA levels. Kang et al. [25] used histone marks, DNA methy-
lation state, and transcription factor levels as inputs to a model comprised of several integrated networks,
including CNNs, bi-directional LSTMs, and attentive layers. The studies listed above incorporate nonlinear
combinatorial interactions among features at the local level. However, they do not use spatial information
about long-range regulatory interactions known to play a critical role in differentiation and disease [1–3].

Modeling these long-range interactions from regulatory signals is a challenging task due to two major
reasons. First, we cannot confidently pick an input size for the genomic regions as regulatory elements can
control gene expression from various distances. Second, inputting a large region will introduce sparsity and
noise into the data, making the learning task difficult. A potential solution to this problem is to incorporate
information from long-range interaction networks captured from experiments like Hi-ChIP [26] and Hi-C
[27]. These assays use high-throughput sequencing to measure 3D genomic structure, where each read
pair corresponds to an observed 3D contact between two genomic loci. While Hi-ChIP focuses only on
spatial interactions mediated by a specific protein, Hi-C captures the genome-wide global interactions of the
genomic regions. Recently, Zeng et al. [28] combined a CNN encoding promoter sequences with a dense
multi-layer perceptron network using Hi-ChIP datasets to predict gene expression. The authors evaluated
the relative contributions of the promoter sequence and promoter-enhancer submodules with respect to the
model’s overall performance. While this method incorporates the long-range interaction information, its
use of HiChIP experiments narrows this information to spatial interactions mediated by H3K27ac and YY1.
Furthermore, CNN models only capture the local topological patterns instead of modeling the underlying
spatial structure of the data.

We propose integrating 3D genome organization data with the existing histone mark signals using a
graph-based deep neural network to predict gene expression. Figure 1 summarizes our overall approach,
which is guided by the following desiderata. First, unlike previous methods, our model incorporates the
genome-wide global interaction information using the Hi-C data. Second, we use a graph convolutional
neural network (GCNN) to capture the underlying spatial structure. GCNNs are particularly well-suited
to representing spatial relationships, as the Hi-C map can be represented as an adjacency matrix of an
undirected graph G ∈ {V,E}. Here, V nodes represent the genomic regions and E edges represent their
interactions. Finally, we perform an interpretation of the GCNN model that quantifies the relative impor-
tance of the underlying biological regulatory factors driving the model’s predictions for each gene. We use
the GNNExplainer method [29] that highlights not only the important node features (histone modifications)
but also the important edges (long-range interactions) that contribute to determining a particular gene’s pre-
dicted expression. In this paper, we apply our method to two cell lines – GM12878 (lymphoblastoid) and
K562 (myelogenous leukemia) – and demonstrate that our model outperforms state-of-the-art deep learning
models. More importantly, we show that our framework allows biologists to tease apart the cumulative ef-
fects of different regulatory mechanisms at the genic level. Table 1 places the proposed framework among
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the state-of-the-art deep learning models and lists the properties of each model. To summarize: (1) Our
GCNN model performs gene expression predictions using the histone modification signals and provides
feature-level interpretation on histone modifications similar to previous methods; (2) it innovates by incor-
porating 3D genomic information, capturing the underlying spatial structure, and highlighting the important
edge-level features representing the long-range interactions.

2 Methods
Graph convolutional neural networks (GCNNs) Graph convolutional neural networks (GCNNs) are a
generalization of convolutional neural networks (CNNs) to graph-based relational data that is not natively
structured in Euclidean space [30]. Due to the expressive power of graphs, GCNNs have been applied
across a wide variety of domains, including traffic flow prediction [31], recommender systems [32], and
social networks [33]. The prevalence of graph-based datasets in biology has made these models a popular
choice for tasks like modeling protein-protein interactions [34], stem cell differentiation [35], and chemical
reactivity for drug discovery [36].

Although there are many variations of GCNNs [37, 38], we use the GraphSAGE formulation [39]. We
use this method for its relative simplicity and its capacity to learn generalizable, inductive representations not
limited to a specific graph. The input to the model is represented as a graph G ∈ {V,E}, with nodes V and
edgesE, and a corresponding adjacency matrix A ∈ RN×N [30], whereN is the number of nodes. For each
node v, there is also an associated feature vector xv. The goal of the network is to learn a state embedding
hKv ∈ Rd for v, which is obtained by aggregating information over v’s neighborhood K times. Here, d is
the dimension of the embedding vector. This state embedding is then fed through a fully-connected network
to produce an output ŷv, which can then be applied to downstream classification or regression tasks.

Within this framework, the first step is to initialize each node with its input features. In our case, the
feature vector xv ∈ Rm is obtained from the ChIP-seq signals corresponding to the five (m = 5) core
histone marks (H3K4me1, H3K4me3, H3K9me3, H3K36me3, and H3K27me3) in our dataset:

h0
v = xv (1)

Next, to transition from the (k − 1)th layer to the kth hidden layer in the network for node v, we apply
an aggregation function to the neighborhood of each node. This aggregation function is analogous to a
convolution operation over regularly structured Euclidean data such as images. A standard convolution
function operates over a grid and represents a pixel as a weighted aggregation of its neighboring pixels.
Similarly, a graph convolution performs this operation over the neighbors of a node in a graph. In our case,
the aggregation function calculates the mean of the neighboring node features:

hkN (v) =
∑

u∈N (v)

hk−1u

|N (v)|
(2)

Here, N (v) represents the adjacency set of node v. To retain information from the original embedding,
we update the node’s embedding by concatenating the aggregation with the previous layer’s representation.
Next, as done in regular convolution, we take the matrix product of this concatenated representation with a
learnable weight matrix to complete the weighted aggregation step. Finally, we apply a non-linear activation
function, such as ReLU, to capture the higher-order non-linear interactions among the features:

hkv = σ
(
Wk

[
hkN (v)||h

k−1
v

])
,∀k ∈ {1, ...,K} (3)

Here, || represents concatenation, σ is a non-linear activation function, and Wk is a learnable weight
parameter. After this step, each node is assigned a new embedding. After K iterations, the node embedding
encodes information from the neighbors that are K-hops away from that node:
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zv = hKv (4)

Here, zv is the final node embedding after K iterations. For our model, we formulate gene expression
prediction as a binary classification task with classes c ∈ {0, 1}, corresponding to whether the gene is either
off/inactive (c = 0) or on/active (c = 1). Thereafter, we feed the learned embedding zv into a fully connected
network and output a prediction ŷv for each target node using a Softmax layer to compute probabilities for
each class c. Finally, we use the true binarized gene expression value yv ∈ R{0,1} associated with the gene
in each node to train the model using the negative log likelihood (NLL) loss. The overall model architecture
is summarized in Figure 2.

Interpretation of GCNN model Neural networks have sometimes been criticized for being “black box”
models, such that no insight is provided into how the model arrives at its predictions. Most graph-based
interpretability approaches either approximate models with simpler models whose decisions can be used
for explanations [40], or they use attention mechanism to identify relevant features in the input that guide
a particular prediction [41]. In general, these methods, along with gradient-based approaches [42, 43]
or DeepLift [44], focus on the explanation of important node features and do not incorporate structural
information of the graph. However, a recent method called Graph Neural Net Explainer (or GNNExplainer)
[29], given a trained GCN, can identify a small subgraph as well as a small subset of features that are crucial
for a particular prediction. The authors demonstrate its interpretation capabilities on simulated graphs,
MUTAG [45], and graphs obtained from Reddit discussion forums.

We apply GNNExplainer to our GCNN model to ensure that our model makes interpretable predictions
based on the underlying biological features. GNNExplainer maximizes the mutual information between the
probability distribution of the model’s class predictions over all nodes and the probability distribution of the
class predictions for a particular node conditioned on some fractional masked subgraph of neighboring nodes
and features. Subject to regularization constraints, GNNExplainer jointly optimizes the fractional node and
feature masks, determining the extent to which each element informs the prediction for a particular node.

Specifically, given a node v, the goal is to learn a subgraph Gs ⊆ G and a feature mask Xs = {xj |
vj ∈ Gs} that are the most important in driving the full model’s prediction of ŷv. To achieve this objective,
the algorithm learns a mask that maximizes the mutual information (MI) between the original model and the
masked model. Mathematically, this objective function is as follows:

max
Gs

MI(Y, (Gs, Xs)) = H(Y )−H(Y | Gs, Xs) (5)

where H is the entropy of a distribution. Since this is computationally intractable with an exponential
number of graph masks, GNNExplainer optimizes the following quantity using gradient descent:

min
M,N
−

C∑
c=1

1{y=c} log(Pφ(Y = y|G = Ac � σ(M), X = Xc � σ(N)) (6)

where c represents the class, Ac represents the adjacency matrix, M represents the subgraph mask, and
N represents the feature mask. The importance scores of the nodes and features are obtained by applying
the sigmoid function to the subgraph and feature masks, respectively. Finally, the element-wise entropies of
the masks are calculated and inserted as regularization terms into the loss function. Therefore, in the context
of our model, GNNExplainer learns which genomic regions (via the subgraph mask) and which features (via
the feature mask) are most important in driving the model’s predictions.

3 Experimental Setup
Overview of model inputs Our GCNN model requires the following information: (1) Interactions be-
tween the genomic regions (Hi-C contact maps); (2) Histone mark signals representing the regulatory signals
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Figure 2: Overview of the GCNN model architecture. The datasets used in our model are Hi-C counts,
ChIP-seq signals, and RNA-seq counts. A binarized adjacency matrix is produced from the Hi-C maps and
converted into a graph. The nodes in the graph are annotated with features from the ChIP-seq datasets. Two
graph convolutions, each followed by ReLU, are performed. The output from this module is fed into three
dense layers (with a dropout of 0.5) to yield a binarized predicted expression level.

(ChIP-seq measurements); (3) Expression levels for each gene (binarized RNA-seq counts). For each gene
in a particular region, the first two datasets are the inputs into our proposed model, whereas gene expression
is the predicted target. We model the task as a classification problem by binarizing gene expression as 0
(off) or 1 (on) using median gene expression values. Our reasons for adopting this approach are as follows:
(1) To demonstrate proof of principle that the task can be modeled as a graph convolutional neural network
with a built-in interpretive mechanism; (2) To ensure consistency with previous studies that also binarize
gene expression so that our results can be easily compared [22, 23, 28].

Data preprocessing We focused on two Tier 1 human cell lines as designated by ENCODE: (1) GM12878,
a lymphoblastoid cell line with a normal karyotype, and (2) K562, a myelogenous leukemia cell line. For
each of these cell lines, we accessed RNA-seq expression datasets as well as ChIP-Seq signal datasets for
five uniformly profiled histone marks from the REMC repositories [46]. These histone marks include the
following: (1) H3K4me1, associated with enhancer regions; (2) H3K4me3, associated with promoter re-
gions; (3) H3K9me3, associated with heterochromatin; (4) H3K36me3, associated with actively transcribed
regions; and (5) H3K27me3, associated with polycomb repression. We chose these marks because of the
wide availability of the relevant data as well as for ease of comparison with previous studies [22, 23, 28].

For chromosome capture data, we used previously published Hi-C maps at 10 kilobase (kb) resolution for
all 22 autosomal chromosomes [47]. We obtained an N x N symmetric matrix, where each row or column
corresponds to a 10 kb chromosomal region. Therefore, each bin coordinate (row, column) corresponds to
the interaction frequency between two respective genomic regions. We applied VC-normalization on the
Hi-C maps. In addition, because chromosomal regions located closer together will contact each other more
frequently than regions located farther away simply due to chance (rather than due to biologically significant
effects), we made an additional adjustment for this background effect. Following Sobhy et al. [48], we took
the medians of the Hi-C counts for all pairs of interacting regions located the same distance away and used
this as a proxy for the background. We subtracted the appropriate median from each Hi-C bin and discarded
negative values.
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Graph construction and data integration We represented each genomic region with a node and con-
nected edges between it and the nodes corresponding to its neighbors (bins with non-zero entries in the
adjacency matrix) to construct the graph. Due to the large size of the Hi-C graph, we subsampled neighbors
to form a subgraph for each node that we fed into the GCNN model. While there are methods to perform
subsampling on large graphs using a random node selection approach (e.g. [49]), we used a simple strat-
egy of selecting the top j neighbors with the highest Hi-C interaction frequency values. We empirically
selected the value j = 10 for the number of neighbors. Smaller number of neighbors (i.e., j = 5) resulted
in decreased performance, while selecting more neighbors proved prohibitive due to memory constraints.

To integrate the Hi-C datasets together with the RNA-seq and ChIP-seq datasets, we obtained the average
ChIP-seq signal for each of the five core histone marks over the chromosomal region corresponding to
each node. In this way, a feature vector of length five was associated with each node. For the RNA-
seq data, we took each gene’s transcriptional start site (TSS) and assigned it to the node corresponding
to the chromosomal region in which the TSS is located. Since we formulated the task as a classification
problem, we binarized the gene expression by taking the median as a cutoff, consistent with previous studies
[22, 23, 28]. If multiple genes were assigned to the same node, we took the mode of the binarized expression
level. If no genes were assigned to a node, we set the expression level to a value > 1. During the training
phase, we applied a mask so that the model only made predictions on nodes with expression values of zero
or one. Finally, we assigned 70% of the nodes to the training set, 15% to the the validation set, and 15% to
the testing set.

Model architecture and training The final model architecture is represented in Figure 2. Here, the
first layer of the model performs a graph convolution on the initial feature embeddings with an output
embedding size of 256, followed by application of ReLU, a non-linear activation function. The second layer
of the model performs another graph convolution with the same embedding size of 256 on the transformed
representations, again followed by application of ReLU. Next, the output is fed into three successive linear
layers of sizes 256, 256, and 2, respectively. A regularization step is performed by using a dropout layer
after the first linear layer with probability 0.5. Applying Softmax function to the final output yields the
probabilities assigned to each of the two classes. These probabilities are fed into a negative log likelihood
(NLL) loss function, which is then minimized via ADAM, a stochastic gradient descent algorithm [50]. We
used the PyTorch Geometric package [51] to implement our GCNN framework.

Hyperparameter tuning We recorded the loss curves for the training and validation sets over 1000
epochs, by which time the model began to overfit. We performed hyperparameter tuning over the following
grid of values and selected the optimal hyperparameters that gave the best AUC score performance on the
validation set: number of graph convolution layers: {1, 2}, size of embedding layers: {16, 128, 256, 384},
and number of fully connected layers: {1, 2, 3}.
Baselines models We compared our GCNN model with the following deep learning baselines:
• Multi-layer perceptron (MLP): A simple MLP comprised of three fully-connected layers. In this

framework, the model predictions for each node do not incorporate feature information from the
node’s neighbors.
• DeepChrome: A convolutional neural network developed by Singh et al. [22]. This model takes a

region of +/- 5000 bp about the TSS of each gene and divides it into 100 bins. Each bin is associated
with five channels, which correspond to the ChIP-seq signals of the same five core histone marks in
the present study. A standard convolution is applied to the channels, followed by linear layers.
• AttentiveChrome: A long-short term memory (LSTM) network with attention layers achieving state-

of-the-art performance and developed by Singh et al. [23]. This model takes a region of +/- 5000 bp
about the TSS of each gene and divides it into 100 bins. Each of these genes is feature annotated
with the ChIP-seq signals of the five core histone marks used in the present study. An LSTM is then
used to encode the bin features. From there, an attention layer is applied to the bins for each region, a
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Figure 3: Comparison of AUC and F1 scores for all models. GCNN model gives state-of-the-art perfor-
mance for classifying genes as on/active or off/inactive. (a) For GM12878, the AUC score of our model is
higher than MLP and DeepChrome baselines and comparable to AttentiveChrome. (c) For K562, the GCNN
model achieves the highest AUC score outperforming all the baselines. (b,d) When using F1 scores as the
evaluation metric, the GCNN model outperforms all the baseline models for both cell lines.

second attention layer is applied to the histone mark features, and finally, the output is fed through a
linear layer.

Note that while the DeepChrome and AttentiveChrome baselines divide the genomic regions into smaller
100-bp bins, our GCNN framework and MLP baseline average the histone modification signals over the
entire 10 kb region. Therefore, the difference between the MLP and the GCNN performances can be viewed
as a proxy for the importance of including information from long-range, regulatory interactions for similarly
processed inputs. We report the classification performance of the GCNN model as well as the baseline
models by using the area under the ROC curve (AUC) and F1 scores.

4 Results
GCNN model gives state-of-the-art performance for gene classification We compare the classification
performance of the GCNN with the baseline models for two cell lines: GM12878 (lymphoblastoid cells) and
K562 (myelogenous leukemia cells) in Figure 3. For GM12878, the AUC score of our model outperforms
that of the multi-layer perceptron (MLP) and DeepChrome baselines and is comparable to AttentiveChrome.
For K562, the GCNN model achieves the highest AUC score, outperforming all baselines. Additionally, our
AUC score for K562 (0.916) is comparable to that reported by Zeng et al. [28] (0.91). Their model integrated
histone modification signals with spatial information from Hi-ChIP data. We could not compare scores for
GM12878 as they do not provide Hi-ChIP data for the cell line to run their model. Finally, when using
F1 scores as the evaluation metric, we observe that our GCNN model outperforms all the baseline models
for both cell lines. These results suggest that including spatial information can improve gene expression
prediction performance over methods solely using histone modifications as input.
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Figure 4: Model explanations for genes SIDT1 and AKR1B1. For SIDT1: (a) The subgraph of neighbor
nodes for SIDT1, designated as node 136736 (yellow circle), is displayed. The size of each neighbor node
correlates with its predictive importance as determined by GNNExplainer. Nodes in red denote regions
corresponding to known enhancer regions regulating SIDT1 [52](note that multiple interacting fragments
can be assigned to each node, see Supplementary Table S1). All other nodes are displayed in blue. Nodes
with importance scores corresponding to outliers have been removed for clarity. (b) The scaled feature
importance scores for each of the five core histone marks used in this study are displayed in the graph. For
AKR1B1 (displayed in a manner similar to SIDT1): (c) The subgraph of neighbor nodes and their relative
importance scores, and (d) the relative feature importance scores for each of the five core histone marks are
displayed.

Interpretation of GCNN model highlights long-range interactions and histone modification profiles
To determine if our model makes predictions based on reasonable biological principles, we apply GNNEx-
plainer to our model predictions. For GM12878, a lymphoblastoid cell line, we selected two genes, SIDT1
and AKR1B1, two of the most highly expressed genes in our dataset. These genes have also been shown to
be controlled by several long-range promoter-enhancer interactions [52].

SIDT1 gene encodes a transmembrane dsRNA-gated channel protein and is part of a larger family of
proteins necessary for systemic RNA interference [53, 54]. This gene has also been implicated in chemore-
sistance to the drug gemcitabine in adenocarcinoma cells [53]. It is located on chromosome 3: 113532296-
113629579 bp and is known to be regulated by at least three chromosomal regions [52, 54]. In Figure 4(a),
we show that for SIDT1, the model makes use of all three genomic regions known to have regulatory ef-
fects by assigning high importance scores to those nodes (indicated by the size of the node). The regions
associated with each node are provided in Supplementary Table S1. In addition, in Figure 4(b), we plot
the importance scores assigned to the histone marks (node features) that are most important in driving the
model’s predictions. From the graph, it is apparent that H3K4me1 and H3K4me3 are the two most important
features in determining the model’s prediction. This histone mark profile has been associated with flanking
TSS sites in expressed genes [46, 55].
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AKR1B1 gene encodes an enzyme that belongs to the aldo-keto reductase family. It catalyzes the re-
duction of aldehydes and ketones and is involved in glucose metabolism [54]. In addition, it has also been
identified as a key player in complications associated with diabetes [54, 56]. It is located on chromosome 7:
134442350-134459239 bp and is known to be regulated by at least two chromosomal regions [52]. As seen
in Figure 4(c),the model strongly bases its predictions for AKRB1 on both of the regions known to have reg-
ulatory effects (location information in Supplementary Table S1). In Figure 4(d), we show that H3K36me3
and H3K4me1 are the two histone marks with the highest scaled importance scores. This chromatin state
signature is correlated with genic enhancers of highly expressed genes [46].

To confirm that the node importance scores obtained from GNNExplainer do not merely reflect the
relative magnitudes of the Hi-C counts or the distances between genomic regions, we investigated the re-
lationships among the Hi-C counts, genomic distances, and scaled importance scores for both genes (Sup-
plementary Figures S1 and S2). We observe that the scaled importance scores do not correspond to the
Hi-C counts or the pairwise genomic distances. For example, for SIDT1, the three experimentally validated
interacting nodes achieve the highest importance scores (10, 9.55, and 7.73). However, they do not corre-
spond to the regions with the highest Hi-C counts (154.78, 412.53, and 170.55 for each of the three known
regulatory regions while the highest count is 602.84). In addition, although they are close to the SIDT1
gene region (40, 20, and 30 kbp away), there are other nodes at the same or closer distances that do not have
promoter-enhancer interactions. Therefore, we show that by modeling not only the histone modifications
but also the spatial configuration of the genome, the GCNN model infers connections that could serve as
important hypothesis driving observations for gene regulatory experiments.

5 Discussion
We present a graph-based deep learning model that integrates both local and long-range epigenetic data
using a graph convolutional neural network framework to predict gene expression. We demonstrate its state-
of-the-art performance for the gene expression prediction task, outperforming the baselines on the GM12878
and K562 cell lines. We also determine the relative contributions of histone modifications and long-range
interactions for two genes, showing that our model recapitulates known experimental results in a biologically
interpretable manner.

With respect to future work, we plan on applying our framework on additional cell lines as high-quality
Hi-C data sets become available. Incorporating other features, such as promoter sequence, would also be
natural extensions. Another useful modification would be to incorporate weights corresponding to each
node’s Hi-C interaction frequency. One avenue of particular importance would be to develop more robust
methods for interpreting GCNNs. For example, while the GNNExplainer model is a theoretically sound
framework and yields an unbiased estimator for the importance scores of the subgraph nodes and features,
there is variation in the interpretation scores generated over multiple runs. Furthermore, with larger GC-
NNs, the optimization function utilized in GNNExplainer is challenging to minimize in practice. For some
iterations, the importance scores converge with little differentiation and the method fails to arrive at a com-
pact representation. This may be due to the relatively small penalties the method applies with respect to
constraining the optimal size of the mask and the entropy of the distribution. We plan to address this issue
in the future by implementing more robust forms of regularization.

In summary, our model demonstrates proof-of-principle for using GCNNs to predict gene expression
using both local epigenetic features and long-range spatial interactions. Interpretation of this model allows
us to pose plausible biological explanations of the key regulatory factors driving gene expression. Under-
standing how gene expression is regulated through various mechanisms is critical to advancing fundamental
science and discovering therapeutic interventions for diseases associated with gene misregulation.
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Supplementary Information

Gene Interacting Fragment Coordinates Node Identifier Node Coordinates

SIDT1

chr3:113212739-113215893 60557 chr3:113209241-113219241
chr3:113228501-113232053 60558 chr3:113219241-113229241
chr3:113228501-113232053 60559 chr3:113229241-113239241

60560 chr3:113239241-113249241
60562 chr3:113259241-113269241
60563 chr3:113269241-113279241
60564 chr3:113279241-113289241
60565 chr3:113289241-113299241
60566 chr3:113299241-113309241

AKR1B1

136738 chr7:134273323-134283323
chr7:134293046-134298798 136739 chr7:134283323-134293323
chr7:134293046-134298798 136740 chr7:134293323-134303323

136741 chr7:134303323-134313323
136744 chr7:134333323-134343323
136745 chr7:134343323-134353323
136746 chr7:134353323-134363323
136747 chr7:134363323-134373323
136750 chr7:134393323-134403323
136751 chr7:134403323-134413323

Table S1: Node coordinates for SIDT1 and AKR1B1. The second column lists the regulatory fragments
that interact with each gene as detailed in Jung et al. [52]. The third and fourth columns are the node
identifiers and chromosome coordinates for all of the gene’s neighbor nodes, including both nodes that
contain interacting fragments and those that do not.
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Figure S1: Relationships among scaled importance scores, genomic distances, and Hi-C counts for all
SIDT1 neighbors. Nodes corresponding to experimentally validated interacting fragments are denoted in
red and all others are denoted in blue. (a) Scaled importance score versus experimental interaction. Exper-
imentally validated interacting fragments are ranked higher on average than non-interacting fragments. (b)
Hi-C counts versus experimental interaction. Hi-C counts by themselves are not sufficient to explain the
presence of experimentally validated interactions. (c) Genomic distance versus experimental interaction.
Genomic distance does not correlate with experimentally validated interactions. (d) 3D plot displaying the
relationships among scaled importance scores, genomic distances, and Hi-C counts.
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Figure S2: Relationships among scaled importance scores, genomic distances, and Hi-C counts for all
AKR1B1 neighbors. Nodes corresponding to experimentally validated interacting fragments are denoted
in red and all others are denoted in blue. (a) Scaled importance score versus experimental interaction.
Experimentally validated interacting fragments are ranked higher on average than non-interacting fragments.
(b) Hi-C counts versus experimental interaction. Hi-C counts by themselves are not sufficient to explain the
presence of experimentally validated interactions. (c) Genomic distance versus experimental interaction.
Genomic distance does not correlate with experimentally validated interactions. (d) 3D plot displaying the
relationships among scaled importance scores, genomic distances, and Hi-C counts.
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