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Abstract 17 

Patterns of disturbance in Sierra Nevada forests are shifting as a result of changing climate 18 

and land uses. These changes have underscored the need for a monitoring system that both 19 

detects disturbances and attributes them to different agents. Addressing this need will aid 20 

forest management and conservation decision-making, potentially enhancing forests’ 21 

resilience to changing climatic conditions. In addition, it will advance understanding of the 22 

patterns, drivers, and consequences of forest disturbance in space and time. This study 23 

proposed and evaluated an enhanced method for disturbance agent attribution. Specifically, 24 

it tested the extent to which textural information could improve the performance of an 25 

ensemble learning method in predicting the agents of disturbance from remote sensing 26 

observations. Random Forest (RF) models were developed to attribute disturbance to three 27 

primary agents (fire, harvest, and drought) in Stanislaus National Forest, California, 28 

U.S.A., between 1999 and 2015. To account for spectral behavior and topographical 29 

characteristics that regulate vegetation and disturbance dynamics, the models were trained 30 

on predictors derived from both the Landsat record and from a digital elevation model. The 31 

predictors included measurements of spectral change acquired through temporal 32 

segmentation of Landsat data; measurements of patch geometry; and a series of landscape 33 

texture metrics. The texture metrics were generated using the Grey-Level Co-Occurrence 34 

Matrix (GLCM). Two models were produced: one with GLCM texture metrics and one 35 

without. The per-class and overall accuracies of each model were evaluated with out-of-bag 36 

(OOB) observations and compared statistically to quantify the contribution of texture 37 

metrics to classification skill. Overall OOB accuracy was 72.0% for the texture-free model 38 

and 72.2% for the texture-dependent model, with no significant accuracy difference between 39 

them. Spatial patterns in prediction maps cohered with expectations, with most harvest 40 

concentrated in mid-elevation forests and fire and stress co-occurring at lower elevations. 41 
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Altogether, the method yielded adequate identification of disturbance and moderate 42 

attribution accuracy for multiple disturbance agents. While textures did not contribute 43 

meaningfully to model skill, the study offers a strong foundation for future development, 44 

which should focus on improving the efficacy of the model and generalizing it for systems 45 

beyond the Central Sierra Nevada.46 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2020. ; https://doi.org/10.1101/2020.11.23.394221doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.394221
http://creativecommons.org/licenses/by-nc-nd/4.0/


 1 

1. Introduction 47 

Disturbance regulates the composition and structure of temperate forests by altering 48 

processes of vegetation growth, death, decomposition, and regeneration (Turner 2010).  49 

Disturbance agents interact with pre-disturbance conditions to produce variable effects 50 

with profound consequences for post-disturbance regeneration (Collins and Roller 2013, 51 

Coop et al. 2016, Shive et al. 2018), as well as for carbon storage, water cycling, timber 52 

productivity, wildlife habitat, and other ecological goods and services that forests provide. 53 

 Consider three examples. In the highest-intensity regions of a wildfire, living trees 54 

of all age classes may be carbonized or left as standing or downed deadwood, while organic 55 

material is consumed from the surface through much of the root zone (Cochrane and Ryan 56 

2009, Perry et al. 2011). On the lower-intensity margins, fire may thin the understory or 57 

selectively kill weakened individuals and more vulnerable species, freeing resources that 58 

enable mid- to late-seral species to release (Braziunas et al. 2018). A clear-cut harvest, in 59 

turn, abruptly removes most or all tree cover, leaving few or no standing stems (Franklin et 60 

al. 2002, Tappeiner et al. 2015). Post-harvest regeneration must begin from “the ground 61 

up,” via an existing seedbank or artificial seeding or planting. On the other hand, some 62 

forest disturbances are less abrupt. Mortality due to desiccation stress or beetle infestation 63 

typically unfolds over months or years, often with species or age-class selectivity. 64 

Infestations yield relatively slow declines in chlorophyll canopy content, frequently yielding 65 

distinctive “red” and “gray” phases of decline, and standing dead stems may remain on site 66 

for many years (Ciesla 2000). When salvage logging is not applied, much of the nutrient 67 

stock may also be retained on site, as dead stems fall and decompose, but the site may face 68 

an increased wildfire risk (Tappeiner et al. 2015, Larvie et al. 2018). 69 

From a theoretical perspective, what constitutes a disturbance, and how 70 

disturbances ought to be differentiated from other kinds or degrees of perturbation that 71 
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affect biological communities, have proven thorny questions to answer (Sousa 1984). 72 

Disturbances are often labeled “natural” (e.g., fire, windthrow, flood, pest infestation, 73 

drought) or “anthropogenic” (e.g., biological invasion, forest management treatment, 74 

fragmentation, roadcut, plantation-conversion) (Dale et al. 2001, Turner and Gardner 75 

2015). However, insisting on a sharp line between these categories is unrealistic. In the 76 

western United States, as in other parts of the world, the legacies of indigenous landscape 77 

management practices likely cannot be disentangled from the region’s “natural” fire regime 78 

(Conedera et al. 2009, Trauernicht et al. 2015). Equally, anthropogenic climate change 79 

appears to be influencing “natural” disturbance processes such as desiccation stress and 80 

dieback in western U.S. forests (Clark et al. 2016). 81 

Two further problems beset theoretical characterizations of disturbance. First, 82 

without some qualification, the concept implies a possibility of stasis that rarely occurs in 83 

natural systems (Connell and Sousa 1983, Sousa 1984). Many biological communities 84 

readily shift among a set of alternative stable states (Beisner et al. 2003), or even 85 

alternative transient states (Fukami and Nakajima 2011). In the absence of an objective 86 

way to identify where a system lies within its alternative-state frontier at any moment, it is 87 

hard to say when a perturbation is disruptive enough to qualify as a disturbance. Second, 88 

disturbance agents often interact: to cite one example, drought stress can inhibit trees’ 89 

defenses against infections and parasites, in addition to rendering them more vulnerable to 90 

fire. (Anderegg et al. 2015, Johnstone et al. 2016, Seidl and Rammer 2017, Simler et al. 91 

2018). To attempt to differentiate particular agents as proximate or ultimate causes of 92 

disturbance often seems more a hermeneutic exercise than an empirical one. 93 

Considering these difficulties, while acknowledging that disturbance is nevertheless 94 

a useful way to describe a class of environmental phenomenon, this paper holds with the 95 

idea that disturbance “lies near one extreme of the continuum of perturbations that affect 96 
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organisms” (Sousa 1984). It also assumes, sec. Peters et al. (2011), that an adequate 97 

description of a given disturbance needs to account for at least: (1) the environmental 98 

agent(s) of disturbance (“drivers”), (2) structural and functional characteristics of the 99 

system prior to the disturbance (“initial system properties”), and (3) interactions between 100 

the first two components that give rise to physical, chemical, and biological mechanisms of 101 

change (“mechanisms”). An adequate description of disturbance should also consider the 102 

consequences explicitly. The outcomes of forest disturbance can include vegetation 103 

morbidity and mortality in the short-term and changes in age class, species composition 104 

and dominance, hydrologic function, or ecosystem state (among others) in the long-term. 105 

For this paper’s purposes, I take forest disturbance to mean a discrete application of energy 106 

to, or expenditure of energy within, a forested landscape that results in mortality, 107 

morbidity, or displacement of vegetation and that opens opportunities for the establishment 108 

of new individuals. I am primarily concerned with disturbances observable at the hectare 109 

scale (10,000 m2) and larger, because of size of the area of study (~3600 km2) and the spatial 110 

resolution of the observations used (~900 m2). 111 

 112 

1.1. Forest disturbance and climate change  113 

A growing body of evidence suggests that patterns of disturbance in the forests of 114 

the Sierra Nevada of California are shifting (Breshears et al. 2005, Millar et al. 2007, 115 

Adams et al. 2010, Allen et al. 2010, Cohen et al. 2016). For instance, timber harvesting in 116 

national forests has decreased since the 1970s, while the incidence of wildfire and pest 117 

infestation has increased (Oswalt et al. 2019). In the Sierra Nevada, desiccation stress was 118 

widespread during the 2012–2015 drought, but it was also attended in some areas, such as 119 

Sequoia & Kings Canyon National Parks, by severe outbreaks of western and mountain 120 

pine beetles (Larvie et al. 2018).  121 
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 So far, one consistent net effect of these shifts is high tree mortality (Potter 2017, 122 

Crockett and Westerling 2018, Fettig et al. 2019). The new dynamics may also be inducing 123 

species shifts and biodiversity losses (Paz-Kagan et al. 2017), and they could drive the 124 

replacement of forests by non-forest land cover types, such as shrubland or meadow 125 

(Thorne et al. 2017, 2018). Some have projected that these trends will continue as a result 126 

of climate change and anthropogenic activity, with consequent impacts on the services that 127 

currently forested landscapes provide. 128 

 Given these trends, advancing understanding of the patterns, drivers, and 129 

consequences of forest disturbance in space and time is a research priority (Trumbore et al. 130 

2015, Johnstone et al. 2016). McDowell et al. (2015) note a “lack of a comprehensive 131 

monitoring system” that can both identify terrestrial disturbances and attribute them to 132 

specific agents. Filling this gap would help forest resource managers understand how 133 

forests respond to changing climatic conditions. In addition, reliable quantification of 134 

historical and emerging disturbances will help to improve the skill of empirical models of 135 

spatial pattern, population dynamics, forest regeneration, carbon storage, and water 136 

cycling. In the long run, this effort could also improve the prospects for quantitative 137 

description of ecological disturbance in the context of alternative stable (or transient) states 138 

by improving the resolution of pre- and post-disturbance baselines. Finally, it will support 139 

strategies for conserving, restoring, or adaptively transitioning forests in areas facing 140 

increasing vulnerabilities to various agents of disturbance (Millar et al. 2007, Hansen and 141 

Turner 2019).  142 

 143 

1.2. Review of remote sensing methods for forest disturbance detection and attribution 144 

 Over the past decade, efforts to detect and attribute forest change have proliferated. 145 

However, the field has yet to settle on a set of approaches that produce reliable estimates 146 
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that can be compared across disturbance regimes or regions. The field currently comprises a 147 

somewhat incongruent set of algorithms, satellite and aerial monitoring platforms, and 148 

field assessment protocols. The USDA Forest Service’s Forest Inventory and Analysis (FIA) 149 

program provides data on most classes of forest-disturbance agent, but only across a 150 

network of sampling plots (Schroeder et al. 2014). In California, the dataset extends back to 151 

2001, with repeat surveys conducted on each plot approximately once a decade (Christensen 152 

et al. 2016). This relative infrequency, along with the FIA’s policy of obscuring the precise 153 

locations of most sample plots, substantially limits the data’s suitability for quantifying 154 

spatially continuous change. Aerial insect and disease detection surveys are similarly 155 

discontinuous and coarsely resolved in space and time. In response to these limitations, 156 

researchers and managers have increasingly turned to satellite remote sensing methods for 157 

their ability to capture a wide range of spatial and temporal variability across large regions. 158 

 The history of remote sensing methods for forest change detection extends at least 159 

as far as the 1920s, when an entomology study analyzed oblique aerial photography to 160 

identify spruce budworm mortality in Canadian spruce forests (Ciesla 2000). This process 161 

was improved substantially by a double-sampling approach developed in the 1950s and 162 

1960s, in which tree mortality estimates were made through stereoscopic interpretation of a 163 

large sample of photographs and scaled up through statistical comparison with a smaller 164 

sample of ground plots (Heller et al. 1959, Wear et al. 1966). Double sampling allowed for 165 

statistically valid estimations of canopy loss across wide geographic areas (Lund 1997). 166 

With the increasing availability of color and infrared film, researchers and forest managers 167 

also began to exploit spectral information to identify crown fade and red and grey phases of 168 

beetle infestations (Hadfield 1968, Hanson and Lautz 1971). With the launch of the first 169 

civilian Earth-observing satellites, Landsat I in 1972, Geostationary Operational 170 
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Environmental Satellite (GOES-1) in 1975, and the Advanced Very High Resolution 171 

Radiometer (AVHRR) in 1978, remote sensing methods for forest change detection boomed.  172 

 Methods developed early on—and still in widespread use today—derive information 173 

by comparing two or more images made at separate points in time over the same 174 

geographic area. In pre-classification change detection methods, analysts compare the 175 

images’ raw spectral data. In post-classification techniques, each pixel in an image is 176 

assigned to a defined land-cover type, and intertemporal differences are evaluated as 177 

changes in class (Iverson et al. 1989). While post-classification approaches allow for the 178 

integration of multiple data types and can minimize the effects of exogenous atmospheric or 179 

radiometric distortions, they can carry an additional error burden due to information loss in 180 

the classification procedure (Coops et al. 2007). More complex approaches in this category 181 

involve principal component analysis, in which correlated spectral returns are compressed 182 

so that change detection is performed on independent linear transformations of the original 183 

data, and change vector analysis, which decomposes spectral responses into magnitude and 184 

directional components (Fung and Ledrew 1987, Lu et al. 2004, Khorram et al. 2016). In 185 

addition to uncovering dramatic vegetation changes around the world, these two-date 186 

change-detection approaches identified two important requirements for any attempt at 187 

forest change detection. First, special care must be taken to align the images geometrically 188 

and radiometrically as nearly as possible to avoid false-negative change detection as a 189 

result of registration inconsistencies. Second, it is imperative to account for seasonal 190 

change, either through multi-band analysis, index computation, or seasonal compositing of 191 

multiple images, as phenological change can easily be confused with stress-related change, 192 

particularly in visible wavelengths (Khorram et al. 2016).  193 

 Because vegetation disturbance is a dynamic process operating on multiple 194 

timescales, two-date comparison methods carry obvious limitations. In the mid-2000s, a 195 
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suite of algorithms was developed to address this gap; these operate on the unique time 196 

signatures that different directions and magnitudes of vegetation change leave behind 197 

(García-Haro et al. 2001, Potter et al. 2007, Goodwin et al. 2008, Vogelmann et al. 2009, 198 

2012). Such approaches are able to detect either abrupt changes (anomalies) or longer-199 

duration changes (trends) with suitable accuracy for monitoring and management. The 200 

most sophisticated of these is the Vegetation Change Tracker (VCT) (Huang et al. 2010). 201 

This method characterizes the temporal profile of each pixel in a time series stack and 202 

classifies the pixels into one of several types (persistent forest, persistent non-forest, 203 

disturbed forest, or regenerating forest), based on comparisons of absolute change in the 204 

series with predetermined thresholds. Although these improve on two-date methods, as 205 

Kennedy et al. (2010) point out, anomaly-targeted algorithms tend to exclude long-term 206 

trend changes as noise, while trend-targeted algorithms do the same for abrupt anomalies.   207 

 Since 2010, a new generation of algorithms has emerged to disentangle remotely 208 

sensed time series data to capture both abrupt disturbance events and longer-phase trend 209 

change. These temporal segmentation algorithms are summarized in Table 1. 210 

 Although the methods differ somewhat in their implementation, in general they 211 

apply a statistical model, such as linear segmentation, Fourier curve fitting, or quadratic 212 

smoothing, to a time-series stack of remotely sensed data in order to derive information 213 

about each pixel’s spectral trajectory over time. The output is usually an array that 214 

includes a per-pixel estimate of the location, timing, duration, and in some cases, 215 

magnitude of spectral change. Based on these outputs, an analyst can inquire about 216 

patterns of behavior among pixels or among aggregates formed based on the adjacency or 217 

similarity of pixels in one or more dimensions. 218 

 In the U.S., researchers and managers have deployed both two-date image 219 

differencing and the more complex algorithmic approaches in several prominent 220 
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disturbance monitoring programs. Monitoring Trends in Burn Severity (MTBS) uses a two-221 

date procedure on Normalized Burn Ratio (NBR) values from Landsat images to map the 222 

severity of large fires (Eidenshink et al. 2007). The ForWarn system uses Normalized 223 

Difference Vegetation Index (NDVI) anomaly calculated on MODIS data to model 224 

disturbances in near-real-time. However, its coarse spatial resolution (minimum 250 m) 225 

makes it insensitive to finer-scale disturbances, including most management treatments on 226 

public forested lands in the western U.S. (Hargrove et al. 2009). The LANDFIRE 227 

disturbance database resolves 12 disturbance agent classes and dozens of sub-classes at 30-228 

m spatial resolution (Rollins 2009, Vogelmann et al. 2011). The program draws on multiple 229 

algorithmic, remote sensing, and in situ data sources, including MTBS and VCT, but its 230 

evidently incomplete record dates back only to 1999. The North American Forest Dynamics 231 

program has leveraged the VCT algorithm to build a wall-to-wall map of U.S. forest 232 

disturbance across the entire Landsat record at 30-m scale (Goward et al. 2016). 233 

The efforts above have advanced detection of forest disturbance; methods for agent 234 

attribution, on the other hand, remain embryonic. The most reliable approaches require 235 

extensive technician analysis of multiple datastreams, including in situ observations, 236 

management treatment records, and aerial- and satellite-platform sensing (e.g., Schmidt 237 

2014, Cohen et al. 2016). The process is time-intensive and beset with error when multiple 238 

forest types are under investigation, when multiple disturbance agents are active, and 239 

when a site experiences more than one disturbance in the same period of analysis. 240 

Automating this process through empirical modeling may help to reduce time and resource 241 

requirements, in addition to improving accuracy of retrospective analyses and enhancing 242 

the relevance of near-real-time disturbance detection and monitoring. 243 

To date, a limited number of efforts at further automating agent attribution have 244 

been published. The methods in this paper are heavily indebted to these projects. Neigh et 245 
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al. (2014) used multiple indices derived from AVHRR and Landsat products in a decision-246 

tree classification to map insect kill and harvest in northern forests of Wisconsin and 247 

Minnesota. They achieved per-class accuracy of 65–70% and overall accuracy of 72%. 248 

However, the same method applied to forests in the Pacific Northwest yielded inferior 249 

results, indicating a need for further refinement before generalizing across forest types. 250 

Kennedy et al. (2015) combined LandTrendr temporal segmentation of the 1984–2014 251 

Landsat stack with a Random Forest classification approach (Breiman 2001) to map 252 

multiple agent classes in the Pacific Northwest. Oeser and colleagues (2017) applied a 253 

similar approach in Central European temperate forests, applying BFAST temporal 254 

segmentation to identify abrupt forest loss and passing the resulting spatio-temporal 255 

information into a Random Forest classification. They identified harvest, windthrow, 256 

cleared windthrow, and bark beetles to 76–86% accuracy. Schroeder et al. (2017) classified 257 

fire, harvest, conversion, wind, and drought stress with a Random Forest model trained on 258 

VCT and ancillary geophysical variables. Their approach yielded high accuracy (69–86%) 259 

across ten Landsat scenes made over various ecoregions of the United States. Interestingly, 260 

accuracy was higher when information about the timing (year) of disturbance was excluded 261 

from the model. Shimizu et al. (2017) also used Random Forest to classify patches of 262 

contemporaneously disturbed pixels to discriminate anthropogenic forest changes, such as 263 

logging, plantation conversion, and urbanization in Myanmar. Finally, Shimizu et al. (2019) 264 

evaluated the relative effectiveness of several different approaches to disturbance-agent 265 

classification in a South Asian tropical forest: threshold-based detection using one spectral 266 

index, machine-learning methods trained on temporally segmented vegetation index values, 267 

and one machine-learning method trained directly on the Landsat time series without prior 268 

temporal segmentation. They found that direct prediction performed better than 269 

approaches that included temporal segmentation, with considerable savings in complexity 270 
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and computational expenditure, but it remains to be seen whether this approach works as 271 

well as two-stage methods in other forest types.  272 

Clearly, there is enthusiasm for solving the agent-attribution problem, and the early 273 

work suggests that remotely sensed information shows promise for resolving different types 274 

of forest disturbance into distinct classes. But much remains to be done to achieve a 275 

generalizable method. Some key areas for development include:  276 

(1) identifying the most effective combination of spectral bands and indices for 277 

accurate modeling across landscape types;  278 

(2) determining whether a two-stage method (temporal segmentation plus 279 

classification) or a one-stage method (direct classification without temporal 280 

segmentation) consistently yields higher accuracy;  281 

(3) making use of new spectral measurements of solar-induced chlorophyll 282 

fluorescence (SIF), such as the NASA Orbiting Carbon Observatories’ (OCO-2 283 

and OCO-3) SIF products and the Near-Infrared Reflectance of Vegetation 284 

(NIRv) index; and  285 

(4) assessing whether textural information derived from Landsat scenes can improve 286 

classification results. 287 

Here, I address the last two of these prompts by making novel use of NIRV and by testing 288 

the contribution of textural information to agent-attribution accuracy. 289 

 290 

1.3. NIRV  291 

This study marks the first use of NIRV in a change-detection procedure. NIRV 292 

directly measures the fraction of near-infrared reflectance attributable to chlorophyll, 293 

yielding accurate estimates of photosynthesis rate and gross primary production (GPP) 294 

(Badgley et al. 2017, 2019, Wu et al. 2020). NIRV tends to be more sensitive to decreases in 295 
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photosynthetic capacity than other vegetation indices, which offers reason to think that a 296 

model trained on NIRV may improve detection of sublethal phases of stress-related 297 

disturbances (e.g., drought, beetle infestation). 298 

 299 

1.4. Texture 300 

On texture, as this paper’s introduction describes, different agents and intensities of 301 

disturbance leave different structural legacies on forested landscapes. Vegetation structure, 302 

in turn, has been shown to resolve well in textural patterns derived from optical remote 303 

sensing measurements (Wood et al. 2012, Lam et al. 2013). At the most basic level, texture 304 

describes certain spatial properties of a surface—in ordinary experience, these include 305 

properties such as smoothness, coarseness, or sharpness. Quantifying texture for analytic 306 

purposes is a matter of measuring and expressing differences between high and low points 307 

on a surface (z differences in Cartesian space), and how near or far those points are from 308 

one another (x-y differences). Smoother surfaces tend to have smaller x-y-z differences, 309 

while rougher surfaces tend to have larger differences. Smoothness and coarseness are only 310 

two of many relevant textural properties that can be measured statistically from images of 311 

a surface. One widely deployed set of metrics is that derived from the Gray Level Co-312 

occurrence Matrix (GLCM) (Haralick et al. 1973). The GLCM procedure tabulates the 313 

frequency of co-occurrence of pixel brightness values in adjacent pixels using a set of 314 

moving-window comparisons. These frequencies are then used to compute a set of 14+ 315 

distinct measurements of texture.  316 

At the pixel level, GLCM metrics describe second-order statistical properties. First-317 

order information, such as the spectral reflectance intercepted by a sensor and recorded as 318 

pixel values, generally measures physical behavior (reflectance of electromagnetic energy) 319 

or chemical activity (photosynthesis) or a statistically verifiable proxy for the same. GLCM, 320 
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on the other hand, quantifies relationships between pairs of pixels (Hall-Beyer 2017). First- 321 

and second-order metrics tend to be statistically independent of each other and so can 322 

contribute complementary information to landscape analyses. GLCM textures have long 323 

been applied in combination with other variables to improve accuracy of land-use and land-324 

cover classification (Coburn and Roberts 2004). The applicability of GLCM metrics for forest 325 

structure analysis has been demonstrated using both high-resolution (IKONOS) and 326 

moderate-resolution (SPOT, Sentinel-1, ASTER, Landsat) data, though it likely has much 327 

lower utility in land cover applications at spatial resolutions lower than ~50 m per pixel 328 

(Marceau et al. 1990, Ozdemir et al. 2012, Wood et al. 2012).  329 

Textural metrics have the potential to improve disturbance agent attribution 330 

because of the relationships between agent and stand structure on the ground, and between 331 

stand structure and texture in images. These relationships may be especially important in 332 

the Central Sierra Nevada forests evaluated in this study because of the agents that are 333 

most prevalent in the region: fire, drought, insects, and harvest. These tend to leave 334 

visually distinctive and analytically differentiable patterns on the landscape (Fig. 1) and 335 

may contribute decision-enhancing information to an agent-attribution modeling procedure.  336 

 337 

1.5. Motivation 338 

California’s Central Sierra Nevada offers valuable opportunities to study forest 339 

disturbance and its drivers using the emerging remote sensing methods described above. 340 

Observed climatic changes, including warmer winter and spring temperatures, 341 

precipitation shifts from snow to rain, lower peak snowpack depth, and early spring 342 

drydown, have been documented across the region (Vicuna and Dracup 2007). These shifts 343 

are connected to a multitude of forest changes. For example, whitebark pine (Pinus 344 

albicaulis Engelm.) and ponderosa pine (Pinus ponderosa) have experienced widespread 345 
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mortality due to mountain pine beetle, western pine beetle, and desiccation stress (Millar et 346 

al. 2012, Birdsey et al. 2019). The region has also faced compositional shifts and increases 347 

in stem density in mid-elevation coniferous stands, as well as canyon oak regeneration in 348 

stands previously occupied by conifers (Dolanc et al. 2013, 2014).  349 

The site selected for study, Stanislaus National Forest, is an archetype of these 350 

trends. Fire, harvest, thinning, drought, and insect stress have been extensive and well 351 

distributed across elevational gradients over the past three decades. The prevalence of 352 

disturbance makes it a prime site for an attempt at complex disturbance agent attribution. 353 

Indeed, the Forest has been a subject of at least two prior disturbance-detection studies 354 

using LandTrendr and VCT, respectively (Schmidt 2014, Birdsey et al. 2019). Both relied on 355 

manual interpretation of multiple data sources for agent attribution. Schroeder et al.’s 356 

(2017) semi-automated approach using VCT and Random Forest classification included one 357 

Landsat tile that partially overlapped the Forest. Their results showed agent classification 358 

agreement above 90 percent for the Sierra Nevada site, indicating strong potential for this 359 

approach in the region. 360 

The overarching aim of this project was to test whether a Random Forest ensemble 361 

learning method for classifying forest disturbance agents at the 30-m Landsat pixel scale 362 

can be improved by incorporating textural information.  363 

 364 

1.6. Research questions 365 

1. To what extent does the inclusion of textural information improve attribution of the 366 

agents of disturbance in Stanislaus National Forest?  367 

 368 

2. What are the relative contributions of three independent textural metrics to 369 

classification accuracy?  370 
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 371 

1.7. Study objectives 372 

1. Agent-attribution model: Evaluate the capacity of an ensemble learning method 373 

to classify Landsat-derived pixel data according to three agent-based forest 374 

disturbance classes (fire, harvest, stress) and stable forest/non-forest. 375 

2. Texture contribution to accuracy: Assess the per-class and overall accuracy of 376 

texture-free and texture-dependent agent models to evaluate whether a model 377 

with textural metrics is more effective at identifying agents of disturbance than 378 

one without. 379 

3. Variable importance: Determine which predictor variables are most useful for 380 

attributing forest disturbance agents in a Sierra Nevada forest. 381 

 382 

2. Methods 383 

 384 

2.1. Study site 385 

Stanislaus National Forest is a 3,634-km2 federal landscape administered by the 386 

USDA Forest Service on the western slope of the Sierra Nevada in California (Fig. 2). The 387 

forest abuts the northern border of Yosemite National Park and contains three federal 388 

Wilderness areas (Mokelumne, Carson-Iceberg, and Emigrant) to the north and east. The 389 

region’s climate is Mediterranean, with average precipitation around 125 cm (990 cm 390 

equivalent snowfall.) The jurisdiction spans a broad elevational gradient, from 450 m in the 391 

western foothills to over 3350 m near the Sierra crest. The Forest contains more than 1200 392 

km of rivers and streams. Vegetative communities include oak woodlands at lower 393 

elevations, mixed conifer forests at middle elevations, and subalpine vegetative 394 

communities at the highest elevations.  395 
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Since 2000, the Forest has experienced two major wildfires: the 2013–2014 Rim Fire, 396 

which burned 257,314 acres and the 2018 Donnell Fire, which burned 36,450 acres. Forest 397 

ecosystems in the domain are subject to other natural disturbance regimes, such as conifer 398 

beetle eruptions, severe winter wind events, and avalanches. They are also harvested for 399 

merchantable timber and thinned for fire resistance, pest management, species selection, 400 

and site productivity; these operations often register as vegetation loss in change-detection 401 

analyses, but because of forest management practice guidelines, are typically constrained to 402 

clearly delineated areas less than 16 hectares (0.16 km2).  403 

 404 

2.2. Data preparation 405 

2.2.1. Reference data 406 

Ideally, reference data for model training and accuracy assessment would come from 407 

data acquired in the field. However, a consistent, spatially explicit longitudinal record of in 408 

situ disturbance observations does not exist for California, and due to time and cost 409 

constraints I was unable to assemble such a record myself. Instead, I used the Landscape 410 

Fire and Resource Management Planning Tools (LANDFIRE) Disturbance Public Model-411 

Ready Events Geodatabase. In its original form, this dataset comprises a set of polygon 412 

shapefiles demarking the locations, extents, types, and timing of disturbances and 413 

management treatments. The polygons are submitted annually to LANDFIRE, a joint 414 

program of the USDA Forest Service and U.S. Department of the Interior, by contributors 415 

from federal and state resource management agencies, private organizations, and 416 

national/regional fire mapping programs, such as MTBS and CalFire’s Fire and Resource 417 

Assessment Program (FRAP). Data submissions must meet minimum standards for 418 

inclusion, and they are subsequently analyzed for positional accuracy and quality and then 419 

corrected for topological inconsistencies. In the Model Ready Events dataset, the set of 420 
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polygons is reduced to portray one unique event per location per year between 1999 and 421 

2014, using a hierarchical decision procedure. The polygons that comprise the final dataset 422 

are those with the greatest-magnitude impact on vegetation.  423 

Because these data were used for training as well as validation, the model inherits 424 

error from the reference set. However, LANDFIRE currently offers the most extensive and 425 

longest record of disturbances and treatments available for the study area. (The dataset 426 

also offers nearly full coverage of the continental United States, which would aid testing of 427 

the generalizability of the methods in this study in the future). Moreover, with the 428 

exception of data generated by MTBS, the records are created without reliance on Landsat 429 

observations. In the study area, because of the extensive records maintained by CalFire 430 

FRAP, none of the fire event polygons were derived from MTBS. It stands to reason that 431 

the reference set is as independent of the predictor data as is feasible. I considered the 432 

reference set sufficient in light of the fact that this is foremost a proof-of-concept study but 433 

acknowledge that more reliable training and reference data would improve the reliability of 434 

the model.  435 

I converted the polygons to Geotiff raster format and randomly selected 200 sample 436 

points from each of five strata: fire, harvest/treatment, stress, stable forest, and stable non-437 

forest. For each of the disturbed points, I preserved the year reported and the assigned 438 

disturbance agent from LANDFIRE. In some cases, the sampling yielded multiple 439 

disturbances per point during the time interval. When this happened, I selected the 440 

highest-severity disturbance in the set to maintain consistency with the procedure in the 441 

temporal-segmentation algorithm described in §2.2.2 below. The 1000 total sample points 442 

represented three classes of disturbance agent (fire, harvest, stress) and two classes of 443 

stability (stable forest, stable non-forest).  444 

 445 
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2.2.2. Landsat Tier-1 surface reflectance datasets 446 

A flowchart of the remaining analytical steps appears in Fig. 3. The next task was to 447 

generate predictor variables for training the classification model. Using the Google Earth 448 

Engine API (Gorelick et al. 2017), I assembled an image collection of Landsat 5 Thematic 449 

Mapper (TM), Landsat 7 Enhanced Thematic Mapper (ETM+) and Landsat 8 Operational 450 

Land Imager (OLI) datasets acquired over the study area, preprocessed to Tier 1 surface 451 

reflectance. ETM+ and OLI data provide moderate-to-high spatial and temporal resolution 452 

(30 meters per pixel for non-thermal bands on a 16-day return interval). They offer 453 

adequate spectral resolution for vegetation change detection.  454 

 The image collection included all images made during the peak growing season 455 

(June 21 – September 20) in the years between 1999 and 2015, inclusive. Next, to 456 

standardize the ETM+ and OLI data, I applied a slope-intercept harmonization algorithm, 457 

which normalized OLI surface reflectance values to ETM+ values. A detailed discussion of 458 

this procedure is available in Roy et al. (2016). I then applied a masking function to each 459 

image using the pixel-QA band to remove clouds, snow, cloud shadows, and water, in order 460 

to avoid generating outlier band ratio values that could lead to false positive change 461 

detection. The final collection contained 373 images in total, between nine and 31 per year 462 

for an average of 22 images per year.  463 

The next step was to build a summary dataset of annual surface reflectance images. 464 

I computed the medoid value per pixel from the annual subsets of masked image 465 

collections. The medoid is a measure of center that minimizes the vector distance to all 466 

other points in the set. In an odd set in one-dimensional number space, this is the median. 467 

In an even set, in which the median would fall in the interval between two values, the 468 

medoid is constrained to one of the values actually present in the dataset. In this case, the 469 
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medoid computation selected the lower value in the interval. Medoid compositing produced 470 

17 images, one for each year in the study period.  471 

The consequence of this compositing was that subsequent analysis evaluated 472 

interannual change, a significant scaling up from the 16-day temporal resolution of the 473 

original Landsat data. There are tradeoffs in any data selection procedure. While some 474 

information is compressed or lost in generating annual medoids, this process reduces the 475 

error in intertemporal comparison resulting from radiometric differences between images 476 

made at different times of day and year. It also helps to moderate phenological variance 477 

and spectral errors thrown by late snowpack or early snowfall. The aim is to produce a 478 

relatively consistent set of images for comparison, while preserving strong signals of 479 

change. Because disturbance legacies usually remain detectable on a forested landscape for 480 

several years after the event (except when salvage harvest is applied), annual compositing 481 

tends to improve the accuracy of disturbance detection on net (Kennedy et al. 2010). 482 

Finally, I computed three vegetation indices on the medoid spectral values as inputs 483 

to the temporal segmentation procedure (§2.2.3). Dozens of spectral indices have been 484 

proposed for distinguishing vegetation from other forms of land cover (Khorram et al. 2016). 485 

All require computations, typically on combinations of visible and infrared bands, that 486 

amplify the spectral signal of vegetative cover and diminish the signal of non-vegetative 487 

cover. Several indices have been found especially useful in identifying disturbance (Miller 488 

et al. 2009, Neigh et al. 2014b, Potter 2014, McDowell et al. 2015, Senf et al. 2015, Cohen et 489 

al. 2018). The two most often used are the Normalized Difference Vegetation Index (NDVI) 490 

(Rouse et al. 1974) and Normalized Burn Ratio (NBR) (Keeley 2009). However, recent 491 

studies have concluded that a combination of spectral indices enhances disturbance 492 

detection accuracy, likely because no one index fully captures the spectral behavior of a 493 
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landscape in flux. Therefore, in keeping with recent trends toward multi-index 494 

classification, I included three indices: NDVI, NBR, and NIRV (Table 2).  495 

For each index, I scaled the results by 103 to allow the temporal segmentation 496 

algorithm to operate on integer values without losing precision and then inverted the 497 

values so that negative index change would correspond with vegetation loss.   498 

 499 

2.2.3. Disturbance detection through temporal segmentation 500 

The final post-processed index images were used to produce a suite of derivative 501 

change variables, which were later applied as predictors in the agent-attribution 502 

classification model. 503 

LandTrendr (Kennedy et al. 2010, 2018) is one of several algorithms available for 504 

temporal segmentation of time series data. The core of the algorithm is an attempt to create 505 

fitted models of pixels’ spectral behavior. When configured appropriately for the image set, 506 

this process strikes a balance between removing “noisy” interannual variability while 507 

identifying the maximum possible number of significant changes in the pixel’s record. 508 

Operating sequentially on each pixel in the stack of annual medoids, the algorithm returns 509 

a series of straight-line segments joined at vertices where the change in spectral value is 510 

significant enough to be considered an inflection point. The algorithm iteratively generates 511 

simpler models and then selects the model that best fits the original data. 512 

The Google Earth Engine implementation of the LandTrendr algorithm (Kennedy et 513 

al. 2018) was run over each of the three vegetation index collections. The codebase accepts 514 

several user-defined inputs. I constrained the analysis to starting values of NDVI > 120, 515 

NBR > 170, and NIRV > 210. This trimming filtered out values that began below standard 516 

thresholds for vegetation on each index and persisted through the time series as stable non-517 

forest. I also constrained the analysis to compute a maximum of 12 segments. I considered 518 
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any change that did not persist for at least one year beyond the initial detection to be 519 

erroneous. (Fast spectral recoveries in forest remote sensing data are more often a result of 520 

radiometric noise or insufficient cloud/shadow masking than of vegetation vigor (Kennedy 521 

et al. 2010)). I therefore removed vertices where an apparent change returned to starting 522 

value within two years. For fitted model selection, I specified two best-fit criteria: the 523 

algorithm must select the model with the most vertices (again, to detect all changes in the 524 

record), but it must have a p-value within 0.75 of the model with the absolute lowest p.  525 

Illustrations of the model fitting results appear in Fig. 4, which depicts the spectral 526 

behavior of three randomly selected pixels identified, respectively, as “Disturbed”, “Stable 527 

Forest”, and “Stable Non-Forest” through the temporal segmentation procedure. In this 528 

example, the algorithm simplified the shape of the “Disturbed” pixel’s trajectory from 17 529 

segments in the original NIRV returns to 5 in the best-fit model. The fitted model detected 530 

three disturbance events (in 2000, 2001, and 2009), followed by a period of regeneration. 531 

The largest magnitude disturbance occurred between 2000 and 2001 (∆NIRV = 200), with a 532 

duration of one year and a rate of 200/1 = 200. The “Stable Forest” pixel’s trajectory was 533 

reduced to one segment with ∆NIRV = 0. The “Stable Non-Forest” trajectory was simplified 534 

to two segments. Its absolute NIRV values never exceeded the threshold for consideration as 535 

vegetation (NIRV = 210), so the pixel was considered undisturbed. 536 

After finding the best segment fits, several metrics derived from the trajectories 537 

were computed on each pixel, summarized in Table 3. The five-dimensional arrays 538 

containing these values were sliced to include only segments representing negative change 539 

greater than 10 percent, in order to remove periods of stability, periods of vegetation 540 

growth, and low-value outliers. (I make no further inferences about the excluded segments.) 541 

This process operationalized the concept of disturbance as any negative change in the 542 

vegetation index of a pixel greater than 10 percent. I selected the greatest-magnitude 543 
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segment for each pixel. Multidimensional analysis would have exceeded the capacity of the 544 

computing resources I have available, and the greatest-magnitude disturbance on a site 545 

typically has the greatest influence on forest structure and regeneration dynamics. Finally, 546 

I cropped the arrays containing these outputs to a multipolygon shapefile delimiting the 547 

boundaries of Stanislaus National Forest (USDA Forest Service 2019). 548 

 549 

2.2.4. Derived variables 550 

From these outputs, several derivative variables were calculated on each pixel and 551 

on pixel clusters. First, land-cover ternary maps were produced by labeling pixels according 552 

to the three possible trajectory groups identified the temporal segmentation procedure. 553 

Pixels with a detected negative change were labeled “disturbed”; undisturbed pixels with 554 

values persistently above the index vegetation thresholds were labeled “stable forest”; and 555 

undisturbed pixels with values persistently below the index vegetation thresholds as 556 

“stable non-forest.” One ternary map was created for the temporal segmentation results for 557 

each vegetation index, for a total of three maps. 558 

Next, texture metrics were computed to quantify the textural characteristics of 559 

different disturbance classes. Using the “glcmTexture” function in Google Earth Engine 560 

(Gorelick et al. 2017), I calculated 14 GLCM metrics on each of the vegetation index images 561 

(3 indices x 17 years x 14 metrics = 294 GLCM metrics). GLCM proceeds by tallying the 562 

frequency of occurrence of pairs of pixel brightness (“grey-level”) values in a user-defined 563 

neighborhood. The frequencies are normalized to the number of observations to produce 564 

probabilities (Hall-Beyer 2017). These probabilities are then applied in a series of 565 

calculations whose results may be roughly categorized as “edge” metrics and “interior” 566 

metrics. Edge metrics produce higher values for larger and more abrupt differences in 567 
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brightness values in the computing neighborhood. Interior metrics produce higher values 568 

for smaller and more heterogeneous gradients in brightness values.  569 

Of course, edge and interior are highly scale-dependent qualities of an image, as of a 570 

landscape. In a high-resolution image of a forest, a tree crown might be discernable as an 571 

edge, while its constituent branches and leaves compose the interior; in a moderate-572 

resolution image, only the edges of patches might be discernable, and multiple trees then 573 

make up the interior. It is important, therefore, to identify an appropriate scale for GLCM 574 

computation. Owing to the native resolution of Landsat source data and the focus on 575 

disturbance at the hectare scale or greater, I used a square 3x3 pixel window to define the 576 

computing neighborhood, so that each pixel was compared with its eight edge- and corner-577 

adjacent neighbors in the frequency calculations. This produced texture measurements at 578 

the approximately one-hectare patch scale.  579 

GLCM produces 14 distinct metrics, but many of them are correlated. Including 580 

them all in a classification model would produce redundancies that could reduce model skill 581 

and/or distort the evaluation of variable explanatory power (Kim et al. 2009). Based on 582 

guidance in Hall-Beyer (2017), I identified three theoretically independent measures to 583 

apply in the final analysis (Table 4).  584 

Contrast measures the intensity contrast between neighboring pixels and tends to be 585 

a reliable edge metric in vegetated landscapes (Hall-Beyer 2017). Entropy is also often a 586 

fruitful edge metric, particularly in areas with a high heterogeneity of radiometric 587 

intensities, as in disturbed forest with deadfall, and it may be useful for differentiating 588 

structural randomness from more uniform structures (Haralick et al. 1973). Correlation is 589 

an interior metric that captures the prevalence or absence of linear structure. After 590 

computing the texture metrics, I masked out undisturbed pixels and recoded them to a 591 

discrete NA value outside the NIRV range.  592 
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To evaluate possible correlations between the GLCM metrics, the 14 metrics were 593 

paired separately. The Pearson correlation coefficient (r) was computed on all pairs and 594 

reported in a correlation matrix. The three proposed measures were confirmed for inclusion 595 

only if they were uncorrelated or weakly correlated (either p > 0.01 or r < 0.3 for significant 596 

correlations).  597 

Next, in order to exploit the variability in geometric patterns associated with 598 

different disturbance classes, I used a 3x3 moving window segmentation algorithm to group 599 

pixels disturbed in each year into disturbed patches. I then calculated the perimeter, area, 600 

and fractal dimension of each patch. Fractal dimension is effectively an enhanced 601 

perimeter:area ratio, normalized to the expected ratio of a square and then scaled 602 

logarithmically to reduce the metric’s size dependence (ln(0.25 * perimeter) / ln(area)) 603 

(Turner and Gardner 2015).  604 

 605 

  606 
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2.2.5. Ancillary topographical data 607 

The final step in data preparation was to generate geophysical variables to account 608 

for topographical regulation of forest occurrence and disturbance dynamics. The National 609 

Elevation Dataset Digital Elevation Model (DEM) was resampled to 30-m pixel resolution. 610 

Slope, elevation, sine-transformed aspect and cosine-transformed aspect were computed 611 

and draped over the study site (Beers et al. 1966; Schroeder et al. 2017).  612 

 613 

2.3. Random Forest classification model 614 

A Random Forest (RF) procedure (Breiman 2001) was used to empirically model the 615 

occurrence of the four classes of disturbance identified in the reference dataset (fire, 616 

harvest, stress, conversion) and stable forest. RF is a non-parametric modeling framework 617 

that takes randomized bootstrap samples of subsets of predictor and response variables and 618 

uses them to construct an ensemble of many slightly different decision trees. When RF is 619 

used for image classification with a categorical response variable, the end-nodes of these 620 

trees comprise a set of potential classification decisions for each pixel. The procedure makes 621 

a final prediction about the correct class through a majority vote. RF was selected on three 622 

criteria. First was its ability to assimilate potentially highly correlated datastreams 623 

without overfitting and, owing to the majority-vote procedure, with only minor bias 624 

concessions. Second was its value-indifference: because the classification ultimately 625 

depends on decision trees, a variable’s relative value rather than its absolute magnitude 626 

drives the training decision. Incorporating data of widely different magnitudes does not 627 

therefore force model decisions toward predictors with higher absolute values. And third 628 

was its nearly exclusive use in other disturbance agent-attribution modeling approaches. 629 

Two models were developed in R (R Core Team 2014) using the “ModelMap” package 630 

(Freeman et al. 2016), which optimizes ensemble modeling procedures for geospatial 631 
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analysis. The first model was produced without textural variables and the second with 632 

textural variables included. In both instances, I used the 1000 points sampled from the 633 

reference dataset as trainers, with 200 points in each class. In the first model, 22 predictor 634 

variables were used; in the second model, 31 variables were used (Appendix B). The 635 

predictor sets contained true pixel values for the entire domain in the topographic and 636 

ternary variables. The remaining variables contained true values only for disturbed pixels. 637 

In these cases, the non-disturbed pixels received a discrete NA value outside their true 638 

ranges.  639 

In early tuning of the models, different numbers of independent trees (101, 201, 501, 640 

1001, and 2001) were tested incrementally. The number of trees required to stabilize 641 

accuracy and variable importance (i.e., the point where increases in the number of trees did 642 

not affect overall accuracy or predictor importance rank) fell between 201 and 501. The 643 

final models were set to assemble 501 trees. (The extra unit was included to break voting 644 

ties). Eight predictor variables were used per bootstrap run to decide on node splits. This 645 

was based on guidance in Freeman et al. (2016) to begin with a sample size equal to one-646 

third the number of variables, and then to test increments above and below that number. 647 

Accuracy stabilized when eight variables were selected, so the final models were set to 648 

sample eight variables.  649 

The predictors were randomly sampled in the construction of each tree, and all of 650 

the predictors were ultimately used. Maps of disturbance agent predictions at pixel level 651 

were produced in ModelMap. 652 

 653 

  654 
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2.4. Accuracy assessment and variable importance 655 

Accuracy was assessed at three separate stages. First, the accuracy of disturbance 656 

detection in the temporal segmentation procedure (§2.2.3) was evaluated against a testing 657 

set (§2.2.1). The reference image was reduced by collapsing fire, harvest, and stress into a 658 

single “disturbed” cover class; in the resulting image, all pixels were assigned to one of 659 

three categorical values: stable forest, stable non-forest, and disturbed. A testing set was 660 

created via stratified random sampling of this image, excluding pixels that had been used 661 

in model training. The testing points were interpreted in the same manner as the training 662 

data. The procedure yielded 200 points per class, for a total of 600 testing points. These 663 

points were then used as the basis for comparison with the three cover ternary images 664 

(§2.2.4). Omission and commission errors were calculated for disturbed, stable forest, and 665 

unstable forest, along with overall agreement scores and Cohen’s Kappa (κ) statistics for 666 

each vegetation index. κ is a multivariate measure of accuracy that accounts for the 667 

possibility of agreement by chance. The coefficient is calculated from the error matrix and 668 

ranges from zero to one, with zero representing random-chance agreement and one 669 

representing perfect agreement. In land-cover classification, generally accepted targets for 670 

each of these metrics are overall accuracy > 85%, per-class accuracy > 70%, and κ > 0.61 671 

(Foody 2002). 672 

Second, the accuracy of disturbance detection in the RF models (§2.3) was evaluated 673 

against the testing set to quantify any gross information gain or loss that might have been 674 

produced in the RF. In this case, the RF maps were converted to raster format and overlaid 675 

on the ternary reference image to form a multi-band raster. The same testing points were 676 

extracted, and the same bundle of accuracy metrics was produced. 677 

 Third, the accuracy of disturbance agent-attribution was assessed using out-of-bag 678 

(OOB) estimates. OOB reports the mean prediction error for each training sample, 679 
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calculated on the trees that were excluded from the bootstrap sampling operation. Because 680 

OOB observations are excluded from model training, they are thought to offer reliable 681 

accuracy estimates. Omission and commission errors, overall agreement, and κ statistics 682 

were measured for both RF models.  683 

 Mean decrease in accuracy (MDA) was used to evaluate the relative importance of 684 

predictors in the two models. Interpreting the absolute importance of individual predictors 685 

presents challenges in RF models because the procedure reduces hundreds of intermediate 686 

decisions to a single per-pixel vote. MDA, however, enables comparisons of relative variable 687 

importance across trees. The statistic measures how much predictive power would be lost 688 

(i.e., the percent increase in predictive error that would arise) if a variable were removed 689 

from the model. MDA values were computed and ranked for both models. Accuracy and 690 

MDA statistics were compared to evaluate the contribution of textural information to model 691 

skill.  692 

 693 

3. Results 694 

 695 

3.1. Texture metric correlations 696 

Correlation testing was performed on the set of 13 GLCM texture metrics to validate 697 

the assumption that contrast, correlation, and entropy were weakly correlated and 698 

therefore contributed independent streams of information to the model. Each GLCM metric 699 

was paired separately with the other 13 in the set, and the correlation coefficient Pearson’s 700 

r was computed for each pair. Graphical representations of these correlations appear in Fig. 701 

5. As expected, several of the texture metrics were closely correlated, as indicated by 702 

narrower ellipses and more-saturated colors. For instance, contrast and variance—two 703 

“edge” measures—were well correlated in the data (Pearson’s r = 0.975; p < 0.01). This 704 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2020. ; https://doi.org/10.1101/2020.11.23.394221doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.394221
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

tends to be the case when a landscape has very clearly defined edges. Where highly 705 

correlated variable pairs are thought to measure similar properties of a landscape, it is 706 

prudent to select only one member of the pair in order to develop a statistically independent 707 

metric set. 708 

The three proposed texture metrics—contrast, correlation, and entropy—were 709 

sufficiently weakly correlated to be confirmed for inclusion as textural predictors (Pearson’s 710 

r < 0.3) (Table 5). Spatially explicit depictions of these metrics calculated on NIRV returns 711 

from 2014 are depicted in Fig. 6 for a 25km2 subset of the study domain. 712 

The reason for selecting independent (or weakly correlated) texture metrics has to do 713 

with how RF handles variable importance for highly correlated predictors (Schroeder et al. 714 

2014, Freeman et al. 2015). One of the advantages of RF is that it can assimilate correlated 715 

variables without sacrificing accuracy or overfitting to the data. A tradeoff, however, is that 716 

it tends to spread out importance across those correlated variables, which makes assessing 717 

relative variable importance difficult. For the purposes of overall model accuracy, this is not 718 

such a problem. But since this study is explicitly testing the importance and contribution of 719 

distinct texture metrics, it was necessary, to the extent possible, to use independent 720 

measures.  721 

 722 

3.2. Disturbance detection: temporal segmentation of vegetation index time series 723 

The percentage of pixels identified as disturbed in the study area each year ranged 724 

widely, from 0.20% in 2011 to 15.6% in 2014 (Fig. 7). The three vegetation indices yielded 725 

similar patterns of detection, with NIRV yielding the greatest total number of disturbed 726 

pixels across all years (1.45x106) and NDVI the fewest (1.36x106). 727 

The first accuracy assessment was also conducted at this stage. Overall accuracy of 728 

disturbance detection through temporal segmentation of NBR, NDVI, and NIRV time-series 729 
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stacks ranged from 69.3% to 74.2% (Table 6). All accuracy results were significantly better 730 

than random (p < 0.01), and there was no significant difference in accuracy among the three 731 

indices (p > 0.01). 732 

To enable comparisons among NDVI, NBR, and NIRV, their magnitude values were 733 

re-normalized to a 0 – 1 scale. RF is generally scale-indifferent, but normalizing is useful 734 

for comparing mapped values. Histograms and map renderings in Fig. 8 depict the 735 

distribution of normalized magnitudes. NDVI and NBR were similarly distributed with a 736 

mean of 0.291 and 0.266, respectively. NIRV was comparatively leptokurtic, with a lower 737 

mean of 0.161.  738 

 739 

3.3. Distribution attribution: Random Forest classification 740 

 At this stage, the second accuracy assessment was conducted to determine whether 741 

the RF model yielded any gain or loss of skill over temporal segmentation. Accuracy was 742 

assessed in the same manner as in the first stage, except that reference points were now 743 

compared to RF-modeled images rather than the original temporal-segmentation outputs. 744 

Overall accuracy was 80.0% for Model 1 (κ = 0.700) and 79.8% for Model 2 (κ = 0.697), with 745 

no significant difference between the two (p > 0.01). However, RF was more adept at 746 

differentiating disturbance, stable forest, and stable non-forest than the temporal 747 

segmentation procedure alone. Overall accuracy increased with RF modeling by between 748 

5.6% and 10.7% (p < 0.01). 749 

Agent attribution accuracy was then assessed using the RF models’ OOB diagnostics 750 

(Table 7). The first model, which excluded textural variables, showed an overall agreement 751 

of 72.0% and κ = 0.650. The second model, which included the texture metrics, had an 752 

overall agreement of 72.2% and κ = 0.652. The difference in accuracy between the models 753 

was insignificant (p > 0.01).  754 
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Omission and commission errors from both models indicated that stress and stable 755 

non-forest had the highest model agreement with reference data (refer to the “CE” column 756 

and “OE” row in Table 7). Model errors for these classes were relatively well balanced—OE 757 

and CE scores fell within ±10% of each other—which suggests that the model was 758 

appropriately tuned to the data. Stable forest and harvest were also well balanced, but 759 

their errors were higher (> 35.0%), and they were systematically confused with one another 760 

(60 instances in Table 7a and 47 instances in Table 7b). Fire’s accuracy was moderate 761 

(balanced accuracy = 79.8% in Model 1 and 76.0% in Model 2), but it was frequently 762 

confused with all other classes except non-forest, as the false-positive and false-negative 763 

entries along the “Fire” row and column indicate. 764 

 765 

3.4. Predictor variable importance 766 

Table 8 reports predictor variable importance in terms of the decrease in overall 767 

model accuracy (mean decrease in accuracy, MDA) that would result if a given variable 768 

were excluded from the model. The three most powerful predictors in both models were the 769 

land-cover ternary generated from NDVI segmentation, elevation, and fractal dimension 770 

computed on NDVI. Fractal dimension from all three vegetation indices emerged in the top 771 

15 explainers in both models. In the second model, the texture metrics appeared to promote 772 

the relative importance of slope. While texture metrics added comparatively little 773 

explanatory power, entropy was the highest-ranked contributor of the texture metrics. 774 

Notably, in Model 2, the absolute values of predictor MDA decrease for all variables, 775 

despite similar rankings. This suggests that textures are not simply “noisy” predictors but 776 

contribute information to the classification decision; they also appear to balance the overall 777 

distribution of importance across predictors.  778 

 779 
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Spatial predictions of disturbance agents 780 

The predicted forest disturbance agents were mapped alongside stable forest and 781 

non-forest predictions (Fig. 9). The maps confirm that the models were able to distinguish 782 

effectively among disturbance agent classes. 783 

The models were particularly sensitive to differences between fire and stress, which 784 

tended to co-occur at lower elevations. However, the error matrices revealed high rates of 785 

false-positive stress identification; this occurred mostly around the margins of fire 786 

perimeters, suggesting that the models may confuse stress with low-intensity fire. In 787 

general, mapped predictions of fire were well resolved and agreed closely with CalFire 788 

FRAP perimeters. 789 

The overprediction of harvest identified in the error matrices bears out in the maps. 790 

In reality, harvest is generally constrained between 1000–1500m. Harvest does appear less 791 

frequently in the northern and eastern sections of the maps; these unharvested areas 792 

closely match the Mokelumne, Carson-Iceberg, and Emigrant Wilderness boundaries, 793 

where harvest is proscribed. These areas also occur at higher elevations, which points to 794 

the strong effect of elevation in the models. Notable exceptions are the distinctive narrow 795 

stretches identified as harvest in the easternmost portions of the maps. These follow the 796 

Clark and Middle Forks of the Stanislaus River and are contained within Carson-Iceberg 797 

Wilderness. There is no record of harvest in these areas in the LANDFIRE reference data.  798 

Among the predicted disturbance agent classes, harvest was the most prevalent, 799 

followed by fire and stress (Fig. 10). Forest persisted in more than 40% of the area over the 800 

study period. Because the analysis is temporally indifferent and does not account for 801 

regeneration, any pixel identified as disturbed retains this status, regardless of when the 802 

disturbance was detected. 803 
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 Because elevation proved to be a strong predictor, I further analyzed the 804 

relationship between elevation and disturbance agent prevalence (Fig. 11). Stable forest 805 

was widely distributed across elevations up to ~2800m, and non-forest was self-evidently 806 

concentrated at altitudes above 2000m (i.e., exposed granite batholith and alpine vegetation 807 

communities). Harvest appeared to be more constrained to mid-elevations, while fire and 808 

stress tended to co-occur at lower elevations, as is evident in the varying means, x-widths 809 

and y-densities of the violin plots.  810 

 811 

4. Discussion 812 

 813 

4.1. Conceptual challenges 814 

 As patterns of forest disturbance continue to shift in the Sierra Nevada of California, 815 

it is imperative that forest monitoring programs efficiently and accurately resolve not only 816 

the spatial and temporal qualities of disturbance events, but also their causes. Disturbance 817 

agents have variable impacts on forest composition, structure, and function, and effective 818 

forest management will increasingly depend on robust estimates of prior disturbance-agent 819 

prevalence as well as skillful predictions of future trends. An ideal product to satisfy this 820 

need would be an accurate, full-coverage map of historical disturbance that (a) renders the 821 

events explicitly in space and time, (b) accounts for their drivers, and (c) can be readily 822 

produced and updated with minimal analyst oversight. Achieving such an ideal through a 823 

modeling approach requires overcoming at least three major challenges. First is the basic 824 

difficulty of differentiating change agents (Kennedy et al. 2015). Disturbance is not 825 

inherently related to the spectral signals captured by most remote sensors, and different 826 

agents of disturbance can leave identical spectral signatures. While spectral information 827 

contributes substantially to disturbance detection (Cohen et al. 2018) and goes part of the 828 
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way toward agent attribution (Schroeder et al. 2017, Shimizu et al. 2019b), additional 829 

information about the landscape and the processes manifest on it is necessary for a reliable 830 

and generalizable approach. A second challenge is spatial scale. Remote sensing operates at 831 

the scale of the pixel and is for the most part limited by the native resolution of satellite 832 

and aerial sensors (although the increasing availability of very high-resolution images and 833 

the promising development of new data fusion methods are rapidly diminishing the size of 834 

this challenge) (Cakir et al. 2006, Khorram et al. 2016). Ecological processes occur at scales 835 

much smaller and much larger than the 30-m pixel used in this study. Disturbances affect 836 

individual trees, and they affect entire landscapes. Reliance on pixel scale means accepting 837 

error at both ends: in generalization of sub-pixel information and in over-specification of 838 

behavior that is in fact occurring across aggregations of pixels. The third challenge has to 839 

do with heterogeneity in the spatial extent, temporal duration, and intensity of 840 

disturbances’ impacts on vegetation. Variability in harvest densities, for instance, yields 841 

considerable heterogeneity within what would ideally be considered a uniform category of 842 

change agent. The same can be said for variable-density thinning treatments, species-843 

selective beetle kill, and fire. Here, I have described an approach that incrementally 844 

advances the field toward addressing these challenges. 845 

 846 

4.2. Disturbance detection 847 

In simply detecting disturbances, the RF model performed better than the temporal 848 

segmentation procedures run on NDVI, NBR, and NIRV time-series stacks. This additional 849 

improvement from RF was likely the result of combining information from multiple spectral 850 

indices. Indeed, this was consistent with recent findings in the literature that combining 851 

multiple indices can yield higher detection accuracy (Kennedy et al. 2015, Schroeder et al. 852 

2017). The hypothesized reason for this effect is that no single index accounts for the full 853 
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range of spectral behavior in a disturbed forested landscape. The fact that detection 854 

accuracy was not significantly different when any single index was used further confirms 855 

this inference.  856 

Given these results, NIRV did not appear to aid disturbance detection on its own. It 857 

did not appear to detract either, although the indices were not tested systematically against 858 

one another. NIRV captured a broader range of vegetation changes than NDVI and NBR, 859 

based on its greater total identification of disturbed pixels. Higher peaks and positive skew 860 

in the distributions of raw NIRV values and ∆NIRV values suggested that NIRV was more 861 

sensitive to subtler negative changes in vegetation than the other two indices were. 862 

However, this behavior may have also been driven by the NIR multiplier in the NIRV 863 

calculation or by noisy false-positive detection.  864 

In any case, the total number of disturbed pixels identified across the three indices 865 

(Fig. 7) appeared to vary more consistently with year of detection than with index. While 866 

NBR’s disturbed total consistently exceeded that of the other two indices in low-disturbance 867 

years, NDVI was anomalously high in 2014 and anomalously low in 2013. NIRV total 868 

disturbed was anomalously high in 2013. No ready pattern emerges from this behavior. 869 

However, 2013 and 2014 witnessed the Rim Fire, represented in Fig. 9 by the large swath 870 

of fire-attributed pixels in the southern third of the maps. This was immediately predated 871 

by intense drought-related desiccation stress in 2012–2013. It may be the case that NIRV is 872 

more sensitive to stress responses, while NDVI is more sensitive to fire responses. On this 873 

interpretation, NBR’s moderate detection of fire may be more accurate. The Rim Fire years 874 

notwithstanding, there was no obvious increasing or decreasing trend in total disturbance 875 

evident over time, though a discernible trend would not necessarily be expected on a 16-876 

year timescale. 877 

 878 
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4.3. Agent attribution 879 

The procedure appeared to capture the broad categories of disturbance operating in 880 

Stanislaus National Forest between 1999 and 2015. The results underscore the need to 881 

incorporate data beyond first-order spectral-reflectance metrics. Two measures of landscape 882 

position, elevation and slope, ranked among the top five predictors in both models. Their 883 

relative importance is most likely a consequence of how these topographical characteristics 884 

regulate the presence and structure of vegetation. Topography also influences disturbance 885 

processes: harvest tends to occur at lower elevations and on shallower slopes; fire has been 886 

found to spread more rapidly on steeply inclining slopes and to burn more intensely on 887 

steeply declining slopes. Some of the beetle infestations of the early 2010s also occurred 888 

within distinct elevation bands, partially a result of elevational controls on tree species 889 

distributions. Fractal dimension is a landscape shape metric several processing steps 890 

removed from raw spectral returns, yet it was the third strongest explainer in both models. 891 

This hints at the importance of scale in this modeling approach; fractal dimension exploits 892 

the sizes and shapes of disturbed patches, while other predictors in the set primarily act at 893 

the pixel scale. Spatial extent is a key characteristic of disturbance legacies and is 894 

frequently differentiable by agent on the ground. Its appearance as one of the more 895 

important predictors squares with this observation.  896 

The overall skill of the model, evaluated in terms of model accuracy (~72%) was 897 

reasonable, but not exceptional. Per-class accuracy ranges between 71% and 100% were on 898 

par with the those in the most successful agent-attribution models in the literature 899 

(Kennedy et al. 2015, Schroeder et al. 2017, Shimizu et al. 2019a). Those studies yielded 900 

higher overall accuracy values than the method in this paper (78–95%). Their κ statistics 901 

ranged between 0.40 and 0.85. In the Schroeder et al. (2017) study, the scene that 902 

overlapped Stanislaus National Forest actually returned the highest accuracy rate (95%) of 903 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2020. ; https://doi.org/10.1101/2020.11.23.394221doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.394221
http://creativecommons.org/licenses/by-nc-nd/4.0/


 36 

all of the scenes in their investigation. My results were significantly less robust, despite 904 

similar agent-class groupings, reference data, and input variables in the texture-free model. 905 

One reason for the discrepancy could be that Schroeder et al.’s time series ended in 2010, 906 

before the major drought and Rim Fire; their observations may have included less stress-907 

related spectral change overall, which may have dampened confusion of stable forest, 908 

harvest, and stress. Another major divergence was that they used VCT for temporal 909 

segmentation; it would be worthwhile to test the impacts of assimilating VCT-derived vs 910 

Landtrendr-derived disturbance metrics for agent attribution in the future. 911 

At the class level, considerable confusion arose between stable forest and harvest, 912 

resulting in systematic overprediction of harvest. Commission error for harvest exceeded 913 

0.45 in both models. The confusion here likely results from different mechanical harvest 914 

treatments being compressed into one category. Selective removal and thinning were 915 

grouped together with clear-cuts, a decision that likely expanded the dimensional space for 916 

harvest enough that it caused model votes for harvest to also capture stable forest. The 917 

balanced omission and commission errors for these two classes is a good indicator that this 918 

was the case. A second source of error may have been the masking of stable forest pixels in 919 

several of the predictors (i.e., magnitude, year of detection, rate, fractal dimension, and the 920 

three texture metrics). Masking was the best solution to an intractable dilemma: using full 921 

coverage data for those metrics would have entailed assimilating a separate image for each 922 

year. For the texture metrics alone, this would have yielded 153 distinct images (3 variables 923 

x 3 indices x 17 years), a rate of expansion that would have quickly exhausted available 924 

computing capacity and likely would have biased the model toward the orders-of-magnitude 925 

more prevalent variable types. In fact, in early iterations of the model, I tested this 926 

possibility using full-coverage annual textures for NIRV alone. The model skill was 927 

insignificantly different from the model described in this paper. And although textures did 928 
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contribute a greater share of predictive power, this likely had more to do with their 929 

dominance of the share of predictors. 930 

 931 

4.4. Spatial patterns and prospects for application 932 

With the exception of overpredicted harvest, the location and distribution of 933 

attributed change agents cohered with expectations for the study site, from the minimum-934 

mapping unit scale of one hectare up to the full National Forest scale. The fact that 935 

reasonably accurate disturbance-agent predictions can be made with a very small 936 

proportion of pixels used as training points (0.07% of total) underscores the promiseof thise 937 

approach for reducing the time and resource requirements of agent-explicit disturbance 938 

detection at the landscape scale.  939 

 940 

4.5. Contribution of texture metrics 941 

Textures contributed not at all to the absolute accuracy of the models and only 942 

negligibly in terms of the relative importance of predictors. The insignificant results mean 943 

that the null hypothesis cannot be rejected, and that textures have little effect on the 944 

modeling method’s predictive skill. Several inferences seem plausible. The first is that 945 

textural information may straightforwardly fail to add power to differentiate among 946 

disturbance legacies. This would seem to be confirmed by the null difference in overall 947 

model accuracy. A second interpretation is that textural information contributes to skill, 948 

but it is a much weaker explainer than the topographic and shape variables that drive most 949 

of the prediction. This would seem to be confirmed by the appearance of the NDVI entropy 950 

metric among the top ten predictors in the second model.  951 

One important limitation confronts interpretation of individual predictor 952 

importance. Because of RF’s tendency to distribute importance across correlated variables, 953 
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retaining correlates in the set will also influence the relative importance of independent 954 

metrics. Several of the variables were correlated; most of those derived directly from 955 

temporal segmentation (i.e., the “Disturbance” category in Appendix B) had paired 956 

Pearson’s r coefficients > 0.50 (p < 0.01). On the whole, the texture metrics were not well 957 

correlated with any other variables (r < 0.30, p < 0.01). One exception was entropy, which 958 

varied with all of the “Disturbance” variables (r > 0.50, p < 0.01).  959 

In the course of this study, I was unable to adjust satisfactorily for this distortion. In 960 

prior disturbance agent attribution studies, authors have either ignored the variable 961 

interdependence problem or computed a rank sum of importance for groupings of correlated 962 

variables (Schroeder et al. 2014); this requires observations from multiple independent 963 

model replicates and so was infeasible for this single-domain study. Another solution might 964 

be to systematically remove variables from correlated pairs. However, exploratory tests of 965 

this approach significantly reduced model skill and so were rejected for this project. A third 966 

option could be to use factor analysis to compress the variable set into a smaller collection 967 

of uncorrelated factors and to rank this smaller collection according to a sum or mean rule. 968 

This seems like a promising direction, but acquiring an honest operational understanding 969 

of factor analysis exceeded the scope of an already capacious project.  970 

In sum, while care was taken to identify independent measures of texture in order to 971 

evaluate their importance in comparison with one another, inferences about any variable’s 972 

overall rank in the predictor set may be distorted by interdependences among other 973 

variables. Accordingly, there are limits to the inferences that can be drawn from variable 974 

importance. 975 

It may be the case that landscape textures are important for discriminating 976 

disturbance legacies, but that texture was insufficiently operationalized in this study. One 977 

potential weakness was the aforementioned masking of stable forest and stable non-forest 978 
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in several of the predictors. In future work, it would be advisable to study a smaller area 979 

over a shorter timescale, focusing on pixels where only stable forest and harvest co-occur. 980 

Including full-coverage spectral and textural metrics in this case could improve model skill 981 

markedly.  982 

Another underexplored area is the spatial scale of texture computation. The ability 983 

of edge and interior texture metrics to differentiate disturbance agents is necessarily a 984 

function of the scale at which disturbance occurs. Calculated in a 3x3 pixel neighborhood, 985 

contrast was robust to edges of harvested and stressed patches (Fig. 6). Correlation and 986 

entropy were less adept at discriminating among interior behaviors in disturbed and stable 987 

patches. A promising direction for further study would be to evaluate a wider range of 988 

neighborhood sizes. Including 24-neighbor and 224-neighbor iterations, for example, might 989 

help to identify interior patch structures that aren’t detectable in an eight-neighbor 990 

window. This information could enhance the contribution of textural metrics.  991 

 Finally, a major unresolved issue for this study and other agent-attribution 992 

approaches is the lack of an external reference dataset with sufficient temporal and spatial 993 

resolution across the length of the Landsat record to use for independent model training 994 

and validation. This is something of a chicken-and-egg problem. Using incomplete ancillary 995 

datasets and records to manually verify disturbance occurrence and agent class for 1000 996 

training points is a tedious and error-prone exercise that further underscores the need for a 997 

more reliable modeling approach. But in the absence of a valid independent reference, a 998 

generalizable modeling approach remains difficult to achieve. A randomly sampled and 999 

verified set of retrospective disturbance points with error terms would help to an extent. 1000 

However, because of the conceptual fuzziness of ecological disturbance noted in the 1001 

introduction to this paper, an absolute reference may be inherently elusive, especially for 1002 

agent classes that are difficult to differentiate even through on-the-ground study, such as 1003 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2020. ; https://doi.org/10.1101/2020.11.23.394221doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.394221
http://creativecommons.org/licenses/by-nc-nd/4.0/


 40 

drought stress and beetle kill. In light of this constraint, most agent-attribution approaches 1004 

have aimed not for perfect classification agreement, but for improvement over the 1005 

inconsistent and discontinuous data products currently in widespread application in forest 1006 

management. Acknowledging that the approach described here inherits some uncertainty 1007 

from reference data, remotely sensed data, and model decisions alike, it still succeeds on 1008 

this more modest criterion of incremental improvement.  1009 

 1010 

5. Conclusions 1011 

 1012 

 The objective of this project was to develop and test an integrated empirical 1013 

modeling method for attributing forest disturbances to particular agents. The motivation 1014 

was twofold: to advance a burgeoning field of methodological inquiry in the remote sensing 1015 

of forest resources and to enhance the information streams available to resource and 1016 

conservation managers for decision-making regarding disturbance adaptation and 1017 

mitigation. The approach presented here satisfies both. The method yields adequate 1018 

identification of disturbance location and moderate attribution accuracy for multiple 1019 

disturbance agents. While texture as it was operationalized here did not meaningfully 1020 

contribute to model skill, the results further confirm that information beyond spectral 1021 

reflectance records is required for accurate agent attribution. As a proof-of-concept, this 1022 

study offers a strong foundation for future work, which should focus on improving the 1023 

overall efficacy of the models and generalizing them for systems beyond the Central Sierra 1024 

Nevada. 1025 

1026 
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Table 1. Recent temporal segmentation procedures for discriminating abrupt and trend 1348 
vegetation change using remotely sensed data. 1349 
 1350 
Acronym Name Year Citation 

BFAST Breaks for Additive and Seasonal Trend  2010 Verbesselt et al. 2010 

LandTrendr Landsat-based Detection of Trends in 
Disturbance and Recovery 2010 Kennedy et al. 2010 

DBEST Detecting Breakpoints and Estimating 
Segments in Trend 2015 Jamali et al. 2015 

MTHD Multi-Target Hierarchical Detection 2016 Xu et al. 2016 
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Table 2. The three vegetation indices applied in the temporal segmentation procedure, 1352 
with their respective calculations and Landsat 7 Thematic Mapper (TM) band inputs.  1353 
 1354 

Index Calculation Landsat 7 TM 
Bands 

NDVI NIR – Red
NIR	+ Red 

B4 – B3
B4 + B3 

NBR NIR – SWIR
NIR + SWIR 

B4 – B7
B4 + B7 

NIRV NIR – Red
NIR + Red  x NIR 

B4 – B3
B4 + B3  x B4 
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Table 3. Definitions of pixel trajectory metrics: year of detection, magnitude, disturbance 1356 
signal-to-noise ratio, duration, and rate. Metrics were derived through temporal 1357 
segmentation of vegetation index time series. 1358 
 1359 
Metric Definition 

Year of detection Year in which a directional change (vertex) occurred 

Magnitude Value of change in spectral response 

Disturbance signal-to-noise ratio Magnitude normalized to the root mean squared error 
(RMSE) of the LandTrendr fit 

Duration Horizontal length of the segment 

Rate of change Magnitude / Duration 
  1360 
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Table 4. Three theoretically independent metrics for quantifying textural characteristics in 1361 
forest remote sensing applications. 1362 
 1363 
Metric Equation Description 

Contrast "𝑝(𝑖, 𝑗)|𝑖– 𝑗|!
"

#,%

 Sum of squares of variance in grey-level 
values between adjacent pixels. 

Correlation "
(𝑖	– 	𝜇𝑖)(𝑗	– 	𝜇𝑗)𝑝(𝑖, 𝑗)

𝜎#𝜎%

"

#,%

 Linear dependence of grey-level values on 
those of neighboring pixels. 

Entropy "–𝑙𝑛(𝑝(𝑖, 𝑗))𝑝(𝑖, 𝑗)
"&'

#,%()

 Natural log of the probability of co-
occurrence of equal grey-level values. 
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Table 5. Pearson’s correlation coefficients for selected GLCM texture metrics. 1365 

Variable Pair Pearson’s r 

con–cor 0.1397*** 

con–ent 0.0185*** 

cor–ent 0.0869*** 
*** p < 0.01  1366 
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Table 6. Disturbance detection accuracy and Cohen’s Kappa (κ) when NBR, NDVI, and 1367 
NIRV were assimilated separately in the temporal segmentation procedure. 1368 
 1369 

Index Accuracy κ 
NBR 70.4% 0.537 
NDVI 74.2% 0.598 
NIRV 69.3% 0.527 
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Table 7. Error matrices for RF classification models: (a) Model 1 (texture metrics excluded) 1371 
and (b) Model 2 (texture metrics included). Within the shaded box, numbers in cells 1372 
represent the count of sample pixels in each category. Column values represent 1373 
observations in the reference data and all sum to 200 pixels per class. Row values represent 1374 
modeled agent predictions and sum to total predictions for that class. Diagonal (darker) 1375 
cells contain correct identifications; off-diagonal (lighter) cells contain errors. Row and 1376 
column totals, omission errors (OE), and commission errors (CE) appear in italics. 1377 
Commission error is calculated as the sum of false-positive predictions (row errors) over 1378 
total predictions per class. Omission error is calculated as the sum of false-negative 1379 
predictions (column errors) over total reference points per class. The proportion of pixels 1380 
correctly classified (PCC) appears in the bottom-right cell of each matrix.  1381 

 1382 

(a) Model 1: GLCM texture variables excluded 1383 
 

Reference 
 

 

Fire Harvest Stress Stable 

forest 

Stable 

non-

forest 

Total CE 

Pr
ed

ic
te

d 
 

Fire 111 31 12 13 0 167 0.335 

Harvest 36 105 4 56 0 201 0.478 

Stress 31 4 178 5 0 218 0.183 

Stable forest 22 60 6 126 0 214 0.411 

Stable non-forest 0 0 0 0 200 200 0.000 
 

Total 200 200 200 200 200 1000 PCC 

OE 0.445 0.475 0.110 0.370 0.000 PCC 0.720 

 1384 
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 1386 

(b) Model 2: texture variables included 1387 
 

Reference 
 

 

Fire Harvest Stress Stable 
forest 

Stable 
non-
forest 

Total CE 

Pr
ed

ic
te

d  
 

Fire 110 28 10 14 0 162 0.321 

Harvest 36 120 7 70 0 233 0.485 

Stress 35 5 179 3 0 222 0.194 

Stable forest 19 47 4 113 0 183 0.383 

Stable non-forest 0 0 0 0 200 200 0.000 
 

Total 200 200 200 200 200 1000 PCC 

OE 0.450 0.400 0.105 0.435 0.000 PCC 0.722 
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Table 8. Relative importance of the top 15 predictor variables in Model 1 (textures 1389 
excluded) and Model 2 (textures included). Importance is expressed in terms of mean 1390 
decrease in accuracy (MDA), the accuracy penalty that would result if a variable were 1391 
excluded from the set of predictors. Texture variables that appeared in the top 15 for Model 1392 
2 are in bold type. 1393 
 1394 

 Model 1: texture metrics excluded Model 2: texture metrics included 

Rank Variable MDA Variable MDA 

1 NDVI ternary 67.9 NDVI ternary 39.2 

2 Elevation 53.2 Elevation 37.1 

3 NDVI fractal dimension 35.1 NDVI fractal dimension 24.0 

4 NDVI disturbance rate 28.7 Slope 21.7 

5 Slope 25.4 NIRV ternary 20.8 

6 NIRV fractal dimension 21.2 NDVI disturbance magnitude 17.9 

7 NDVI disturbance magnitude 20.5 NDVI disturbance rate 17.7 

8 NIRV ternary 19.2 NDVI disturbance year 17.6 

9 NBR disturbance rate 18.9 NIRV fractal dimension 15.6 

10 NDVI disturbance year  18.4 NDVI entropy 15.4 

11 NIRV disturbance magnitude 16.9 NBR ternary 15.0 

12 NBR fractal dimension 16.5 NBR fractal dimension 14.3 

13 NBR disturbance magnitude 15.2 NIRV contrast 14.2 

14 NBR dsnr 14.6 NIRV disturbance rate 13.9 

15 NIRV disturbance rate 14.2 NIRV entropy 13.9 
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Figure Legends 1396 

 1397 

Figure 1. Photographs of Sierra Nevada mixed-conifer forest sites disturbed by (a) mixed-1398 

severity fire, (b) bark beetles, and (c) harvest. Each photograph was made within one year 1399 

of disturbance and reveals a distinctive structural legacy. 1400 

 1401 

Figure 2. True-color composite image of Stanislaus National Forest in July 2014 1402 

(California, U.S.A., inset). The composite was created from bands 2–4 of a Landsat 8 1403 

Enhanced Thematic Mapper (ETM+) image made approximately eleven months after the 1404 

Rim Fire began. The fire scar is visible across the image’s lower third. Extensive harvest 1405 

patches (~16 hectares each) appear in the speckled regions to the north and west. Surface 1406 

water and cloud shadows are masked and appear white.  1407 

 1408 

Figure 3. A flowchart of the data processing methods detailed in this study. Steps 1–3 1409 

pertain to §2.2.2. Step 4 is described in §2.2.3. Steps 5–8 are detailed in §2.2.4 and §2.2.5. 1410 

Step 9 is described in §2.3, and Step 10 in §2.4. 1411 

 1412 

Figure 4. NIRV and best-fit spectral trajectories of randomly selected pixels in three 1413 

possible trajectory groups: “Disturbed”, “Stable Forest”, and “Stable Non-Forest.” Red lines 1414 

indicate spectral trajectory based on observed NIRV values. Blue lines represent the model 1415 

that best simplified the trajectory shape based on thresholds defined in the temporal 1416 

segmentation procedure. 1417 

 1418 

Figure 5. Graphical representations of the correlation coefficient Pearson’s r calculated for 1419 

pairs of GLCM texture metrics for 1999–2015 vegetation index values. Blue values indicate 1420 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2020. ; https://doi.org/10.1101/2020.11.23.394221doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.394221
http://creativecommons.org/licenses/by-nc-nd/4.0/


 64 

positive correlation; red, negative correlation. Ellipse width and color saturation indicate 1421 

the strength of the relationship. Here, the metrics contrast (con), correlation (cor), and 1422 

entropy (ent) were selected for inclusion as robust independent measures of edge, interior 1423 

structure, and interior randomness, respectively. Names and variable definitions for the 1424 

predictor codes are in Appendix A. 1425 

 1426 

Figure 6. A true-color composite (a) shown alongside three GLCM texture metrics for a 25 1427 

km2 subset of the study domain. Contrast (b), correlation (c), and entropy (d) were 1428 

calculated on NIRV returns for 2014. The approximate location of the subset area within the 1429 

Stanislaus National Forest boundary appears in the centered map. 1430 

 1431 

Figure 7. Pixels identified as disturbed as a proportion of total within Stanislaus National 1432 

Forest boundaries. Disturbance was detected through a temporal segmentation procedure 1433 

run on time-series stacks of NBR, NDVI, and NIRV values, which were computed on annual 1434 

composites of Landsat observations from 1999–2015. 1435 

 1436 

Figure 8. Magnitude of greatest disturbance events shown in histograms (a–c) and mapped 1437 

at 30-m pixel scale (d–f) within the Stanislaus National Forest boundary. Disturbance 1438 

location and magnitude were identified by temporal segmentation of NDVI, NIRV, and NBR 1439 

time-series. 1440 

 1441 

Figure 9. Mapped predictions of disturbance agents: (a) Model 1 (texture metrics excluded) 1442 

and (b) Model 2 (texture metrics included). 1443 

 1444 
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Figure 10. Proportion of pixels in modeled results by predicted disturbance agent or stable 1445 

status.  1446 

 1447 

Figure 11. Violin plots depict elevational regulation of different disturbance agents and 1448 

forest cover. “Wider” oblongs indicate more peaked distributions in one or more elevational 1449 

bands, while “taller” oblongs indicate a more uniform distribution along the elevational 1450 

gradient. Fire and stress appear to co-occur at lower elevations, while harvest is 1451 

concentrated in mid-elevations. The white boxes in the centers of the oblongs depict the 1452 

median and interquartile range of elevation. 1453 
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Figure 1. 1455 

   

(a) (b) (c) 
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Figure 2. 1457 

 1458 
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Figure 3.1460 

 1461 
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Figure 4. 1463 

 1464 

1465 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2020. ; https://doi.org/10.1101/2020.11.23.394221doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.394221
http://creativecommons.org/licenses/by-nc-nd/4.0/


 70 

Figure 5.  1466 
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Figure 6. 1468 

(a) 

 

 

(b) 

 

(c) 

 

(d) 
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Figure 7. 1470 
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Figure 8.  1472 

(a) (b) (c) 

 1473 

(d) (e) (f) 
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Figure 9. 1475 

(a) Model 1: texture metrics excluded (b) Model 2: texture metrics included 
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Figure 10. 1477 

  1478 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2020. ; https://doi.org/10.1101/2020.11.23.394221doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.394221
http://creativecommons.org/licenses/by-nc-nd/4.0/


 76 

Figure 11. 1479 
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Appendix A. GLCM texture variable definitions 1481 

 1482 

Table A.  Names and definitions of the 14 GLCM texture metrics calculated on annual NDVI, NBR, 1483 

and NIRV composites from 1999–2015. These metrics were tested for correlation using Pearson’s r, 1484 

and the statistics were reported in a correlation matrix (Fig. 5 in the main text). Definitions are from 1485 

Zwanenburg et al. (2016), Gorelick et al. (2017), and Hall-Beyer (2017). 1486 

Code GLCM Variable Measurement 

asm Angular second moment Number of repeated grey-level values in neighborhood 

con Contrast Magnitude of local differences in grey-level values 

cor Correlation Linear correlation between pixels in neighborhood 

dent Difference entropy Disorder of the distribution of grey-level differences 

diss Dissimilarity Mean of the distribution of grey-level differences 

dvar Difference variance Dispersion (about the mean) of the distribution of grey-
level differences 

ent Entropy Randomness of grey-level distribution 

idm Inverse-difference moment Local homogeneity of an image 

imcorr1 Inform. meas of correlation 1 Linear dependency between grey-level values as a 
function of the amount of information in the target pixel 

imcorr2 Inform. meas. of correlation 2 Linear dependency between grey-level values as a 
function of the amount of information in the test pixel 

savg Sum average Mean of the distribution of neighborhood grey-level 
sums 

sent Sum entropy Disorder of the distribution of neighborhood grey-level 
sums 

svar Sum variance Dispersion (about the mean) of the distribution of 
neighborhood grey-level sums 

var Variance Dispersion (about the mean) of the distribution of grey 
levels 
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Appendix B. Model predictors 1488 

Table B.1. Predictors for Model 1: textures excluded 1489 

Category Variable Name Coverage 

Topographic 

Elevation 
Cosine-transformed aspect 
Sine-transformed aspect 
Slope 

elevation 
cos_aspect 
sin_aspect 
slope 

Full domain 

Ternary 
NBR cover ternary 
NDVI cover ternary 
NIRV cover ternary 

NBR_coverTernary 
NDVI_coverTernary 
NIRV_coverTernary 

Full domain 

Shape 
NBR fractal dimension 
NDVI fractal dimension 
NIRV fractal dimension 

NBR_FracDim 
NDVI_FracDim 
NIRV_FracDim 

Disturbed pixels 

Disturbance 

NBR disturbance magnitude 
NBR disturbance year of detection 
NBR disturbance signal-to-noise ratio 
NBR disturbance rate 
NDVI disturbance magnitude 
NDVI disturbance year of detection 
NDVI disturbance signal-to-noise ratio 
NDVI disturbance rate 
NIRV disturbance magnitude 
NIRV disturbance year of detection 
NIRV disturbance signal-to-noise ratio 
NIRV disturbance rate 

NBR_mag 
NBR_yod 
NBR_dsnr 
NBR_rate 
NDVI_mag 
NDVI_yod 
NDVI_dsnr 
NDVI_rate 
NIRV_mag 
NIRV_yod 
NIRV_dsnr 
NIRV_rate 

Disturbed pixels 
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Table B.2. Predictors for Model 2: textures included 1491 

Category Variable Name Coverage 

Topographic 

Elevation 
Cosine-transformed aspect 
Sine-transformed aspect 
Slope 

elevation 
cos_aspect 
sin_aspect 
slope 

Full domain 

Ternary 
NBR cover ternary 
NDVI cover ternary 
NIRV cover ternary 

NBR_coverTernary 
NDVI_coverTernary 
NIRV_coverTernary 

Full domain 

Shape 
NBR fractal dimension 
NDVI fractal dimension 
NIRV fractal dimension 

NBR_FracDim 
NDVI_FracDim 
NIRV_FracDim 

Disturbed pixels 

Disturbance 

NBR disturbance magnitude 
NBR disturbance year of detection 
NBR disturbance signal-to-noise ratio 
NBR disturbance rate 
NDVI disturbance magnitude 
NDVI disturbance year of detection 
NDVI disturbance signal-to-noise ratio 
NDVI disturbance rate 
NIRV disturbance magnitude 
NIRV disturbance year of detection 
NIRV disturbance signal-to-noise ratio 
NIRV disturbance rate 

NBR_mag 
NBR_yod 
NBR_dsnr 
NBR_rate 
NDVI_mag 
NDVI_yod 
NDVI_dsnr 
NDVI_rate 
NIRV_mag 
NIRV_yod 
NIRV_dsnr 
NIRV_rate 

Disturbed pixels 

Texture 

NBR contrast 
NBR correlation 
NBR entropy 
NDVI contrast 
NDVI correlation 
NDVI entropy 
NIRV contrast 
NIRV correlation 
NIRV entropy 

NBR_distpx_tex_con 
NBR_distpx_tex_cor 
NBR_distpx_tex_ent 
NDVI_distpx_tex_con 
NDVI_distpx_tex_cor 
NDVI_distpx_tex_ent 
NIRV_distpx_tex_con 
NIRV_distpx_tex_cor 
NIRV_distpx_tex_ent 

Disturbed pixels 
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