
Title: Sex Differences in MRI-Based Metrics of Glioma Invasion and Brain Mechanics 
 
 
Authors: Barrett J. Anderies1,2, Sara F. Yee2,3, Pamela R. Jackson2, Cassandra R. Rickertsen2, Andrea J.  
Hawkins-Daarud2, Sandra K. Johnston2,4, Kamala R. Clark-Swanson2, Joseph M. Hoxworth5, Yuan Le6, 
Yuxiang Zhou5, Kay M. Pepin6, Susan C. Massey2, Leland S. Hu5, John R. Huston III6, Kristin R. Swanson2,7 
 
Affiliations:  
1Mayo Clinic Alix School of Medicine, Rochester, MN 
2Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ 
3The University of Arizona College of Medicine – Phoenix, Phoenix, AZ 
4Department of Radiology, University of Washington, Seattle, WA 
5Department of Radiology, Mayo Clinic, Phoenix, AZ 
6Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN 
7Department of Neurosurgery, Mayo Clinic, Phoenix, AZ 
 
Abstract: 
Gliomas are brain tumors characterized by highly variable growth patterns. Magnetic resonance 
imaging (MRI) is the cornerstone of glioma diagnosis and management planning.  However, glioma 
features on MRI do not directly correlate with tumor cell distribution. Additionally, there is evidence 
that glioma tumor characteristics and prognosis are sex-dependent. Magnetic resonance elastography 
(MRE) is an imaging technique that allows interrogation of tissue stiffness in-vivo and has found utility 
in the imaging of several cancers. We investigate the relationship between MRI features, MRE features, 
and growth parameters derived from an established mathematical model of glioma proliferation and 
invasion. Results suggest that both the relationship between tumor volume and tumor stiffness as well 
as the relationship between the parameters derived from the mathematical model and tumor stiffness 
are sex-dependent. These findings lend evidence to a growing body of knowledge about the clinical 
importance of sex in the context of cancer diagnosis, prognosis and treatment. 
 
Abbreviations: 
HGG = high grade gliomas, T1Gd = T1-weighted gadolinium contrasted, T2-FLAIR = T2 weighted fluid 
attenuated inversion recovery, ROI = region of interest, CC = contralateral control, CE = contrast 
enhancing, MRI = magnetic resonance imaging; MRE = magnetic resonance elastography; MNO = 
Mathematical Neuro-Oncology Lab; PNT = Precision Neurotherapeutics Innovation Program, D = tumor 
diffusiveness, ⍴ = tumor proliferation, D/⍴ = tumor invasiveness 
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Introduction: 
 
Gliomas are primary brain tumors characterized by a diverse range of growth patterns and an ability to 
invade surrounding healthy tissue. Patients diagnosed with glioblastoma (GBM), the highest-grade 
glioma, have a median survival of only 14.6 months with aggressive standard of care treatment1. 
Magnetic resonance imaging (MRI) is the main imaging modality for visualizing gliomas, including 
identifying suspected abnormalities, planning targeted treatments, and evaluating treatment 
response2. While MRI provides non-invasive images with excellent soft-tissue contrast, it is non-specific 
in terms of the full extent of tumor cell invasion. Instead, the abnormalities seen on standard MRI 
sequences are more reflective of the environmental changes the tumor cells cause rather than the 
tumor cells themselves3. The clinical interpretation of these images (Figure 1) has traditionally been 
that the primary tumor cell mass is represented by an abnormality on the gadolinium-enhanced T1-
weighted (T1Gd) image and that the surrounding T2-weighted-Fluid-Attenuated Inversion Recovery 
(T2-FLAIR) abnormality is mostly edema with a small amount of invading tumor cells. Practically, this 
means surgeons target the T1Gd for resection, and radiation and chemotherapy are used to treat the 
surrounding areas. However, while gliomas are known for their extreme invasion4, there is no clinically 
utilized way to determine an individual tumor’s extent of invasion into the normal appearing brain.  
 

 
Figure 1: Examples of the different modalities typically used to visualize gliomas for a single patient and an MRE image. In their typical 
presentation, GBMs are hypointense on T1-weighted (T1) sequences and hyperintense on both T2-weighted (T2) sequences and T2 fluid-
attenuated inversion recovery (T2-FLAIR) sequences

2
 all due to a mixture of increase in swelling and extra fluid and additional tumor cells. 

T1 sequences with gadolinium contrast (T1Gd) show the breakdown of the blood-brain-barrier (contrast leakage) due to the neoplastic 
process within the tumor, resulting in local hyperintensity. 

Swanson et al. developed a personalized imaging-based estimate of tumor invasion using a 
biomathematical model called the Proliferation-Invasion (PI) model, which returns parameters that 
describe patient-specific net rates of untreated tumor invasion and proliferation5-9. While the model 
parameters have not been histologically validated due to lack of necessary data, they have been shown 
to be prognostic of therapeutic response10,11, survival12, and benefit from extent of resection13, as well 
as predictive of isocitrate dehydrogenase-1 (IDH1) mutation status14 and radiation sensitivity15. Thus, 
while not yet used clinically, this metric serves as a surrogate for differentiating more diffuse tumors 
from more nodular tumors. The prognostic implications of these parameters have also recently been 
shown to vary based on sex16-18. While more studies certainly need to be done, these previous results 
together with the known biological sex differences in immune system responses support the 
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hypothesis that MRI signal and underlying tumor microenvironmental changes would broadly follow a 
sex-differentiated pattern16,19-21.  
 
Beyond the biological changes tumors cause, they are also known to result in different mechanical 
properties22-27. In the context of the invasive margin of GBMs, it is highly possible that the stiffness of 
the tissue may be indicative of the different types of abnormalities shown on MRI: swelling due to 
migrating tumor cells, activated immune cells, extra fluid, and all possible combinations of these 
phenomena. Magnetic resonance elastography (MRE) was first described in 1995 by Muthupillai et al.28 
and has emerged as a technique for non-invasively measuring the mechanical properties of tissue. MRE 
involves inducing shear waves throughout the tissue of interest and measuring the displacement of the 
tissue within an MRI scanner22. MRE has been used to characterize various tissues including liver, 
skeletal muscle, myocardium, breast and brain25. In brain, MRE has found several applications including 
characterizing the effect age29, sex30, and dementia31 on regional stiffness. In a recent study, Pepin et 
al. used MRE to demonstrate that gliomas are softer than normal unaffected brain tissue32. They 
further demonstrated that tumors of higher grade were softer than lower grade and that tumors with 
an IDH1 mutation were stiffer than those with wild-type IDH1. These results are consistent with 
previous MRE studies of glioma stiffness on MRE24, but somewhat surprisingly in the opposite direction 
of other studies focusing on extracellular matrix stiffness of breast33,34 and glioma23 tumors. However, 
the nature of tumor cell invasion in GBMs and the known swelling in the tumor area may help explain 
these results. This also highlights that the underlying mechanisms connecting cellular biology to gross 
tumor mechanics and kinetics remain an area of active investigation.  
 
In this paper, we leverage a glioma patient dataset where the patients have received MRE imaging and 
the PI model to estimated personalized tumor kinetics parameters. We aim to first investigate whether 
tissue stiffness measured by MRE is indicative of invasive spread and second whether the invasive 
patterns on MRI/MRE are sex-specific. We first consider how MRI abnormality size, another possible 
surrogate for invasion, correlates with MRE. We then look at how the imaging-based invasion estimate 
from the PI model corresponds with MRE values.  
 
 
Methods: 
 
Patient Cohort  
The patient cohort in this study was previously reported by Pepin et al.32 As previously described, 
preoperative patients suspected of a brain tumor were recruited to the study if they were at least 18 
years of age and had an imageable abnormality of at least 2 cm diameter. Enrolled patients had a 
scheduled date for surgical resection between April 2014 and December 2016. While the original 
cohort in Pepin et al.32 included 18 patients, for this study 10 were excluded due to not having a full set 
of standard MRIs available (discussed later in methods subsection Imaging Derived Invasion Metric, 
D/⍴). Thus, the included patient cohort consisted of 8 glioma patients (4F,4M) (1 grade II, 3 grade III, 
and 4 grade IV tumors), 4 of which had IDH1 mutated tumors32. Glioma diagnosis, grade and molecular 
markers (1p/19q codeletion and IDH1-R132H mutations) were determined based on clinical 
histopathological assessment of surgical biopsies. 
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MRI Protocols  
We retrospectively analyzed clinical MRI and research MRE images from the MRE glioma patient 
cohort32. Details of the MRI sequence acquisition and region of interest (ROI) generation are outlined 
in Pepin et al.32 and we will briefly review the methods here. The standard anatomic imaging protocol 
consisted of a T1-weighted inversion recovery echo-spoiled gradient-echo (TR/TE = 6.3/2.8 ms; TI = 400 
ms; flip angle = 11°). For the MRE acquisition, a custom passive driver beneath the patient’s head was 
used to induce shear waves at 60 Hz. During the shear wave motion, the patient was imaged with a 
spin-echo echo planar imaging (SE-EPI) MRE pulse sequence that synchronized the motion-encoding 
gradients to the shear waves (TR/TE = 3600/62 ms). Stiffness was computed as previously described32. 
Tissue was assumed to be linear, isotropic, locally homogeneous, and viscoelastic, and the complex 
shear modulus was computed from the measured displacement fields using 3D direct inversion. The 
final result was a quantitative map of the tissue shear modulus, from which the sheer stiffness was 
derived by computing the median magnitude of the complex shear modulus over regions of interest 
(ROIs).  
 
MRE Image Segmentation  
Tumor ROIs: ROIs were manually drawn by an experienced reader using the anatomic imaging 
sequences (T1, T2, post-contrast T1, etc.) for reference.  
 
Contralateral Control (CC): For each subject, the grouped tumor ROI was reflected to the contralateral 
hemisphere to identify a personalized control region.  
 
MRE: An average brain tissue stiffness value (magnitude of the complex shear modulus (|G*|) in units 
of kPa) was calculated for each tumor and contralateral control ROI as previously described32. 
 
Imaging Derived Invasion Metric, D/⍴ 
The MRI-based PI model is a partial differential equation, which quantifies the spatial and temporal 
growth of tumor cells per unit volume. The model is written mathematically as 𝑐𝑡 = 𝛻 ⋅ (𝐷𝛻𝑐) +

𝜌𝑐(1 − 𝑐 𝐾⁄ )  where ct is the rate of change of tumor cell density in time, D is the net rate of invasion 
(mm2/yr), ρ is the net rate of proliferation (/yr), and K is the cell carrying capacity of the tissue 
(cells/mm3), which is considered a fixed constant based on an average 10 μm diameter cell. The tumor 
invasion profile is defined as the ratio of the invasion and proliferation rates, D/ρ. Large values of D/⍴ 
imply diffuse disease, small values of D/⍴ imply nodular disease. This model has been used to quantify 
growth rates for individual GBM patients using MRI data38,39. 
 
Standard clinical MRIs (T1Gd, FLAIR/T2) for each subject were segmented to determine their tumor’s 
diffusion (D) and proliferation (⍴) values using the PI model8. However, 10 patients were excluded from 
the original MRE cohort published in Pepin et al.32 because we did not have access to at least one T2 or 
FLAIR image and a T1Gd image taken on the same date, which is required for computing D/⍴ values. 
Segmentation was completed using an in-house semi-automated software. Each tumor was measured 
on T1Gd and T2-FLAIR images, then verified by a second observer. D/⍴ was calculated using the PI 
model5,8.  
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Statistical Analysis 
Student’s t-test was used to test for differences in tumor cell densities based on radiologically defined 
regions and sex. Pearson’s linear regression was used to analyze correlative relationships between ROI 
stiffness, CC stiffness, necrotic volume, T1Gd volume, contrast enhancing (CE) volume, FLAIR volume, 
D/⍴, and patient age. One-way ANOVAs and t-tests were used to compare ROI stiffness, CC stiffness, 
the difference in tumor and contralateral control stiffness, and D/⍴ stratified by sex, tumor grade, and 
IDH1 mutation status. A p-value of < .05 was considered statistically significant. All calculations were 
performed in GraphPad PRISM 8 (San Diego, CA).  
 
 
Results: 
 
Tumor Size and Stiffness  
To investigate the relationship between tumor size and stiffness, we utilized ROIs from the FLAIR image 
as available, and T2 ROIs were used when they were not (N=2 of 8). Using linear correlation to 
compare radiographic volumes with measured MRE stiffness values in both the ROI and CC regions, 
negative trends were observed, though none reached significance (p=0.13 and p=0.07 respectively) 
(Figure 2). While not statistically significant, R2 values were higher for correlations between CC stiffness 
and both volumes than between ROI stiffness and both volumes. 
 
Tumor Size and Stiffness Accounting for Sex 
Examining this data stratified by sex, separate significant correlations were found between the 
FLAIR/T2 volumes and ROI stiffness for both sexes (p=0.01 for males, and p<0.01 for females), with 
females exhibiting a stronger negative slope (-1.7e-5 vs -2.4e-6) (Figure 3). No other relationships were 
found to be significant.  

D/⍴ and stiffness in MRE Patient Cohort  
Regression analysis (Figure 4, left) showed no significant relationship between D/⍴ and the stiffness 
calculated in either the CC or ROI (p=0.2673, p=0.2552 respectively). When repeating this analysis in 
sex-stratified subcohorts (Figure 4, middle), D/⍴ did show a significant relationship with stiffness in the 
ROI region for males (p<0.001) and trended towards significance for females (p=0.057). No significant 
relationship was found for either sex between D/⍴ and stiffness in the CC region (Figure 4, right).  
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Figure 3: Correlation between stiffness and abnormality volumes considering sex as a variable. Females 
left column, males right. T1Gd volume top row, FLAIR/T2 bottom. Separate significant correlations seen 
between the FLAIR/T2 volumes and the stiffness measure. Both sexes had extremely high R

2
 values (0.99 

for females and 0.97 for males), but slopes of regression lines were different (-1.7e-5 for females, -2.4e-
6 for males). 

 

 
 
Figure 2: A. Linear correlation between T1Gd volume and ROI stiffness (R

2
=0.34, p=0.13) and CC stiffness (R

2
=0.45, p=0.07).  

B. Linear correlation between FLAIR/T2 volumes and ROI stiffness (R
2
=0.37, p=0.11) and CC stiffness (R

2
=0.45, p=0.07). 
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Discussion: 
 
Understanding how the true underlying tumor invasion profile corresponds to radiographic imaging is 
critical to providing informed clinical care. To date, such studies have been limited due to the difficulty 
of acquiring tissue for histological analysis. MRI imaging is a proxy measurement of tumors as it 
primarily resolves contrast (T1Gd) and interstitial fluid accumulation (T2/FLAIR), which are measures of 
leaky vasculature and edema, respectively. These measures may be correlated with clinical pathology 
but do not necessarily relate to the local chemical and physical microenvironment within which the 
tumor cells proliferate and migrate. Pepin et al. previously demonstrated that glioma stiffness 
decreases with increasing WHO tumor grade and IDH1 mutant gliomas are stiffer than wild-type IDH1 
gliomas32. In this paper, based on a hypothesis that invasion profiles would influence the tumor 
stiffness, we have tried to query how MRI signatures on standard pulse sequences correlated with the 
underlying mechanics and biology.  
 
Our main findings in comparing MRE values with imaging surrogates of invasion, tumor size and an 
invasion metric based on a biomathematical model, showed that statistically significant correlations 
were only present when considering patients in sex-specific subcohorts. Specifically, T2/FLAIR volume 
and MRE in the ROI region was found to be significant when looking at males and females separately 
but not when pooled. And similarly, the invasion metric, D/⍴, was not significantly correlated with the 
MRE in the ROI region when all patients were considered together, but it was significant for males 
alone and was trending towards significance for females. Admittedly, the number of patients we had 
available for this study due to imaging availability does limit the strength of these results. However, the 
results suggest that the connection between regions of abnormality as visualized on MRI may relate to 
the different biological invasion patterns of glioma cells.  
 

 
 
Figure 4: Imaging-based invasion metric and MRE Measured Stiffness. Left: Correlation between D/⍴ and Stiffness was not significant 
for either ROI or CC regions (p=0.27 and p=0.25 respectively).  Middle: Correlation between D/⍴ and stiffness in ROI region was 
significant for males and trending toward significance for females (p<0.001 and p=0.057 respectively). Right: Correlation between 
D/⍴ and stiffness in CC region showed no significance for either sex (p=0.42 M, p=0.31 F). 
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Clearly, much research remains to be done. More patients need to be studied and likely the tissue will 
need to be explored in greater detail to assess cellular composition beyond just the tumor cells. But 
these results have possible clinical implications. One such area is in assessing drug efficacy. Interstitial 
pressure is known to negatively influence drug efficacy in solid tumors and Yang et al. determined that 
standard therapy is more effective in females compared to males16. Our results suggest this difference 
in treatment efficacy may be due to differences in interstitial pressure, particularly the degree and 
distribution within a given tumor volume. Another implication has to do with the imaging-based 
invasion metric used here. It is based on a few broad assumptions that the hyperintensity on T1Gd 
imaging corresponds to regions exhibiting 80% tumor cell density and above while the T2 hyperintense 
regions correspond to 16% and above (1/5 the T1Gd threshold). The findings we present here suggest 
that the T2 hyperintense regions may be representative of different phenomena between the sexes. 
This implies that in the future, the PI model could be more accurate and meaningful if it could be 
trained in a sex-specific way, using better assumptions of how the imaging regions correlated with 
tumor cell density.  
 
Clinical imaging remains the primary method of monitoring gliomas and is mostly interpreted with 
respect to changes in size. Increasing any understanding of how imaging features correspond to tumor 
characteristics can drastically influence how therapy is chosen and how response to therapy is 
determined. Much remains to be done, but this work represents a first look at how similar imaging 
may reflect different tumor invasion depending on the sex of the patient. 
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