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Abstract

Maternal brain adaptations occur in response to pregnancy, but little is known about how parity

impacts white matter (WM) microstructure and WM ageing trajectories later in life. Utilising

global and regional brain-age prediction based on multi-shell diffusion MRI data, we investigated

the association between previous childbirths and WM brain age in 8,895 women in the UK Biobank

cohort (age range = 54 - 81 years). The results showed that a higher number of previous childbirths

was associated with lower WM brain age, in line with previous studies showing less evident grey

matter (GM) brain ageing in parous relative to nulliparous women. Both global WM and GM brain

age estimates showed unique contributions to the association with previous childbirths, suggesting

partly independent processes. Corpus callosum contributed uniquely to the global WM association

with previous childbirths, and showed a stronger relationship relative to several other tracts. While

our findings demonstrate a link between reproductive history and brain WM characteristics later in

life, longitudinal studies are required to understand how parity influences women’s WM trajectories

across the lifespan.
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1. Introduction

Maternal brain adaptations have been shown during pregnancy and postpartum, with dynamic

alterations across brain regions depending on time since delivery [1, 2, 3, 4, 5]. While some structural

brain changes revert post parturition [6], recent studies indicate that some effects of pregnancy may

be long-lasting [2, 5], potentially influencing brain trajectories later in life [7, 8, 9, 10]. However,

neuroimaging studies of the maternal brain have largely focused on grey matter (GM) volume [1, 2,

10, 11, 12, 13, 4, 14] and cortical thickness [3, 15], and less is known about the effects of pregnancy

on brain white matter (WM) microstructure.

Emerging evidence from animal models suggests that pregnancy may induce WM plasticity [16,

17, 18]. Specifically, pregnant mice exhibit increases in oligodendrocyte progenitor cell proliferation,

oligodendrocyte generation, and in the number of myelinated axons, indicating an enhanced capacity

for myelination in the maternal brain [16]. Pregnancy-induced remyelination may partly explain why

pregnancy seem to cause remission of multiple sclerosis (MS), an auto-immune disease that attacks

the myelin sheath [19]. In line with this, slower disability progression has been found in parous MS

patients after 18 years, compared with nulliparous patients [20]. This effect was strongest in patients

that gave birth after disease onset, indicating favourable effects of pregnancy-related adaptations

on disease mechanisms in MS.

While the influence of childbirth on WM trajectories in healthy women is largely unknown,

one study reported larger regional WM volumes in mothers compared to non-mothers, as well as

maternal WM increases that were linked to changes in empathetic abilities during the postpartum

period [14]. In line with these findings, a diffusion tensor imaging (DTI) [21] study in rats found

that fractional anisotropy (FA), which quantifies the degree of diffusion directionality, in the dentate

gyrus increased significantly during pregnancy. However, whole-brain diffusivity also increased in

pregnant rats compared to nulliparous rats [17], indicating global changes in the characteristics of

molecular water movement - potentially linked to increased extracellular water in the brain during

pregnancy [6].

In a recent study comparing longitudinal changes in human brain morphology during pregnancy

and two years of pubertal development, no WM changes were observed in mothers, nor in female

adolescents [22]. However, as adolescence is known to involve substantial WM remodelling [23, 24,

25, 26, 27], the lack of effects could possibly reflect insensitivity of the method used to assess WM

changes (T1-weighted estimation of total WM volume) [22]. In development and ageing studies,

WM microstructure is commonly investigated using DTI [21], which yields metrics that are highly
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sensitive to age [28]. However, the accuracy of the DTI approach is limited by factors such as, for

example, crossing fibres. These obstacles have motivated the development of advanced biophysical

diffusion models such as white matter tract integrity (WMTI) [29], which is derived from diffusion

kurtosis imaging (DKI) [30], and spherical mean technique (SMT) [31, 32]. Based on assumptions

about the underlying microstructure, these models enable estimation of the separable contribution

of diffusion in the intra- and extra-axonal space [33], which provides higher biological specificity,

i.e. additional information about the microstructural environment [34].

In the current study, we utilised four diffusion models (DTI, DKI, WMTI, SMT) to build

predictive models of WM brain ageing, and investigated associations between brain-age estimates

and previous childbirths in a sample of 8,895 UK Biobank women (mean age ± standard deviation

= 62.45 ± 7.26). In line with studies suggesting that distinct and regional brain-age prediction

models may provide additional detail [11, 35, 36, 37], we used separate models to estimate i) global

WM ageing, ii) global GM ageing to test for modality-specific contributions, and iii) WM ageing in

12 major WM tracts in order to identify regions of particular importance for maternal brain ageing.

2. Methods and Materials

2.1. Sample characteristics

The initial sample was drawn from the UK Biobank (www.ukbiobank.ac.uk), and included 9,899

women. 899 participants with known brain disorders were excluded based on ICD10 diagnoses

(chapter V and VI, field F; mental and behavioral disorders, including F00 - F03 for Alzheimer’s

disease and dementia, and F06.7 ‘Mild cognitive disorder’, and field G; diseases of the nervous

system, including inflammatory and neurodegenerative diseases (except G55-59; “Nerve, nerve

root and plexus disorders”). An overview of the diagnoses is provided in the UK Biobank online

resources (http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=41270), and the diagnostic

criteria are listed in the ICD10 diagnostic manual (https://www.who.int/classifications/icd/

icdonlineversions). In addition, 99 participants were excluded based on magnetic resonance

imaging (MRI) outliers (see section 2.2) and 11 participants were excluded based on missing data

on the number of previous childbirths, yielding a total of 8,895 participants that were included in

the study. Sample demographics are provided in Table 1.
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Table 1: Sample demographics. For variables with missing data, sample size (N) is indicated in parentheses.
SD = Standard deviation, GCSE = General Certificate of Secondary Education, NVQ = National Vocational
Qualification.

Total N 8,895

Age

Mean ± SD 62.40 ± 7.25

Range [years] 45.13 - 80.66

Number of childbirths (live)

Mean ± SD 1.74 ± 1.15

Range 0 - 8

N in each group:

0 = 1,825 — 1 = 1,190 — 2 = 3,911

3 = 1,535 — 4 = 348 — 5 = 55

6 = 26 — 7 = 4 — 8 = 1

Age at first birth (N = 7,066)

Mean ± SD 26.82 ± 4.99

Range 14 - 47

Years since last birth (N = 5,875)

Mean ± SD 32.41 ± 9.21

Range 6.77 - 55.19

Menopausal status (N = 8,888)

Yes 2,745

No 4,767

Not sure, had hysterectomy 925

Not sure, other reason 451

Ethnic background (N = 8,872)

% White 97.59

% Black 0.54

% Mixed 0.50

% Asian 0.62

% Chinese 0.35

% Other 0.38

% Do not know 0.02

Education (N = 8,868)

% University/college degree 42.04

% A levels or equivalent 13.97

% O levels/GCSE or equivalent 22.62

% NVQ or equivalent 3.23

% Professional qualification 5.79

% None of the above 6.47

Assessment location (imaging)

Newcastle 1,419

Cheadle 7,476
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2.2. MRI data acquisition and processing

A detailed overview of the UK Biobank data acquisition and protocols is available in [38] and [39].

For the diffusion-weighted MRI data, a conventional Stejskal-Tanner monopolar spin-echo echo-

planar imaging sequence was used with multiband factor 3. Diffusion weightings were 1000 and

2000 s/mm2 and 50 non-coplanar diffusion directions per each diffusion shell. The spatial resolu-

tion was 2 mm3 isotropic, and 5 anterior-posterior vs 3 anterior-posterior images with b = 0 s/mm2

were acquired. All diffusion data were processed using an optimised diffusion pipeline [40] consist-

ing of 6 steps: noise correction [41, 42], Gibbs-ringing correction [43], estimation of echo-planar

imaging distortions, motion, eddy-current and susceptibility-induced distortion corrections [44, 45],

spatial smoothing using fslmaths from FSL (version 6.0.1) [46] with a Gaussian kernel of 1mm3, and

diffusion metrics estimation. DTI and DKI derived metrics were estimated using Matlab R2017a

(MathWorks, Natick, Massachusetts, USA) as proposed by Veraart and colleagues [47]. The DTI

metrics included mean diffusivity, FA, axial diffusivity, and radial diffusivity [21]. The DKI metrics

included mean kurtosis, axial kurtosis, and radial kurtosis [30]. WMTI metrics included axonal

water fraction, extra-axonal axial diffusivity, and extra-axonal radial diffusivity [29]. SMT met-

rics included intra-neurite volume fraction, extra-neurite mean diffusivity, and extra-neurite radial

diffusivity [31]. See [40] for details on the processing pipeline.

Tract-based spatial statistics (TBSS) was used to extract diffusion metrics in WM [48]. Initially,

all maps were aligned to the FMRIB58 FA template supplied by FSL, using non-linear transfor-

mation in FNIRT [49]. Next, a mean FA image of 18,600 UK Biobank subjects was obtained and

thinned to create a mean FA skeleton. The number N = 18,600 was obtained from the processing of

the two first UKB data releases. The maximal FA values for each subject were then projected onto

the skeleton to minimise confounding effects due to partial volumes and any residual misalignments.

Finally, all diffusion metrics were projected onto the subject-specific skeletons. WM features were

extracted based on John Hopkins University (JHU) atlases for white matter tracts and labels (with 0

thresholding) [50], yielding a total of 910 WM features including mean values and regional measures

for each of the diffusion model metrics. For the region-specific brain age models, 12 tracts of interest

used in previous ageing and development studies were extracted [51, 52]; anterior thalamic radiation

(ATR), corticospinal tract (CST) cingulate gyrus (CG), cingulum hippocampus (CING), forceps

major (FMAJ), forceps minor (FMIN), inferior fronto-occipital fasciculus (IFOF), inferior longi-

tudinal fasciculus (ILF) superior longitudinal fasciculus (SLF), uncinate fasciculus (UF), superior

longitudinal fasciculus temporal (SLFT), and corpus callosum (CC). The diffusion MRI data passed
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TBSS post-processing quality control using the YTTRIUM algorithm [53], and were residualised

with respect to scanning site using linear models.

For the GM data, raw T1-weighted MRI data for all participants were processed using a har-

monised analysis pipeline, including automated surface-based morphometry and subcortical seg-

mentation. In line with recent brain-age studies [10, 36, 54, 55], we utilised a fine-grained cortical

parcellation scheme [56] to extract cortical thickness, area, and volume for 180 regions of interest

per hemisphere, in addition to the classic set of subcortical and cortical summary statistics from

FreeSurfer (version 5.3) [57]. This yielded a total set of 1,118 structural brain imaging features

(360/360/360/38 for cortical thickness/area/volume, as well as cerebellar/subcortical and cortical

summary statistics, respectively). Linear models were used to residualise the T1-weighted MRI data

with respect to scanning site, intracranial volume [58], and data quality using Euler numbers [59]

extracted from FreeSurfer. To remove poor-quality data likely due to motion, participants with

Euler numbers of standard deviation (SD) ± 4 were identified and excluded (n = 80). In addition,

participants with SD ± 4 on the global MRI measures mean FA, mean cortical GM volume, and/or

subcortical GM volume were excluded (n = 10, n = 5 and n = 4, respectively), yielding a total of

8,895 participants with both WM (diffusion-weighted) and GM (T1-weighted) MRI data.

2.3. Brain-age prediction

Brain-age prediction is a method in which a machine learning algorithm estimates an individual’s

age based on their brain characteristics [60]. This estimation is then compared to the individual’s

chronological age to estimate each individual’s brain-age gap (BAG), which is used to identify

degrees of deviation from normative ageing trajectories. Such deviations have been associated with

a range of clinical risk factors [37, 55, 61] as well as neurological and neuropsychiatric diseases [62,

63, 64, 36]. They have also been assessed in previous studies of parity and brain ageing [9, 10, 11, 54].

Separate brain-age prediction models were run for global WM and GM, and for each of the WM

tracts using the XGBoost regressor model, which is based on a decision-tree ensemble algorithm

(https://xgboost.readthedocs.io/en/latest/python). XGboost includes advanced regularisa-

tion to reduce overfitting [65], and uses a gradient boosting framework where the final model is

based on a collection of individual models (https://github.com/dmlc/xgboost). For the global

WM and GM models, principal component analyses (PCA) were run on the features to reduce com-

putational time. The top 200 PCA components, explaining 97.84% of the total variance, were used

as input for the WM model, and the top 700 components, explaining 98.07% of the variance, were
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used as input for the GM model. The model parameters were set to maximum depth = 4, number

of estimators = 140, and learning rate = 0.1 for the the global and tract-specific WM models, and

maximum depth = 5, number of estimators = 140, and learning rate = 0.1 for the global GM model,

based on randomised searches with 10 folds and 10 iterations for hyper-parameter optimisation.

The models were run using 10-fold cross-validation, which splits the sample into subsets (folds)

and trains the model on all subsets but one, which is used for evaluation. The process is repeated

ten times with a different subset reserved for evaluation each time. Predicted age estimates for each

participant were derived using the Scikit-learn library (https://scikit-learn.org), and BAG

values were calculated using (predicted − chronological age). To validate the models, the 10-fold

cross validations were repeated ten times, and average R2, root mean square error (RMSE), and

mean absolute error (MAE) were calculated across folds and repetitions.

2.4. Statistical analyses

The statistical analyses were conducted using Python 3.7.6. All variables were standardised (sub-

tracting the mean and dividing by the SD) before entered into the analyses, and p-values were

corrected for multiple comparisons using false discovery rate (FDR) correction [66]. Chronological

age was included as a covariate in all analyses, adjusting for age-bias in the brain age predictions

as well as age-dependence in number of childbirths [67, 68].

2.4.1. Previous childbirths and global WM ageing

To investigate associations between number of previous childbirths and global WM brain ageing, a

linear regression analysis was run using global WM BAG as the dependent variable, and number of

childbirths as the independent variable. To control for potential confounding factors, the analysis

was rerun including assessment location, education, ethnic background, body mass index (BMI),

diabetic status, hypertension, smoking and alcohol intake, menopausal status (’yes’, ’no’, ’not sure,

had hysterectomy’, and ’not sure, other reason’), oral contraceptive (OC) and hormonal replacement

therapy (HRT) status (previous or current user vs never used), and experience with stillbirth,

miscarriage, or pregnancy termination (’yes’, ’no’) as covariates. In total, 7,725 women had data

on all variables and were included in these analyses. In addition, we tested for mean differences in

global WM BAG between parous and nulliparous women using an independent samples t-test, and

estimated Cohen’s d as effect size [69].
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2.4.2. Previous childbirths and WM ageing versus GM ageing

To compare the contributions of global WM and GM brain ageing to the association with previous

childbirths, a multiple regression analysis was run with both WM and GM based BAG estimates as

independent variables and number of childbirths as the dependent variable, before eliminating one

modality at the time to compare the log-likelihood of the full and reduced models. The significance of

model differences was calculated using Wilk’s theorem [70] as
√

2(∆LL), where ∆LL = LL1−LL2;

the difference in log-likelihood between the reduced model (LL1) and the full model (LL2).

Next, we tested for differences between the GM and WM BAG associations with number of

previous childbirths using a Z test for correlated samples [71] with

Z = (βm1 − βm2)/
√
σ2m1 + σ2m2 − 2ρσm1σm2 , (1)

where m1 = model 1 (WM); m2 = model 2 (GM); β = beta coefficients from the linear regressions

between number of childbirths and each model; σ = standard errors of the beta coefficients; ρ =

age-adjusted correlation between the modality-specific brain age gap estimates.

2.4.3. Previous childbirths and regional WM tracts

To test for unique contributions by each tract to the global WM association with previous child-

births, a multiple regression analysis was run with all tract-specific BAG estimates as independent

variables and number of childbirths as the dependent variable, before eliminating the tracts one at

a time to compare the log-likelihood of the full and reduced models. The significance of model dif-

ferences was calculated using Wilk’s theorem as described in Section 2.4.2. In addition, the reduced

χ2 values for each of the models were calculated to account for the difference in number of input

variables to the full and reduced models (13 for the full model including 12 tracts + age, versus 11

for the reduced models where each of the tracts were eliminated one by one). Next, we performed

separate regression analyses for each tract-specific BAG estimate versus number of childbirths, be-

fore testing for differences between the associations using pairwise Z tests for correlated samples

(Eq. 1; Section 2.4.2).

3. Results

The age prediction accuracies for the global WM and GM models, as well as each of the the tract-

specific WM models are shown in Table 2. The associations between number of previous childbirths

and BAG estimates based on each of the predictions are shown in Table 3.
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3.1. Previous childbirths and global WM ageing

A higher number of previous childbirths was associated with lower global WM BAG, as shown in

Table 3. The model including potential confounding factors showed a corresponding association of

β = −0.04, SE = 0.007, t = −5.10, p = 3.46 × 10−7, indicating that assessment location, education,

ethnic background, BMI, diabetic status, hypertension, smoking and alcohol intake, menopausal

status, and OC and HRT use could not fully explain the association between number of childbirths

and global WM BAG. The mean difference in global WM ageing between parous and nulliparous

women was t = 3.53, p = 4.15 × 10−4; effect size d = 0.09 ± 0.03 (d error).

Table 2: Average R2, root mean square error (RMSE), mean absolute error (MAE), and correlation
(r) between predicted and chronological age for the age prediction models. WM = white matter,
GM = grey matter; ATR = anterior thalamic radiation; CST = corticospinal tract; CG = cingulate
gyrus; CING = cingulum hippocampus; FMAJ = forceps major; FMIN = forceps minor; IFOF =
inferior fronto-occipital fasciculus; ILF = inferior longitudinal fasciculus; SLF = superior longitu-
dinal fasciculus; UF = uncinate fasciculus; SLFT = superior longitudinal fasciculus temporal; CC
= corpus callosum; CI = confidence interval.

Global predictions

Modality R2 RMSE MAE r [95% CI] p

WM 0.51 ± 0.02 5.06 ± 0.11 4.10 ± 0.09 0.72 [0.71, 0.73] <0.001

GM 0.32 ± 0.02 5.98 ± 0.13 4.97 ± 0.11 0.57 [0.55, 0.58] <0.001

Predictions for each WM tract

Tract R2 RMSE MAE r [95% CI] p

ATR 0.31 ± 0.02 6.03 ± 0.13 4.92 ± 0.12 0.56 [0.54, 0.57] <0.001

CST 0.15 ± 0.02 6.69 ± 0.14 5.53 ± 0.13 0.38 [0.37, 0.40] <0.001

CG 0.19 ± 0.02 6.54 ± 0.13 5.38 ± 0.12 0.44 [0.42, 0.45] <0.001

CING 0.12 ± 0.02 6.81 ± 0.14 5.64 ± 0.12 0.34 [0.32, 0.36] <0.001

FMAJ 0.14 ± 0.02 6.71 ± 0.13 5.55 ± 0.12 0.38 [0.37, 0.41] <0.001

FMIN 0.26 ± 0.02 6.24 ± 0.13 5.09 ± 0.12 0.51 [0.49, 0.52] <0.001

IFOF 0.25 ± 0.02 6.29 ± 0.13 5.16 ± 0.12 0.50 [0.48, 0.51] <0.001

ILF 0.18 ± 0.02 6.55 ± 0.14 5.40 ± 0.13 0.43 [0.41, 0.44] <0.001

SLF 0.18 ± 0.02 6.54 ± 0.13 5.40 ± 0.12 0.43 [0.41, 0.45] <0.001

UF 0.18 ± 0.03 6.56 ± 0.13 5.42 ± 0.12 0.42 [0.40, 0.44] <0.001

SLFT 0.17 ± 0.02 6.58 ± 0.14 5.42 ± 0.13 0.42 [0.41, 0.44] <0.001

CC 0.25 ± 0.02 6.26 ± 0.13 5.13 ± 0.12 0.50 [0.49, 0.52] <0.001
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Table 3: Associations between each of the brain age gap estimates and number of previous childbirths (βCB ,
standard error (SE), t, p, and pcorr). Chronological age was included in the analyses for covariate purposes
and p-values are reported before and after correction for multiple comparisons, with corrected p-values <
0.05 highlighted in bold. WM = white matter, GM = grey matter; ATR = anterior thalamic radiation;
CST = corticospinal tract; CG = cingulate gyrus; CING = cingulum hippocampus; FMAJ = forceps major;
FMIN = forceps minor; IFOF = inferior fronto-occipital fasciculus; ILF = inferior longitudinal fasciculus;
SLF = superior longitudinal fasciculus; UF = uncinate fasciculus; SLFT = superior longitudinal fasciculus
temporal; CC = corpus callosum.

Global associations

Modality βCB SE t p pcorr

WM −0.037 0.007 −5.440 5.46 × 10−8 2.31 × 10−7

GM −0.029 0.005 −5.411 6.43 × 10−8 2.31 × 10−7

Associations for each WM tract

Tract βCB SE t p pcorr

ATR −0.022 0.006 −3.662 2.51 × 10−4 5.03 × 10−4

CST −0.006 0.004 −1.441 0.149 0.158

CG −0.013 0.005 −2.734 0.006 0.010

CING −0.013 0.004 −3.167 0.002 0.003

FMAJ −0.009 0.005 −2.023 0.043 0.055

FMIN −0.021 0.006 −3.734 1.90 × 10−4 4.26 × 10−4

IFOF −0.012 0.006 −2.238 0.025 0.038

ILF −0.008 0.005 −1.586 0.113 0.135

SLF −0.006 0.005 −1.178 0.239 0.239

UF −0.007 0.005 −1.462 0.144 0.158

SLFT −0.011 0.005 −2.150 0.032 0.044

CC −0.029 0.006 −5.245 1.60 × 10−7 4.81 × 10−7

3.2. Previous childbirths and WM ageing versus GM ageing

The age prediction based on the WM model showed higher accuracy compared to the GM prediction

(R2 of 0.51 versus 0.32), as shown in Table 3. To directly compare the model predictions, a post-hoc

Z test for correlated samples (Eq. 1; Section 2.4.2) was run on the model-specific fits of predicted

versus chronological age (Pearson’s r values). The result showed a significant difference in model

performance in favour of the WM model; Z = -11.90, p = 1.06 × 10−32.

When comparing regression models including both WM and GM-based BAG estimates to models

including only one of the modalities, both the WM-based and the GM-based estimates were found

to contribute uniquely to the association with number of previous childbirths, as shown in Table 4.

The Z test for differences in associations (Eq. 1; Section 2.4.2) revealed similar associations between

number of childbirths and WM-based versus GM-based BAG estimates, as shown in Table 5.
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Table 4: Difference in log-likelihood (∆LL) between regression analyses where grey matter (GM) and white
matter (WM)-based brain age gap estimates were eliminated one by one, compared to a model where both
were included. The log likelihood (LL) value for the model including both modalities was -12471. Reported
are p values before and after correction for multiple comparisons, with corrected p-values < 0.05 highlighted
in bold.

Left-out modality LL ∆LL Z p pcorr

WM -12479 7.750 3.937 3.436e-04 4.03 × 10−4

GM -12479 7.592 3.897 4.026e-04 4.03 × 10−4

Table 5: Difference in the associations (β) between number of previous childbirths and white matter (WM)
versus grey matter (GM)-based brain age estimates (Eq. 1). SE = standard error.

βWM ± SE βGM ± SE Z p

-0.037 ± 0.007 -0.029 ± 0.005 1.04 0.30

3.3. Previous childbirths and regional WM tracts

Significant (p < 0.05) associations between a higher number of previous childbirths and lower WM

BAG estimates were found for ATR, CG, CING, FMIN, IFOF, SLFT, and CC, as shown in Table 3.

The correlations between the tract-specific BAG estimates are shown in Figure 1. CC contributed

uniquely to the global WM association with number of previous childbirths, as shown in Table

6. Pairwise Z tests for differences in associations revealed that ATR and FMIN had significantly

stronger associations with previous childbirths compared to SLF, while CC was more strongly

associated with previous childbirths than CST, CG, FMAJ, IFOF, ILF, SLF, UF, and SLFT, as

shown in Figure 2.
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Figure 1: The correlations (Pearson’s r) between tract-specific brain age gap (BAG) estimates. The BAG
values were first corrected for chronological age using linear models [67], and the residuals were used in
the correlation analysis. ATR = anterior thalamic radiation; CST = corticospinal tract; CG = cingulate
gyrus; CING = cingulum hippocampus; FMAJ = forceps major; FMIN = forceps minor; IFOF = inferior
fronto-occipital fasciculus; ILF = inferior longitudinal fasciculus; SLF = superior longitudinal fasciculus; UF
= uncinate fasciculus; SLFT = superior longitudinal fasciculus temporal; CC = corpus callosum.
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Table 6: Difference in log-likelihood (∆LL) between regression analyses against number of previous childbirths
(including age as a covariate). The difference is calculated between models where all tracts are included and
models where single tracts are left out one at a time. Reported are p-values before and after correction for
multiple comparisons, with corrected p-values < 0.05 highlighted in bold. X2

red = reduced chi-squared values
for each reduced model. For the full model, X2

red = 0.9686. ATR = anterior thalamic radiation; CST =
corticospinal tract; CG = cingulate gyrus; CING = cingulum hippocampus; FMAJ = forceps major; FMIN
= forceps minor; IFOF = inferior fronto-occipital fasciculus; ILF = inferior longitudinal fasciculus; SLF =
superior longitudinal fasciculus; UF = uncinate fasciculus; SLFT = superior longitudinal fasciculus temporal;
CC = corpus callosum.

Left-out tract ∆LL Z p pcorr X2
red

ATR 1.855 1.926 0.125 0.645 0.9689

CST 0.082 0.406 0.735 0.783 0.9685

CG 0.024 0.218 0.779 0.783 0.9685

CING 1.599 1.788 0.161 0.645 0.9688

FMAJ 0.389 0.882 0.541 0.783 0.9686

FMIN 0.644 1.135 0.419 0.783 0.9686

IFOF 0.019 0.193 0.783 0.783 0.9685

ILF 0.254 0.712 0.619 0.783 0.9685

SLF 1.077 1.468 0.272 0.683 0.9687

UF 1.030 1.436 0.285 0.683 0.9687

SLFT 0.283 0.752 0.601 0.783 0.9686

CC 5.995 3.463 0.002 0.024 0.9698
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Figure 2: The differences (Z) between tract-specific associations with previous childbirths. The values
indicate the association with the tract on the y-axis minus the association with the tract on the x-axis
(Eq. 1; Section 2.4.2). The beta values for each association are provided in Table 3 and p values are reported
as the common logarithm (−log10(p)), corrected for multiple comparisons. A −log10(p) value of > 1.3
corresponds to p < 0.05. ATR = anterior thalamic radiation; CST = corticospinal tract; CG = cingulate
gyrus; CING = cingulum hippocampus; FMAJ = forceps major; FMIN = forceps minor; IFOF = inferior
fronto-occipital fasciculus; ILF = inferior longitudinal fasciculus; SLF = superior longitudinal fasciculus; UF
= uncinate fasciculus; SLFT = superior longitudinal fasciculus temporal; CC = corpus callosum.

4. Discussion

The current study investigated the association between previous childbirths and WM brain age by

utilising global and region-specific brain-age prediction. The results showed that a higher number

of previous childbirths was associated with lower brain age in global WM, as well as in WM tracts

including ATR, CG, CING, FMAJ, FMIN, IFOF, SLFT, and CC. CC contributed uniquely to the

global WM association with previous childbirths, and showed a stronger relationship with previous

childbirths relative to several other tracts. When assessing global WM compared to GM brain age

estimates, both modalities showed unique contributions to the association with previous childbirths.

Taken together, these results indicate an association between previous childbirths and global WM

ageing later in life, with regional effects that may be particularly prominent in CC.

4.1. Previous childbirths and global WM ageing

During pregnancy, several adaptations in the female body and brain take place in order to meet the

needs and demands of the offspring, and to secure adequate expression of maternal caregiving [72].
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Maternal adaptation in WM may thus be induced to meet these new demands, such as promoting

myelination to ensure increased efficiency of neural transmission in relevant WM tracts. While spec-

ulative, our results may reflect a long-term benefit of pregnancy-induced WM plasticity, potentially

promoting favourable WM trajectories later in life [73]. In support for long-term positive effects

of childbirth on WM health, parity is associated with protective effects on age-related decline in

learning, memory, and brain health in rats [74]. Further evidence for beneficial effects of parity

on brain ageing stems from a study showing that telomeres are significantly elongated in parous

relative to nulliparous women [7], suggesting that parity may slow the pace of cellular ageing.

The current results are also in line with previous studies in MS patients showing beneficial ef-

fects of pregnancy on WM health [14, 16, 17, 18, 20] and long-term disability progression following

childbirth [20]. Oestradiol, a type of oestrogen that increases 300-fold during pregnancy [75], has

been linked to pregnancy-induced MS remission [76], likely due to its anti-inflammatory and neuro-

plastic properties [77]. Postnatally and during the transition to menopause, oestradiol levels drop

rapidly and may promote a pro-inflammatory immune environment [78], which has been linked to a

high risk of relapse or worsening of symptoms in women suffering from MS [79, 80]. These findings

suggest that high oestradiol levels may have protective effects on WM. Further evidence for this

stems from hormonal replacement studies in postmenopausal women: long-term oestrogen use has

been associated with greater WM volumes [81], indicating a protective effect on WM loss in ageing.

However, oestrogen exposure has also been associated with GM atrophy [82] and higher rates of

ventricular expansion in menopausal women [83], and some evidence suggests that genetic factors

may influence how oestrogen exposure affects brain health [54, 84, 85]. Beside oestrogen, other

hormones such as progesterone, prolactin, oxytocin, and cortisol also fluctuate during pregnancy

and may regulate WM plasticity [86, 87, 88]. While the influence of hormone exposure on brain age-

ing trajectories is currently unclear, other pregnancy-induced adaptations such as the proliferation

of regulatory T cells or fetal microchimerism may also represent mechanisms underlying potential

long-term benefits of pregnancy on brain ageing (for a review see [86]). Future studies may target

the links between hormone- and immune-related neuroplasticity in pregnancy, and the potential

effect of these processes on women’s brain ageing trajectories.

4.2. Modality-specific and regional effects

In line with recent studies demonstrating high age prediction accuracy based on diffusion imaging

data [37, 63, 89, 90, 91], the WM prediction showed higher accuracy compared to the GM model,
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of which the accuracy corresponded to our previous UK Biobank studies [10, 11, 54]. Importantly,

we found unique contributions by both models, suggesting that the diffusion-based WM model may

pick up variance not explained by the T1-based GM model. These findings highlight the relevance

of assessing brain characteristics using different MRI modalities to increase our understanding of

possible long-term effects of pregnancy on the brain.

The most prominent regional WM effect of childbirth was seen in the CC, showing both a unique

contribution and a stronger association relative to several other tracts, potentially indicating regional

variations. While the volume of most WM tracts increase from childhood to young adulthood, peaks

around the fifties, and subsequently declines [28, 51, 92, 93, 94, 52], CC volume has been shown

to peak already in the beginning of the thirties, exhibiting an earlier onset of age-related decline

relative to other WM tracts [52]. Sex differences have also been found in CC ageing, with steeper

volumetric declines in men relative to women [95]. While little is known about pregnancy-induced

alterations in specific WM regions, an increased number of myelinated axons in the CC have been

found in healthy pregnant rats [16], and increased CC remyelination has been observed in pregnant

rat models of demyelination [16, 18]. Although speculative, our findings could potentially reflect

a mitigating effect of parity on age-related CC volumetric decline. However, CC is also the most

accessible WM structure to investigate, given its size and location in the brain, and the relative

simple and coherent microstructural milieu may be easier to resolve using diffusion MRI than other

pathways with more complex tissue structure. The tract extraction procedure could thus result in

higher signal-to-noise ratio for the CC than for the remaining tracts, rendering it more sensitive to

tests of WM associations with childbirth.

4.3. Study limitations

The cross-sectional design of the current study represents a major limitation, and longitudinal

studies following women through pregnancy, postpartum, and into midlife and older age are required

to infer causality between the observed associations. Furthermore, a complex interplay of numerous

underlying processes likely influence the link between parity and WM trajectories. While the current

study controls for a range of confounding factors including neurological disease, mental disorders,

education, lifestyle behaviours, and cardiovascular risk, the number of children a women gives birth

to - as well as their brain health across the lifespan - may also depend on genetic predispositions,

life circumstances, and additional aspects of general health.

Our results could potentially reflect long-term effects of pregnancy-related processes such as
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myelination. However, the exact neurobiological underpinnings of diffusion metrics cannot be di-

rectly inferred, and although we utilised advanced diffusion modelling which is sensitive to biophys-

ical tissue properties [34], the biological substrates underlying these metrics remain to be elucidated

by future studies. In addition, controlling for the effect of extracellular water or indices of hydra-

tion [96] as well as including measures of WM hyperintensities [97, 98] could potentially provide

more accurate models of WM ageing.

While the UK Biobank dataset enables detection of subtle effects due to its large sample size,

the cohort is homogeneous with regard to ethnic background (97% white participants in the current

study), preventing any conclusion about associations between reproductive history and WM ageing

across ethnic groups. The cohort is also characterised by a “healthy volunteer effect” [99], suggesting

that it is not representative of the general population [100]. Hence, the presented results may not

apply to populations beyond those represented in this cohort. However, in context of the historical

lack of research on women’s brain health [101], the current results represent a contribution that

may prompt further study into how female biology influences neural processes involved in normal

ageing - as well as autoimmune conditions and Alzheimer’s disease, of which the risks are higher

for women relative to men [102, 103].

4.4. Conclusion

In summary, the current study found an association between a higher number of previous childbirths

and lower WM brain age, in line with previous studies showing relationships between parity and

brain characteristics in midlife and older age [9, 11, 15]. As outlined above, a complex interplay

of numerous underlying processes likely influence the link between previous childbirths and brain

health in older age. Thus, while our results may suggest that reproductive history influences women’s

WM ageing trajectories, prospective longitudinal studies assessing this multi-factorial relationship

are greatly needed to increase the knowledge about women’s brain health across the lifespan.
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