
A modified fluctuation test for elucidating drug resistance in microbial
and cancer cells

Pavol Bokes1 and Abhyudai Singh2

Abstract— Clonal populations of microbial and cancer cells
are often driven into a drug-tolerant persister state in response
to drug therapy, and these persisters can subsequently adapt
to the new drug environment via genetic and epigenetic mech-
anisms. Estimating the frequency with which drug-tolerance
states arise, and its transition to drug-resistance, is critical
for designing efficient treatment schedules. Here we study a
stochastic model of cell proliferation where drug-tolerant per-
sister cells transform into a drug-resistant state with a certain
adaptation rate, and the resistant cells can then proliferate
in the presence of the drug. Assuming a random number of
persisters to begin with, we derive an exact analytical expression
for the statistical moments and the distribution of the total cell
count (i.e., colony size) over time. Interestingly, for Poisson
initial conditions the noise in the colony size (as quantified by
the Fano factor) becomes independent of the initial condition
and only depends on the adaptation rate. Thus, experimentally
quantifying the fluctuations in the colony sizes provides an
estimate of the adaptation rate, which then can be used to
infer the starting persister numbers from the mean colony size.
Overall, our analysis introduces a modification of the classical
Luria–Delbrück experiment, also called the “Fluctuation Test”,
providing a valuable tool to quantify the emergence of drug
resistance in cell populations.

I. INTRODUCTION

The Luria–Delbrück experiment, also called the “Fluc-
tuation Test”, introduced 75 years ago, demonstrated that
genetic mutations arise randomly in the absence of selection
— rather than in response to selection — and led to a Nobel
Prize. We start by reviewing this historic experiment, and
highlight the subsequent development of mathematical theory
to extract meaningful information from fluctuations in the
data.

By the early 20th century it was known that bacteria
can acquire resistance to infection by phages (bacterial
viruses). However, it was debated whether mutations leading
to resistance were directly induced by the virus (Lamarckian
theory), or if they arose randomly in the population before
viral infection (Darwinian theory). To discriminate between
these alternative hypotheses, Luria & Delbrück designed
an elegant experiment where single cells were isolated and
grown into colonies. After allowing the colonies to grow for
some duration, they were infected by the T1 phage, and the
number of resistant bacteria were counted across colonies.
If mutations are virus-induced (i.e., no genetic heritable
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Fig. 1. The Luria–Delbrück fluctuation test. Single cells are expanded
into colonies and then infected by bacteriophage T1. If resistance mutations
are virus-induced, then the number of resistant cells would follow a Poisson
distribution across colonies. In contrast, if mutant cells arise spontaneously
prior to viral exposure, then there will be considerable colony-to-colony
fluctuations in the number of surviving cells, including “jackpot” popu-
lations where mutations happened early in the lineage expansion causing
many cells to be resistant.

component to resistance), then each bacterium has a small
and independent probability of acquiring resistance, and the
colony-to-colony fluctuations in the number of resistant cells
should follow Poisson statistics. In contrast, if mutations
occur randomly before viral exposure, then the number of
surviving bacteria will vary considerably across colonies de-
pending on when the mutation arose in the colony expansion
(Fig. 1). The data clearly showed a non-Poissonian skewed
distribution for the number of resistant bacteria validating
the Darwinian theory of evolution [1].

The Luria–Delbrück experiment, that came to be known
as the “Fluctuation Test”, not only addressed a fundamental
evolutionary question leading to a Noble Prize, but also laid
the foundations for the field of bacterial genetics. Apart from
its biological significance, the fluctuation test exemplifies the
usage of stochastic analysis for uncovering hidden processes
even though the underlying cell states may not be directly
observable. Publication of the Luria–Delbrück article in 1943
catalyzed rich theoretical work deriving probability distribu-
tions for the number of resistant cells based on different
biological assumptions [2], [3], [4], [5], and led to statistical
methods for estimating mutation rates from fluctuations in
the data [6], [7], [8], [9]. We refer the reader to [10] for an
excellent review of mathematical developments related to the
Luria–Delbrück experiment.

The fluctuation test was recently used to study cancer
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Fig. 2. Stochastic phenotypic switching underlying cancer drug resistance. Two models for cancer drug resistance: random mutations lead to stably-
resistant cells within the population prior to drug exposure (mutation model); stochastic switching between non-resistant and transiently-resistant states
prior to drug exposure randomly primes a small subpopulation of cells to be drug tolerant (stochastic model). Upon drug exposure, the drug-tolerant cells
survive with high probability, and transform into a stably-resistant cell. The Luria–Delbrück experiment with melanoma cells revealed non-Poissonian
fluctuations in the number of surviving cells across colonies. The extent of fluctuations was significantly smaller than what is expected in the mutation
model, but consistent with the stochastic model [11].

drug resistance [11], [12]. Individual melanoma cells were
isolated from a clonal cell population by singe-cell FACS
sorting, and then grown into colonies. After allowing single
cells to expand for a few weeks, the colonies were treated
with a targeted cancer drug, vemurafenib. Intriguingly, the
colony-to-colony fluctuations in the number of surviving
cells was significantly larger than a Poisson distribution, but
an order of magnitude smaller than what is predicted by
the mutation model (Fig. 2). Subsequent analysis showed
that stochastic expression of several resistant markers drives
individual cells to randomly switch between non-resistant
and drug-tolerant states prior to drug exposure, and the latter
state can transform into a stably-resistant state in the presence
of the drug [11]. Motivated by this work we consider a
system where a random number of drug-tolerant cells survive
drug exposure, and then irreversibly transform to a drug-
resistant state with a certain adaptation rate. Our analysis
shows that colony-to-colony fluctuations in the total cell
count measured at single time point post drug exposure can
be used to infer both the initial number of tolerant cells and
their adaptation rate.

This paper is organized as follows. Section II introduces
the model and its master equation. Statistical moments of
the cell population size are derived in Section III. The joint
distribution of the number of tolerant and resistant cells is
characterized in terms of its generating function in Section
IV. The solution starting from one non-resistant cell is
interpreted as an exponentially delayed Yule growth process
in Section V. The generating function for the total population
size (tolerant plus resistant cells) is given in Section VI.
Section VII provides a recursive formula for the probability
mass function of the total population size for a Poisson initial
condition. The paper is concluded in Section VIII.

II. MODEL FORMULATION

The number of drug-tolerant (x(t)) and drug-resistant
(y(t)) cells are modelled by a bivariate continuous-time
Markov chain with discrete state space {0, 1, . . .} ×
{0, 1, . . .}. The joint probability mass function p = p(x, y, t)
of x(t) and y(t) satisfies the forward Chapman–Kolmogorov
equation [13]

ṗx,y =
∑

(x̃,ỹ) 6=(x,y)

W (x, y|x̃, ỹ)px̃,ỹ

−
∑

(x̃,ỹ) 6=(x,y)

W (x̃, ỹ|x, y)px,y,
(1)

where the dot indicates the time derivative and W (x̃, ỹ|x, y)
determines the transition rates in the Markov chain. They are
of the following kinds:

Adaptation
W (x− 1, y + 1|x, y) = ax, (2)

in which a is the adaptation rate per individual cell;
Proliferation

W (x, y + 1|x, y) = y; (3)

the cell doubling rate is set to one without loss of
generality.

With choices (2)–(3), the forward Chapman–Kolmogorov
equation (1) becomes

ṗx,y = a(x+1)px+1,y−1+(y−1)px,y−1−(ax+y)px,y. (4)

At the initial time t = 0, we impose an initial condition on
(4) of the form

px,y(0) = p(0)x,y. (5)

Specifically, we will focus on a situation when there are
initially no drug-resistant cells and a Poisson-distributed
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Fig. 3. One hundred realizations of total cell count z(t) = x(t)+y(t) (gray
paths) are compared to the mean value (black solid curve) and confidence
limits (dashed gray curves). Initially there are only drug-tolerant cells, and
their number is drawn from the Poisson distribution with mean P = 10.
The rate of adaptation to the drug is set to a = 0.3 (in the units of cell
doubling rate).

number of drug-tolerant cells, i.e.

p(0)x,y =
e−PP xδy,0

x!
, (6)

where P is the initial mean cell count. The symbol δi,j ,
where i and j are discrete indices, represents here and below
the Kronecker delta symbol, which is one if i = j and
zero otherwise. Sample paths of total cell count (both drug-
tolerant and drug-resistant cells) are shown in Fig. 3.

III. MOMENTS

For nonnegative integers i and j we define the joint
moments of the cell counts by

〈xi(t)yj(t)〉 =
∞∑
x=0

∞∑
y=0

xiyjpx,y(t). (7)

We will focus specifically on the first- and second-order
moments, i.e. we take i, j ≥ 0, i+ j ≤ 2.

Differential equations for the moments (7) are obtained by
multiplying the master equation (4) by the monomial xiyj

and summing over all states x, y ∈ {0, 1 . . .} × {0, 1, . . .}.
For the first-order moments doing so yields

˙〈x〉 = −a〈x〉, ˙〈y〉 = a〈x〉+ 〈y〉, (8)

and for the second-order ones we get
˙〈x2〉 = a〈x〉 − 2a〈x2〉, (9)
˙〈y2〉 = a〈x〉+ 〈y〉+ 2a〈xy〉+ 2〈y2〉, (10)
˙〈xy〉 = −a〈x〉+ a〈x2〉+ (1− a)〈xy〉. (11)

Thanks to the linear dependence of the transition rates (2)–
(3) on the system state, the moment equations (8)–(11) are
closed to the given (here second) order [14], [15], [16].

The moments of the initial distribution (6) are given by

〈x(0)〉 = P, 〈x2(0)〉 = P 2 + P, (12)

〈y(0)〉 = 〈y2(0)〉 = 〈x(0)y(0)〉 = 0, (13)
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Fig. 4. The Fano factor (upper panel) and the squared coefficient of
variation (lower panel) of the total cell count as functions of time t
for selected values (detailed inset) of the adaptation rate a . The initial
population is drug-tolerant and its size is drawn from the Poisson distribution
with mean P = 10.

and provide the initial condition for the moment equations
(8)–(11).

In addition to the partial cell counts, we are particularly
interested in the total cell count, which is defined by

z(t) = x(t) + y(t). (14)

Equations

〈z(t)〉 = 〈x(t)〉+ 〈y(t)〉, (15)

〈z2(t)〉 = 〈x2(t)〉+ 〈y2(t)〉+ 〈x(t)y(t)〉 (16)

express the moments of the total cell count (14) in terms of
the marginal moments (7).

Integrating the linear system of ordinary-differential equa-
tions (8)–(11) subject to the initial condition (12)–(13), and
then inserting the result into (15) and (16), yields

〈z(t)〉 = (aet + e−at)P

1 + a
(17)

for the mean cell count and

FF(t) =
〈z2(t)〉
〈z(t)〉

− 〈z(t)〉

=
2 + a

(
3− (2 + a)e(1+a)t + 2(1 + a)e(2+a)t

)
(2 + a)(1 + ae(1+a)t)

(18)
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for the Fano factor (the variance-to-mean ratio). The Fano
factor increases with time, exhibiting exponential growth
FF(t) ∼ 2+2a

2+a e
t as t→∞ (cf. Fig 4, top). Increasing adap-

tation rate increases the Fano factor. Combining (17) and (18)
we obtain other useful measures of variability, namely the
(squared) standard deviation SD2(t) = FF(t)〈z(t)〉 and the
(squared) coefficient of variation CV2(t) = FF(t)/〈z(t)〉.
The squared coefficient of variation increases with time
from the Poissonian value CV2(0) = P−1, and plateaus at
CV2(∞) = lim t→∞FF(t)/〈z(t)〉 = 2(1+a)2/a(2+a)P .
For a � 1 (fast adaptation), CV2(t) plateaus at twice its
initial value; for a� 1 (slow adaptation), the plateau value
becomes infinitely large, and the increase towards the plateau
is highly sigmoid. Thus, low adaptation rates lead to small
values of the coefficient of variation initially but large values
at later times (cf. Fig 4, bottom).

In the next section, we go beyond the mean and variance
and characterize the underlying distribution in terms of the
generating function of the probability mass function.

IV. GENERATING FUNCTION

The joint generating function of cell counts x(t) and y(t)
is defined by

G(ξ, η, t) =
∞∑
x=0

∞∑
y=0

ξxηypx,y(t). (19)

Multiplying the forward Chapman–Kolmogorov equation (4)
by ξxηy and summing over all states x, y ∈ {0, 1 . . .} ×
{0, 1, . . .}, we derive a linear first-order partial differential
equation for the generating function,

∂G

∂t
= a(η − ξ)∂G

∂ξ
+ (η − 1)η

∂G

∂η
. (20)

Equation (20) is subject to an initial condition that is given
by the generating function of the initial distribution (5), i.e.

G(ξ, η, 0) = G(0)(ξ, η) =

∞∑
x=0

∞∑
y=0

ξxηyp(0)x,y. (21)

Below, we solve the initial-value problem (20)–(21) using
the method of characteristics.

The characteristic system associated with the first-order
partial differential equation (20) reads

ξ̇ = a(ξ − η), η̇ = η(1− η). (22)

We consider a characteristic curve that passes through a point
(ξ0, η0, t0) in the domain of the generating function (19), i.e.
we impose a (terminal) condition

ξ(t0) = ξ0, η(t0) = η0 (23)

on the characteristic system (22).
Solving the logistic equation for η = η(t) in (22) by

separating the variables η and t yields

η(t) =
η0e

t−t0

1 + η0(et−t0 − 1)
. (24)

Solving the inhomogeneous linear equation for ξ = ξ(t) in
(22) by variation of constants gives

ξ(t) = ξ0e
a(t−t0) − a

∫ t

t0

ea(t−s)η(s)ds. (25)

Substituting s = t0 − τ in (25) gives

ξ(t) = ea(t−t0)
(
ξ0 + a

∫ t0−t

0

eaτη(t0 − τ)dτ
)
. (26)

Inserting (24) into (26), we obtain

ξ(t) = ea(t−t0)
(
ξ0 + a

∫ t0−t

0

η0e
(a−1)τdτ

1− η0(1− e−τ )

)
. (27)

The solution of the partial differential equation (20) is
constant on a characteristic curve, so that

G(ξ0, η0, t0) = G(ξ(t0), η(t0), t0) = G(ξ(0), η(0), 0)

= G(0)(ξ(0), η(0)). (28)

Inserting (24) and (27) with t = 0 into (28), and then
dropping, for convenience, the subscript zero from the in-
dependent variables ξ0, η0, and t0, we arrive at

G(ξ, η, t) = G(0)

(
e−at

[
ξ + a

∫ t

0

ηe(a−1)τdτ

1− η(1− e−τ )

]
,

ηe−t

1− η(1− e−t)

)
, (29)

which gives the general solution to the initial value problem
(20)–(21).

V. PROBABILISTIC INTERPRETATION

Here we supplement the formal solution given in the pre-
vious section by a probabilistic interpretation. The solution
becomes tractable for simple initial conditions, in particular
if initially there is (a) a single drug-resistant cell or (b) a
single drug-tolerant cell. Below we show that in these two
scenarios the formal solution corresponds to the Yule and the
exponentially delayed Yule process, respectively.

(a) The initial presence of a single drug-resistant cell
amounts to the initial distribution

p(0)x,y = δx,0δy,1 (30)

with generating function

G(0)(ξ, η) = η. (31)

Substituting (31) into the solution formula (29) gives

G(ξ, η, t) =
ηe−t

1− η(1− e−t)
=
∞∑
y=0

ηy+1e−t(1− e−t)y.

(32)
Collecting the coefficients at powers of η, we conclude that
the number of y at time t is geometrically distributed with
probability mass function q(1 − q)y−1, where y ≥ 1 and
q = e−t. This is a well-known solution to the Yule process
[17].
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(b) The initial presence of a single drug-tolerant cell
corresponds to probability mass function

p(0)x,y = δx,1δy,0 (33)

with generating function

G(0)(ξ, η) = ξ. (34)

Inserting (34) into the solution formula (29), we find

G(ξ, η, t)

= e−at
(
ξ + a

∫ t

0

ηe(a−1)τdτ

1− η(1− e−τ )

)
= e−atξ +

∞∑
y=0

ηy+1

∫ t

0

ae−a(t−τ)e−τ (1− e−τ )ydτ. (35)

The first term in (35) pertains to the possibility that the
initial cell does not adapt and remains tolerant to the drug.
The probability of non-adaptation decreases exponentially
in time with rate a. The remaining terms are indicative of
a Yule type growth following an exponentially distributed
lag. Mathematically, the delay is implemented by convolving
the Yule geometric distribution with the probability density
function of the exponential distribution.

VI. TOTAL DISTRIBUTION

By the total distribution we understand the distribution of
the total count of cells z(t) = x(t)+ y(t) (both tolerant and
resistant to the drug). The total distribution can be expressed
in terms of the joint probability distribution as

pz(t) =

z∑
x=0

px,z−x(t). (36)

The total generating function (the generating function of
the total distribution) is obtained by evaluating the joint
generating function (19) along the diagonal,

F (ζ, t) =
∞∑
z=0

ζzpz(t) =
∞∑
z=0

z∑
x=0

ζzpx,z−x(t)

=
∞∑
x=0

∞∑
y=0

ζx+ypx,y(t) = G(ζ, ζ, t). (37)

Inserting ξ = η = ζ into the solution formula (29), we find

F (ζ, t) = G(0)

(
e−at

[
ζ + a

∫ t

0

ζe(a−1)τdτ

1− ζ(1− e−τ )

]
,

ζe−t

1− ζ(1− e−t)

)
(38)

for the total generating function at time t.
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Fig. 5. The probability mass function (45) and (49)–(50) of the total cell
count for an increasing sequence of times t. The initial (t = 0) distribution
is Poisson with mean P = 10 (upper left panel). The initial population is
drug-tolerant and the rate of adaptation to the drug is a = 0.3.

VII. POISSONIAN INITIAL CONDITION

Here we provide an iterative formula for the total dis-
tribution for the Poissonian initial population of tolerant
cells. The method is based on an expansion of the total
generating function and has previously been used in studying
generalized Poisson distributions [18] and has also been
applied in stochastic gene expression [19].

The generating function of the Poisson distribution (6) of
initial drug-tolerant cell population is given by

G(0)(ξ, η) = eP (ξ−1), (39)

with which the total generating function formula (38) be-
comes

F (ζ, t) = eP (f(ζ,t)−1), (40)

where

f(ζ, t) = e−at
(
ζ + a

∫ t

0

ζe(a−1)τdτ

1− ζ(1− e−τ )

)
. (41)

Expanding (41) in powers of ζ, and then substituting 1 −
e−τ = u in the integral(s), yields

f(ζ, t) = e−at

(
ζ + a

∞∑
z=0

ζz+1

∫ t

0

e(a−1)τ (1− e−τ )zdτ

)

= e−at

(
ζ + a

∞∑
z=0

ζz+1

∫ 1−e−t

0

uz(1− u)−adu

)

= e−at

(
ζ + a

∞∑
z=1

ζzB(1− e−t; z; 1− a)

)
, (42)

where
B(v;α, β) =

∫ v

0

uα−1(1− u)β−1du (43)

is the incomplete beta function [20].
The total probability mass function can be expressed in

terms of its generating function as

pz(t) =
DzF (ζ, t)

z!

∣∣∣∣
ζ=0

, (44)
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where D represents the differential operator d/dζ. For z = 0,
(44) trivially gives the Poissonian probability of finding no
cells in the initial population

pz(0) = F (0, t) = eP (f(0,t)−1) = e−P . (45)

In order to find the probabilities of having positive numbers
of cells, we differentiate (40) to find

DF (ζ, t) = PF (ζ, t)Df(ζ, t). (46)

Evaluating the (z − 1)th derivative of (46) according to the
Leibniz product rule yields

DzF (ζ, t) = P
z−1∑
i=0

(
z − 1

i

)
DiF (ζ, t)Dz−if(ζ, t). (47)

Manipulating the binomial coefficients in (47) gives

DzF (ζ, t)

z!
= P

z−1∑
i=0

(
1− i

z

)
DiF (ζ, t)

i!

Dz−if(ζ, t)

(z − i)!
. (48)

Taking ζ = 0 in (48) and using (44) yields

pz(t) = P
z−1∑
i=0

(
1− i

z

)
pi(t)κz−i(t), (49)

where

κz(t) =
Dzf(ζ, t)

z!

∣∣∣∣
ζ=0

= e−at
(
δz,1 + aB(1− e−t; z; 1− a)

)
(50)

is obtained from the power-series expansion (42). Formula
(49) expresses the zth term of the total probability mass
function using the 0th, 1st, . . ., (z − 1)th terms, and can be
used to evaluate the distribution recursively. The temporal
evolution of the total cell count distribution is exemplified in
Fig. 5.

VIII. CONCLUSION

In this paper, we formulated and analyzed a modification
of the Luria–Delbrück experiment, in which the initially
drug-tolerant cells become resistant to the treatment and
begin to exponentially proliferate. We derived formulae (17)–
(18) for the mean and the Fano factor and (49)–(50) for the
probability mass function of the cell population size. The
results are suitable for statistical inference of the adaptation
rate and the initial condition.

The recursive calculation by (49)–(50) of the probability
mass function remains numerically stable even at large times
for large values of the cell population size. Nevertheless, we
think that in future work it would be useful to complement
the current discrete-distribution result by a continuous rep-
resentation that would specifically apply in the large-time
regime. Additionally, the current model can be extended in
a number of ways, e.g. by modeling cell adaptation and/or
cell cycle by a multi-step phase-type process [21], [22].
We believe that the presented analysis, and its possible
generalization along the suggested lines, will contribute
towards the understanding of the dynamics of drug resistance

in microbial and cancer cells. Finally, the fluctuation test
framework can be also used to characterize reawakening of
dormant cells, such as bacterial spores, and has recently
uncovered memory in the reactivation of latent HIV from
human immune cells [23].
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