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Abstract

To overcome well-known difficulties in establishing reliable models based on large data
sets, the Random Forest Regression (RFR) method is applied to study economical
breeding and milk production of dairy cows. As for the features of RFR, there are
several positive experiences in various areas of applications supporting that with RFR
one can achieve reliable model predictions for industrial production of any product
providing a useful base for decisions. In this study, a data set of a period of ten years
including about eighty thousand cows was analysed by means of RFR. Ranking of
production control parameters is obtained, the most important explanatory variables
are found by computing the variances of the target variable on the sets created during
the training phases of the RFR. Predictions are made for the milk production and the
conception of the calves with high accuracy on given data and simulations are used to
investigate prediction accuracy. This paper is primarily concerned with the
mathematical aspects of a forthcoming work focused on the agricultural viewpoints. As
for future mathematical research plans, the results will be compared with models based
on factor analysis and linear regression.

Introduction 1

Reproductive management is a key factor in economic dairy production and poor 2

practice can cause considerable economic loss, mainly because of decreased milk yield 3

per cow per lactation and decreased number of calves per year per cow. However, it is 4

also associated with reduced conception rates [1]. Conception rate is determined by 5

heat detection, the choice of the first insemination time after calving, induction of 6

ovulation, and ovulation synchronization program. As we seek for the best conception 7

rate, it is also worth noting the existence of some environmental features and 8

management practices that would directly affect insemination, thus have adverse effects 9

on reproduction performance. The efficiency, accuracy and timing of artificial 10

insemination (AI) remain a major challenge to improving reproductive and economic 11

efficiencies of many dairy farms [6, 14]. Various studies have shown that regression 12

models are of great importance in addressing the issues around the conception rate. 13

Some of them have been used in prediction of the optimal time of insemination [12]. 14
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Probability of conception was analysed using a logistic procedure which uses maximum 15

likelihood method to fit linear logistic regression [5]. However, for the logistic 16

regression, the target variables are assumed to be independent and single valued, yet 17

some data are categorical. Due to these deficiencies, other methods like machine 18

learning procedures are sort to be used to address such problems. Various machine 19

learning algorithms including Bayesian networks, decision trees and in particular 20

random forest algorithms have been used for such tasks. Bayesian networks are mainly 21

suited for small and incomplete data [9] with challenges in discretizing continuous 22

variables and implementing recursive feedback loops [13]. Decision trees, as well as 23

RFRs can be used for classification and regression too. RFR algorithm has been widely 24

utilized due to its ability to accommodate complex relationships. RFR calculations can 25

be trivially parallelized, so they can be done on multiple cores of the same CPU. 26

Additionally, the RFR algorithm involves very few statistical assumptions and its 27

hyperparameters can be used to reduce overfitting. The performance of RFR can be 28

explained by the power of ensemble methods to generate high-performance regressors by 29

training a collection of individual regressors. RFR was considered in a study of 30

predicting pregnant versus non pregnant cows at the time of insemination and it proved 31

to be significantly better than other machine learning techniques in [17]. Random 32

forest was also used in attempt to predict conception outcome in dairy cows [17]. On 33

the other hand, mathematical models for the lactation are not new either. Models of 34

lactation curves were early referenced by [3], but due to limitation of the computers 35

and computational difficulties experienced by then, the early models were based on 36

simple logarithmic transformations of exponentials, polynomials, and other linear 37

functions [15]. Another study gave an overview of the parametric models used to fit of 38

lactation curves in dairy cattle by considering linear and non-linear functions [10]. 39

Machine learning approaches have also proved to be vital in the lactation study. 40

Different models based on machine learning in both non-autoregressive and 41

autoregressive cases have been investigated in [16] exhibiting the best performance for 42

both cases with the random forest algorithm. Regression trees have been used in the 43

past to analyse different factors affecting lactation. Researches on effects of the dry 44

period, the lactation parity, the farm, the calving season, the age of the cow , the year 45

of calving and the calving interval have been performed by several authors [4, 11]. 46

Though, previous studies have used other machine learning based models (including 47

RFR) to predict lactation and successful insemination, the proposed study will adopt 48

RFR technique for the same but with different variables. Our purpose is to investigate 49

how the large collection of data gathered in the last ten years used in milk production 50

factories throughout Europe could effectively be analyzed. Therefore, the aim of this 51

study is to apply random forest regression model to predict factors influencing lactation 52

and the success of insemination (SI) as well as the choice of the time of insemination 53

attempts. 54

Materials and methods 55

For this analysis, a large data set was obtained. However, some data were not useful as 56

some information was missing hence were omitted in the study. All data editing and 57

analyses were conducted in the Python , where pandas was used for data preparation 58

and scikit-learn, an open source machine learning library. We also used the open source 59

fastai library developed at Stanford University ( https://github.com/fastai/fastai). In 60

this study we received a dataset from the Agricultural Department of the University of 61

Szeged collected from three major livestock farms concerning 21 different parameters of 62

82564 Holstein Friesian cows. In this case we considered the variables subdivided into 63

three groups as follows: 64
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V1. Geneology: (i) Settlement (ST in later abbreviation); (ii) Cow ID (ID); (iii) 65

Father (FT); (iv) Parity (Calving Number, CN); (v) Calving Date (CDT); (vi) Sex of 66

1st Calf (SX1); (vii) Sex of 2nd Calf (SX2). 67

V2. Insemination and calving: (i) First Date of Insemination after Calving (FDFB); 68

(ii) Time between calving and first insemination (DFI); (iii) Date of successful 69

insemination after calving (PSIS); (iv) Time between calving and successful 70

insemination (SFAC); (v) Number of unsuccessful inseminations after calving (NUIC); 71

(vi) How many inseminations were unsuccessful in the previous calving (IPAC); (vii) 72

Days open (Number of days to successful insemination in previous lactation, PCIS); 73

(viii) Age in months of conception at heifer (UMP); (ix) Age in months at first calving 74

(MFCA). 75

V3. Lactation: (i) Milk yield in previous lactation (AMPL); (ii) 305-day Milk Yield 76

in previous lactation (AMPLD); (iii) Number of days milking previous lactation 77

(DPLM); (iv) Dry days in previous lactation (PLD); (v) Calving interval (DC). 78

Notice that the data structure was not intended to be the subject of a deep 79

mathematical analysis. Furthermore, it is easy to see that there are parameters with 80

obviously high correlation, on the other hand it would have been more useful to have an 81

access of genuine time series in details instead of accumulated parameters like the 82

calving interval. It is also remarkable that the current data do not involve finer details 83

of production volumes of lactation. Studies concerning lactation and BLUP index [8] 84

will be done in a separate work to be submitted in an agricultural journal. Here we 85

concentrate on the description of the use of RFR techniques and we restrict our 86

attention to the following problems: 87

P1. To estimate the 305-day milk yield in previous lactation on the basis of the 88

variables except for 3(ii). 89

P2. To estimate the number of days open on the basis of the variables except for 90

2(iv). 91

P3. To provide a weighted ranking of the impact of the variables in the answer of 92

the above two questions. 93

For the targets of the problems P1 and P2, we built respective random forests 94

consisting of 1000 decision trees each. The trees are constructed using the familiar 95

CART algorithm with respect to the hyperparameters (https: //doi.org/ 10.1023 96

/A:1010933404324). Each tree is trained on a bootstrap set. The number of samples 97

drawn from the processed training set to form these bootstrap sets equals the number of 98

samples in the processed training set. The number of samples drawn is a 99

hyperparameter. The maximum depth of the trees is also hyperparameter. We did not 100

limit the depth. Figure 1. and Figure 2. depict sample decision trees of depth 3. The 101

depth of the trees used in the models is much bigger. For each tree, there is one node at 102

the start, the root node, that contains all the samples. For each node that has at least 2 103

samples, a split is performed. For each node to be split, the CART algorithm examines 104

the possible splits of all the features for that specific node and the best alternative is 105

considered, according to the used splitting criterion. Subsequently, the interval of the 106

selected feature will be split by the selected value of the feature, resulting in two new 107

nodes. Consequently, the two new nodes will have fewer samples. Then, if one or both 108

of these new nodes have at least 2 samples, the splitting process continues. When there 109

is only 1 sample left in a node, the CART algorithm will not perform the splitting. The 110

minimum number of samples required for splitting is also a hyperparameter and can be 111

changed. We used the default value, 2. The trees are grown as long as no stopping rule 112
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stops the growing process. Pure nodes, where the target variable is identical in all 113

samples, are not split.Nonetheless, we did not use pruning. This way, we got ”fully 114

grown and unpruned trees”(https://scikit-learn.org/ stable/modules/generated/ 115

sklearn.ensemble. RandomForestRegressor.html. and https://doi.org/10.1023 116

/A:1010933404324). 117

Fig 1. Lactation random tree Sample of unpruned random tree for lactation taken
from the data of 82564 Holstein Friesian cows .

Fig 2. Successful insemination random tree Sample of unpruned random tree for
Successful Insemination taken from the data of 82564 Holstein Friesian cows .

In both cases, the prediction value by means of the random forest is the mean of the 118

prediction values of its individual decision trees. 119

Given any tree T and one of it nodes n, our procedure fixes a feature fT,n along 120

with a value vT,n in the range of fT,n. Furthermore the algorithm fixes a prediction 121

value pT,` to every leaf of T . Given a ”virtual cow” C with fT,n-values fT,n(C) (for 122

each node n of T ), our RFR estimate for answering P1. P2 according to tree T is the 123

value rT (C) = pT,`(C) where the leaf `(C) is determined as follows: We start at the root 124

of the tree, and if a node n is reached, the decision for continuing to left or right to a 125

next node is done accordingly, if we have fT,n(C) < vT,n or fT,n(C) ≥ vT,n (cf. Fig 1 126

and Fig 2). Our steps end when reaching a leaf which we set to `(C). 127

The prediction value by means of a random forest is the mean of the prediction 128

values of its individual decision trees. As for standard theoretical background we refer 129

to and the monograph [7] and Breiman [2]. For implementation we used the python 130

machine learning package scikit-learn (https://scikit-learn.org/stable/). As we know, 131

scikit-learn’s RandomForestRegressor object is trained using the CART algorithm. 132

After the training is done, we need to check its score on the test set. If the R2 score 133

of the forest’s predictions on the test set is not good, then we need to fine-tune the 134

hyperparameters of the RFR. When using hyperparameter tuning, we make a grid of 135

the hyperparameters of the RFR (maximum depth of the trees, minimum samples for 136

splitting, change pruning, etc.). Additionally, we need to split the training set into a 137

real training set and a validation set. We will use the latter to find the best set of 138

hyperparemeters. Then we need to train a RFR for each value in the grid, and check 139

their predictive performance using cross-validation. Consequently, the best set of 140

hyperparameters is used for our final model choice. We then train the RFR on the 141

combined training and validation sets, and check its final predictive performance on the 142

test set, that we did not use at until this final step. 143

If the model performs well, we can decide to not deal with hyperparameter tuning, 144

because the model is already good enough. 145

The original data set consists of 82,563 records, but it contains missing data and 146

invalid data. For this reason, not all records were kept. As for the Lactation model, 147

45,461 records were kept, as for the Succesful Insemination model, 82,378 records were 148

kept after the preparation of the data set. In our study, we used 10% of the prepared 149

data set as the test set, and the remainining 90% of the data set as the training set. 150

Actually we ended up having a good model for the first time with great R2 scores on 151

the test set. Hence we did not need hyperparameter tuning and a separate validation 152

set. Of course, hyperparameter tuning could still be done. It could still improve the 153

model by a small margin, but we did not think we needed to do this. 154

It is remarkable that the RandomForestRegressor object of scikit-learn automatically 155

calculates the feature importance values of the variables. The sum of these feature 156
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importances is 1. As for the case of artificial insemination, there are two features that 157

stand out with feature importance values of 0.544 and 0.255. For lactation, there are 158

two features with importances 0.88 and 0.084. Hence we can investigate the effect of the 159

two most important explanatory variables by keeping the remaining variables at their 160

median values. 161

Results and Discussion 162

Our related program files and the detailed outputs are deposited on the departmental 163

webpage( http://www.mgk.u-szeged.hu/karunkrol/kutatas/cow-article). Although 164

random forest models can handle correlation among the data well, we investigated the 165

dataset in this aspect too. 166

Figures 3(a) and 3(b) presents the outcome of correlation coefficient for lactation 167

analysis and successful insemination analysis respectively. It was observed that several 168

variable showed relatively high correlations for the lactation analysis, AMPL and 169

AMPLD ( 0.88), DPLM and PLESI ( 0.86), PLESI and DC (0.84) DPLM and DC (0.73). 170

However for SI analysis IPAC and SFAC (0.73) was the only highly correlated case. 171

Fig 3. Correlation matrix for Lactation and Successful Insemination
Correlation values between various variables for(a) Lactation and (b) Successful
Insemination

Separation of data into the features and targets was achieved by first splitting data 172

into training and testing sets. It is expected that there would be some relationship 173

between all the features and the target value, and so the model learns this relationship 174

during training. With regards to quantifying the predictive information provided by the 175

variables in the entire random forest, the feature importance of the variables plays an 176

important role. It was evident that AMPLD plays a vital role in the Lactation model 177

with a feature importance of 88.0%, followed by DPLM (8.4%). On the other hand the 178

most important predictor variable for SI model was IPAC(54.4%) and DFI (25.5%). 179

Figure 4(a) and 4(b) indicates the feature importance of the explanatory variables in 180

relation to the target variable for lactation and successful inseminations respectively. 181

Fig 4. Features of importance for Lactation and Successful Insemination.
Features importance of variables for (a) Lactation and (b) Successful Insemination in
percentage.

Creating and training the model simply involves instantiation of the program object 182

RandomForestRegressor and fitting it on the training data. This results to a large 183

number of expansive trees that forms the forest (1000 trees in this case), which are 184

essential in making and evaluating the reasonable predictions. The goodness of fit can 185

be evaluated by means of the R2 values shown in Table 1. 186

Table 1. R2 for training and test set for Lactation and SI

Training set Test set
Lactation 0.998 0.987

SI 0.993 0.948

Since the model performed well on the test set, we were not forced to fine-tune its 187

hyperparameters and use a validation set. Fine-tuning of the hyperparameters and 188
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checking the model performance on a separate validation set is likely to further improve 189

the prediction accuracy of our model. This is a possibility to develop the model. 190

Based on the results from features of importance of the random regressor for both 191

the Lactation model and SI model the results of the model are summarized in Tables 2 192

and Table 3. 193

Table 2. Features of importances by the random regressor for the Lactation model

Predictors AMPLD DPLM PLD DC PLESI
Model Parameters 0.880 0.084 0.015 0.004 0.003

Table 3. Features of importances by the random regressor for SI

Predictors IPAC DFI CN PCIS MFCA UMP
Model Parameters 0.544 0.255 0.034 0.019 0.017 0.016

For both target variables, the two most important explanatory variables have 194

significantly higher feature importance values than the rest of the variables. We tried to 195

visualise the way these affect the targets. We made a data set for each target variable 196

by varying both of the two most important explanatory variables while keeping the rest 197

of the variables at their median values. Then we used the trained random forest models 198

to predict the target variables. The results are illustrated in function graph diagrams 199

shown in the concluding Figures 5(a) and 5(b). This way, we can get an idea about the 200

way these two most important variables affect the target variables. The actual effects 201

cannot be visualised in 3D graphs because of the interactions with all the other 202

variables. These graphs can be analysed for designing production strategies without 203

specific mathematical preparation by agricultural experts. 204

Fig 5. RandomForestRegressor predictions for Lactation and Successful
Insemination. Diagram for the Predictions of RFR for (a) Lactation and (b)
Successful Insemination.

Conclusion 205

We established an alternative approach to other machine learning based models 206

concerning Questions P1,P2,P3 by means of random forest regression. The transformed 207

dataset were split into a test size of 10%, the remaining 90% was used to train the 208

forest. The results indicated that when the target was SI, the prediction of the RFR on 209

the test set and the actual targets had an R2 ≈ 0.948. The important features were the 210

IPAC, DFI, CN, PCIS, MFCA and UMP with importance scores in Table 3. When the 211

target was Lactation, the prediction of the RFR on the test set and the actual targets 212

had an R2 ≈ 0.987. The important features of were AMPLD, DPLM, PLD, DC and 213

PLESI with importance scores in Table 2. Various alternative regression methods were 214

used for analysis of this data set but all these attempts failed due to the complexity of 215

data and the large sample size. It seems that the RFR is good for practical applications 216

(as for problems P1, P2 and P3.) 217
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