

A Modular Workflow for Model Building, Analysis, and Parameter

Estimation in Systems Biology and Neuroscience

João P.G. Santos*,1,2,3, Kadri Pajo*,2, Daniel Trpevski1, Andrey Stepaniuk4, Olivia Eriksson1, Anu G. Nair2,5, Daniel

Keller4, Jeanette Hellgren Kotaleski1,2 Andrei Kramer1

1 Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of

Technology, SE-10044 Stockholm, Sweden

2 Department of Neuroscience, Karolinska Institute, SE-17165 Stockholm, Sweden

3 Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Institute of Biomedical Sciences, University of

Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal

4 Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

5 Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

* Contributed equally to this work

Email of the corresponding author: andreikr@kth.se, jeanette@kth.se

ORCID: 0000-0002-0550-0739 (JHK);0000-0002-0395-039X (JS); 0000-0003-2110-7889 (KP); 0000-0001-9068-6744
(DT); 0000-0002-3828-6978 (AK); 0000-0002-2543-4820 (AS); 0000-0003-3280-6255 (DK); 0000-0002-1952-9583
(AGN)

Information Sharing Statement: Both the source code and documentation of the Subcellular Workflow are available at

https://github.com/jpgsantos/Subcellular_Workflow and licensed under GNU General Public License v3.0. The model is

stored in the SBtab format (Lubitz et al. 2016). Model reduction, parameter estimation and sensitivity analysis tools are

written in MATLAB® (RRID:SCR_001622) and require the SimBiology® toolbox. Conversion script to VFGEN

(Weckesser 2008), MOD and SBML (RRID:SCR_007422) is written in R (RRID:SCR_001905). Conversion to SBML

requires the use of libSBML (RRID:SCR_014134). Validations are run in COPASI (RRID:SCR_014260; Hoops et al.

2006), NEURON (RRID:SCR_005393; Hines and Carnevale 1997) and with the subcellular application

(RRID:SCR_018790; available at https://subcellular.humanbrainproject.eu/model/simulations) that uses a solver provided

by STEPS (RRID:SCR_008742; Hepburn et al. 2012). The medium spiny neuron model (Lindroos et al. 2018) used in

NEURON simulations is available in ModelDB database (RRID:SCR_007271) with access code 237653.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.385203doi: bioRxiv preprint

mailto:andreikr@kth.se
mailto:jeanette@kth.se
https://orcid.org/0000-0002-3828-6978
https://github.com/jpgsantos/Code_EPFL
https://subcellular.humanbrainproject.eu/model/simulations
http://modeldb.yale.edu/237653
https://doi.org/10.1101/2020.11.17.385203
http://creativecommons.org/licenses/by-nc/4.0/

Acknowledgements: We thank Pavlo Getta for engineering support. We also thank Geir Halnes for sharing his code for

GSA with us. The simulations were performed on resources provided by the Swedish National Infrastructure for

Computing (SNIC) at Lunarc.

Abstract

Neuroscience incorporates knowledge from a range of scales from molecular dynamics to neural networks. Modeling is a

valuable tool in understanding processes at a single scale or the interactions between two adjacent scales and researchers

use a variety of different software tools in the model building and analysis process. Systems biology, for instance, is

among the more standardized fields. However, conversion between different model formats and interoperability between

various tools is still somewhat problematic. To offer our take on tackling these shortcomings and by keeping in mind the

FAIR (findability, accessibility, interoperability, reusability) data principles, we have developed a workflow for building

and analyzing biochemical pathway models using pre-existing tools that could be utilized for the storage and refinement of

models in all phases of development. We have chosen the SBtab format which allows the storage of biochemical models

and associated data in a single file and provides a human readable set of syntax rules. Next, we implement custom-made

MATLAB® scripts to perform parameter estimation and sensitivity analysis used in model refinement. Additionally, we

have developed a web-based application for biochemical models that allows simulations with either a network free solver

or stochastic solvers and incorporating geometry. Finally, we illustrate convertibility and use of a biochemical model in a

biophysically detailed single neuron model by running multiscale simulations in NEURON. By this we can simulate the

same model in three principally different simulators, describing different aspects of the system, and with a smooth

conversion between the different model formats.

Keywords : interoperability, multiscale modeling, SBtab, global sensitivity analysis, parameter estimation, systems biology

Declarations

Funding: The study was supported by the Swedish research council (VR-M-2017-02806), Swedish e-Science Research
Centre (SeRC), EU/Horizon 2020 no. 785907 (HBP SGA2) and no. 945539 (HBP SGA3); EPFL Blue Brain Project Fund
and the ETH Board Funding to the Blue Brain Project; scholarship PD/BD/114180/2016 from FCT Fundação para a
Ciência e Tecnologia

Conflicts of interest/Competing interests: The authors declare that they have no conflict of interest

Ethics approval: not applicable

Consent to participate: not applicable

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.385203doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.17.385203
http://creativecommons.org/licenses/by-nc/4.0/

Consent for publication: not applicable

Availability of data and material : see Information Sharing Statement

Code availability: see Information Sharing Statement

Introduction

Computational systems biology is a data-driven field concerned with building models of biological systems, most

commonly the intracellular signaling cascades. Methods from systems biology have been proven valuable in neuroscience,

particularly when studying the composition of synapses that can reveal the molecular mechanisms of plasticity, learning

and various other neuronal processes (Bhalla and Iyengar 1999; Hellgren Kotaleski and Blackwell 2010; Li et al. 2012). A

wide variety of different software and toolboxes, each with their own strengths and weaknesses, are available within the

field. This diversity, however, can obstruct model reuse as interoperability between the different software packages and the

convertibility between various file types is only solved in part. Interoperability can either mean that the model built in one

simulator can be run in another or that both simulators interoperate at run-time either at the same or different scales

(Cannon et al. 2014). The former is addressed by standardizing model descriptions, and in systems biology by the standard

machine-readable model formats as XML-based SBML (Systems Biology Markup Language; Hucka et al. 2003) and

CellML (Hedley et al. 2001), and human readable format as SBtab (Lubitz et al. 2016). An analogous model description

language for neurons and networks is the NeuroML (Neural Open Markup Language; Gleeson et al. 2010).

We start by providing examples of the available systems biology tools. We then proceed to describe our approach in

developing a modular workflow to address some of these interoperability issues and present simulation results of an

example use case in various simulators and frameworks. Our workflow starts with a human-readable representation of the

model that is easily accessible to everyone and proceeds through various conversions into different simulation

environments: MATLAB, COPASI, NEURON, and STEPS. Specifically, we will describe the conversion tools we created

for this purpose.

Examples of Software and Toolboxes used in Systems Biology

No software package is perfectly suited for every task, some have programmable interfaces with scripting languages, like

MATLAB's SimBiology toolbox, some focus on providing a fixed array of functions that can be run via graphical user

interfaces, like COPASI, although it now offers a Python toolbox for scripting (Welsh et al. 2018). Most toolboxes and

software packages offer a mixture of the two approaches: fine-grained programmable interface as well as fixed high-level

operations. The extremes of this spectrum are a powerful but inflexible high-level software on one side and a complex,

harder to learn but very flexible library or toolbox with an API on the other. Some examples of general modeling

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.385203doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.17.385203
http://creativecommons.org/licenses/by-nc/4.0/

toolboxes in MATLAB are the SBPOP/SBToolbox2 (Schmidt and Jirstrand 2006), and the PottersWheel Toolbox

(Maiwald and Timmer 2008). Specifically, for Bayesian parameter estimation, there are the MCMCSTAT toolbox (Haario

et al. 2006) in MATLAB, as well as pyABC (Klinger et al. 2018) and pyPESTO (Schälte et al. 2020) in Python, and the

standalone Markov Chain Monte Carlo (MCMC) software GNU MCsim (Bois 2009). For simulations in neuroscience,

examples are NEURON (Hines and Carnevale 1997) and STEPS (Hepburn et al. 2012). Both are used for simulations of

neurons and can include reaction-diffusion systems and electro-physiology.

These software packages do not all use the same model definition formats. Most have some compatibility with SBML,

others use their own formats (e.g. NEURON uses MOD files). Often an SBML file exported into one of these packages

cannot be imported into another package without errors. More generally, SBML has to be translated into code that can be

used in model simulations, i.e. the right-hand side of an ordinary differential equation. There are also several tools that

facilitate the conversion between formats, e.g. the SBFC (The Systems Biology Format converter; Rodriguez et al. 2016)

as well as the more general VFGEN (A Vector Field File Generator; Weckesser 2008).

All toolboxes and software packages have great strengths and short-comings, and each programming language has

different sets of (freely) available libraries which makes the development (or use) of numerical methods more (or less)

feasible than in another language. One such example is the R package CDvine for parameter dependency modeling using

copulas and vines, which has recently been used for modeling parameter spaces in-between MCMC iterations (Eriksson et

al. 2019). This package is not easily replaced in many other languages. The Julia language, however, has a far richer set of

differential equation solvers than R or MATLAB. Each researcher must therefore make decisions that result in the best

compromise for them. If a researcher is familiar with a given set of programming/scripting languages it is probably not

reasonable to expect them to be able to collaborate with other groups in languages they do not know. For this reason, it is

our firm opinion that the conversion of models between different formats is a very important task and it is equally

important to use formats that people can pick-up easily. To make format conversion flexible intermediate files are a great

benefit which leads to a modular approach with possible validation between modules.

We also have to consider the FAIR data principles - the findability, accessibility, interoperability and reusability of data

and associated infrastructure (Wilkinson et al. 2016). Here, we would like to address the interoperability principle by

having developed a workflow for building biochemical pathway models using existing tools and custom-made, short,

freely available scripts for the storage and refinement of models in all phases of development, ensuring interchangeability

with other formats and toolkits at every step in the pipeline with many standardized intermediate files (Fig. 1). To illustrate

all the tools in the workflow we have used it to retune a part of a model previously developed in our research group to

make it more compatible with various simulators and to create a concrete use case for others to reuse and modify.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.385203doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.17.385203
http://creativecommons.org/licenses/by-nc/4.0/

Fig. 1 Simplified scheme of the workflow. Thick arrows indicate steps for which we have developed automated tools. Text in bold

refers to the generic components of the workflow and text in grey refers to existing software and data formats used in the current version

of the suggested workflow

The workflow

While the standard model storage format in systems biology is SBML, it has a few drawbacks for the reasons mentioned

above. Therefore, the workflow is centered around building an easy-to-use infrastructure with models and data expressed

in a spreadsheet-based storage format called SBtab. We chose SBtab as the primary modeling source file because it is

human-readable, it can contain both the model and the data, and because it is easy to write parsing scripts for it, such as a

converter from SBtab to SBML using the libSBML1 interface in R. This ease of convertibility is used in another focus of

the workflow, convertibility between SBtab and other common formats and simulation software, since in systems biology

and in any other computational sciences, the lack of compatibility between different tools and formats can often pose

problems. A partially working conversion tool between SBtab and SBML had already been developed by the SBtab team.

However, it can currently only read one table at a time and does not produce any functional SBML files with our model

example. To combat these shortcomings, we wrote scripts to convert the SBtab into SBML, either using the R language or

MATLAB, and validating it successfully in COPASI.

The bulk of our workflow is available as MATLAB code, particularly the parameter estimation tools and functions for

global sensitivity analysis (SA). SA can be used to determine the importance of different parameters in regulating different

outputs. Local sensitivity analysis is based on partial derivatives and investigates the behavior of the output when

1 A library providing an application programming interface for SBML

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.385203doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.17.385203
http://creativecommons.org/licenses/by-nc/4.0/

parameters are perturbed in the close vicinity to a specific point in parameter space. Tools for local SA are already

included in the MATLAB suite. Global SA (GSA), on the other hand, is based on statistical approaches and has a much

broader range. GSA is more relevant for models that have a large uncertainty in their parameter estimates which is

common for systems biology models where many of the parameters have not been precisely measured and the data are

sparse.

The standard approach within biochemical modeling is to use deterministic simulations and ordinary differential equations

(ODE) that follow the law of mass action as it is computationally efficient and provides good results for sufficiently large

well-mixed biological systems. However, this approach has several restrictions in the case of neuronal biochemical

cascades. First, such cascades are always subject to stochastic noise, which can be especially relevant in a compartment as

small as a dendritic spine where the copy number of key molecules are small enough that the effect of randomness

becomes significant (Bhalla 2004). For precise simulation of stochasticity in reaction networks several stochastic solvers

are available, e.g. Gillespie’s Stochastic Simulation Algorithm (SSA) (Gillespie 1976) and explicit and implicit tau-leaping

algorithms (Gillespie 2001). Second, the number of possible states of a biochemical cascade often grows exponentially

with the number of simulated molecule types, such that it becomes difficult to represent all these states in the model. In

this case, for efficient simulation the reactions in the model could be represented and simulated in a network free form

using rule-based modeling approaches (Chylek et al. 2015). To tackle these problems, we developed the subcellular

application, a web-based software component for model development. It allows the extension and validation of

deterministic chemical reaction network-based models by simulating them with stochastic solvers for reaction-diffusion

systems and network free solvers.

Although the workflow is applicable to any biochemical pathway model our emphasis is on modeling biochemical

signaling in neurons. Therefore, the last challenge we want to address is an important concept in the interoperability

domain of computational neuroscience called multiscale modeling which concerns the integration of subcellular models

into electrical models of single cells or microcircuits. This can be achieved either by run-time interoperability between two

simulators of different systems or by expanding the capabilities of a single simulation platform as has been done with the

NEURON software (McDougal et al. 2013). With this purpose in mind we have written a conversion function from SBtab

to the MOD format which is used by NEURON. As such, the inputs and the outputs of a biochemical cascade can be

linked to any of the biophysiological measures of the electrical neuron model.

Use case

As a use case to illustrate the workflow we have chosen a previously developed pathway model of the emergence of

eligibility trace observed in reinforcement learning in striatal direct pathway medium spiny neurons (MSN) that carry the

D1 receptor (Nair et al. 2016). In this model, a synapse that receives excitatory input which leads to an increase in calcium

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.385203doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.17.385203
http://creativecommons.org/licenses/by-nc/4.0/

concentration is potentiated only when the signal is followed by a reinforcing dopamine input. Fig. 2a represents a

simplified model scheme illustrating these two signaling cascades, one starts with calcium as the input and the other one

with dopamine. In simulation experiments the inputs are represented as a calcium train and a dopamine transient (Fig. 3a).

Calcium input refers to a burst of 10 spikes at 10 Hz reaching 5 μ M. Dopamine input is represented by a single transient of

1.5 μ M. The first cascade (species in blue) features the calcium-dependent activation of Ca2+/calmodulin-dependent protein

kinase II (CaMKII) and the subsequent phosphorylation of a generic CaMKII substrate which serves as a proxy for long

term potentiation (LTP) and is the main output of the model. The second cascade (species in red) represents a G-protein

dependent cascade following the dopamine input and resulting in the phosphorylation of the striatal dopamine- and

cAMP-regulated phosphoprotein, 32 kDa (DARPP-32) that turns into an inhibitor of protein phosphatase 1 (PP1) which

can dephosphorylate both CaMKII and its substrate. The phosphorylation of the substrate is maximal when two constraints

are met. First, the time window between the calcium and dopamine inputs has to be short, corresponding to the

input-interval constraint which is mediated by DARPP-32 via PP1 inhibition. Second, intracellular calcium elevation has

to be followed by the dopamine input, corresponding to the input-order constraint that is mediated by another

phosphoprotein, the cyclic AMP-regulated phosphoprotein, 21 kDa (ARPP-21), thanks to its ability to sequester

calcium/calmodulin if dopamine arrives first (Fig. 3d).

In the originally published model, CaMKII is autophosphorylated in two compartments, both the cytosol and the post

synaptic density (PSD), with a custom-written MATLAB rate function that was calculated based on the probability of two

neighboring subunits being fully activated as described in Li et al. (2012). To make it possible to run the model in different

software we replace the rate equation of autophosphorylation with a similar set of reactions in both compartments so that

the model would only contain bimolecular reactions. The reactions represent a simplified version of the

autophosphorylation reactions in Pepke et al. (2010), where in our case only the fully activated CaMKII can be

phosphorylated. The same set of reactions is used in both compartments and the schematics is available in Fig. 2b along

with the required six new parameters. We used our parameter estimation software to find and constrain parameters that

preserved the behavior of the model. We used simulated data from the original model with different timings of the

dopamine input relative to the calcium input (Fig. 2c) to obtain a comprehensive picture of its behavior which we want the

updated model to reproduce.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.385203doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.17.385203
http://creativecommons.org/licenses/by-nc/4.0/

Fig 2 (A) Simplified schematics of the use case model with relevant second messengers with calcium and dopamine as inputs and

phosphorylation of a generic CaMKII substrate (purple; top right) as the output. Species of the calcium cascade are blue, and species of

the dopamine cascade are red. Lines ending in arrows represent activation and lines ending in circles represent inhibition. Time courses

of the species with a beige background are later used in parameter estimation. Readjusted from Nair et al. (2016). (B) Schematics of the

bimolecular reactions used for CaMKII autophosphorylation with yellow circles depicting fully activated CaMKII bound to calmodulin

and calcium, and blue circles depicting phosphate groups. Six newly introduced parameters are shown on the reaction arrows with their

ID’s in the updated model. (C) Timing (in seconds) of the dopamine input (Δt={-4,-3,-2,-1,0,1,2,3,4} corresponding to E0-E8) relative

to the calcium input (zero), and a single experiment without a dopamine input (E9)

SBtab

As described above we have chosen the SBtab format for model and data storage. This format allows the storage of

biochemical models and associated data in a single file and provides a set of syntax rules and conventions to structure data

in a tabulated form making it easy to modify and share. To ensure interoperability, SBtab provides an online tool to

convert the models into the SBML format. SBtab is suitable for storing data that comes in spreadsheet or table formats,

e.g. concentration time series or dose response curves, and it also supports various annotations. The SBtab file is intended

to be updated manually during the process of model building. Additional instructions on how to make SBtab files work

well within our toolchain can be found in the Subcellular Workflow GitHub repository. Some of the columns and sheets

that we use should be considered as extensions to the format. However, SBtab is easy to parse so adjustments to parsers

can be made quickly.

The SBtab file should include separate sheets for compartments, compounds, reactions, assignment expressions,

parameters, inputs, outputs, and experiments (as well as data tables). The use case model has 99 compounds, 138 reactions

and 227 parameters. An example of the SBtab reaction table can be found in Table 1. An important thing to note here is

that while most software tools use seconds as their default time units, the NEURON simulator which we use to incorporate

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.385203doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.17.385203
http://creativecommons.org/licenses/by-nc/4.0/

the biochemical cascades into an electrical neuron model uses milliseconds instead. We found no easy way to convert the

parameter units in SBtab into the file format used by NEURON and hence, the time unit we use in the SBtab sheets

representing the model (but not the data) is millisecond.

Table 1 An example of the tabulated representation of model reactions in the SBtab format. The kinetic law uses the parameter names

from the parameter table and species names from the compound table

One of our goals with this study was to reproduce the original model behavior after replacing a single module inside the

model to convert the model to bimolecular reactions only. The data we used therefore represents the simulated time series

(20 s) of the concentrations of four selected species in response to different input combinations using the original model.

Each individual data sheet (named E0-E9, Fig. 2c) in SBtab represents the outputs of one experiment. Another sheet called

Experiments allows to define the input parameters differently for each experimental setup. By setting the initial

concentrations of the unused species to zero the data could be mapped to a specific sub-module of the model (the

remaining species). In this case the initial conditions are the same for all experiments. The Experiments table can also

support various annotations relevant to each dataset. We used nine different timings (corresponding to E0-E8) between the

calcium and the dopamine signal starting with a dopamine signal preceding calcium by four seconds and finishing with

dopamine following calcium after four seconds as this corresponds to the time frame originally used in model development

(Δt={-4,-3,-2-1,0,1,2,3,4}). Additionally, we used simulations with calcium as the only input (E9) (Fig. 2). The time series

of the input species are in a separate sheet following each experiment sheet. An example of how experimental data is

stored can be found in Table 2.

!ID !Name !KineticLaw !IsReversible !Location !ReactionFormula

R0 ReactionFlux0 kf_R0*GaolfGTP FALSE Spine GaolfGTP <=> GaolfGDP

R1 ReactionFlux1 kf_R1*D1R_Golf_DA FALSE Spine D1R_Golf_DA <=>
Gbgolf + D1R_DA + GaolfGTP

R2 ReactionFlux2 kf_R2*D1R_Golf*DA-kr_R2*D1R_Golf_DA TRUE Spine D1R_Golf + DA <=>
D1R_Golf_DA

R3 ReactionFlux3 kf_R3*D1R*DA-kr_R3*D1R_DA TRUE Spine D1R + DA <=> D1R_DA

R4 ReactionFlux4 kf_R4*AC5*GaolfGTP-kr_R4*AC5_GaolfGTP TRUE Spine AC5 + GaolfGTP <=> AC5_GaolfGTP

R5 ReactionFlux5 kf_R5*CaM*Ca-kr_R5*CaM_Ca2 TRUE Spine CaM + Ca <=> CaM_Ca2

R6 ReactionFlux6 kf_R6*PP2B*CaM-kr_R6*PP2B_CaM TRUE Spine PP2B + CaM <=> PP2B_CaM

!TimePoint !Time >Y0 SD_Y0 >Y1 SD_Y1 >Y2 SD_Y2 >Y3 SD_Y3
E0T0 0 84.47891 1 2672.089 1 3200.526 1 36817.52 1

E0T1 0.01 84.47891 1 2672.089 1 3200.526 1 36817.52 1

E0T2 0.02 84.47891 1 2672.089 1 3200.526 1 36817.52 1
E0T3 0.03 84.47891 1 2672.089 1 3200.526 1 36817.52 1

…

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.385203doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.17.385203
http://creativecommons.org/licenses/by-nc/4.0/

Table 2 An example of the tabulated representation of experimental time series data in the SBtab format. Columns titled Y0-Y3 refer to

each of the output species followed by a standard deviation column

Model pre-processing tools

Model building entails frequent changes to the model structure by adding new species, reactions, and parameters. This can

result in the emergence or disappearance of Wegscheider cyclicity conditions that refer to the relationships between

reaction rate coefficients arising from conditions of thermodynamic equilibrium (Wegscheider 1901; Vlad and Ross 2004).

Identified thermodynamic constraints show parameter dependencies that follow from physical laws and can reduce the

number of independent parameters. These conditions are frequently difficult to determine by human inspection, especially

for large systems. Similarly, identifying conserved moieties, like conserved total concentration of a protein, allows the

reduction of the ODE model size, which leads to increased performance. In order to address these model pre-processing

needs our toolkit includes scripts in MATLAB/GNU Octave that use the stoichiometric matrix of the reaction network as

an input to determine the thermodynamic constraints as described in Vlad and Ross (2004), and conservation laws. These

diagnostic tools output any identified constraints that, if needed, are to be implemented manually before the parameter

estimation step. It should be noted that such constraints need to be re-examined after each addition of new reactions as the

structure of the model might change and make previously true constraints invalid. This is true for all major changes to the

model.

MATLAB tools

The bulk of our workflow is developed in MATLAB as it provides an easy-to-use biochemical modeling application with a

graphical user interface called SimBiology along with a wide range of toolboxes for mathematical analysis. The workflow

is divided into import, simulation, and analysis scripts. To ensure an easy and user-friendly usage, all operations are

controlled by a single settings file where all specification options needing user input are represented as modifiable

variables. An example settings file of the use case model along with instructive comments can be found in the GitHub

repository.

E0T2000 20 97.79736 1 2359.101 1 3192.558 1 37475.51 1

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.385203doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.17.385203
http://creativecommons.org/licenses/by-nc/4.0/

Import from SBtab to MATLAB

The scripts we have written first convert the SBtab into a .mat format, this file is then used to generate representations of

the base model in three different formats: the MATLAB format, the SimBiology format and SBML (level 2 encoding),

while also creating scripts coding the input and each experiment inside the newly created ‘Formulas’ and ‘Data’ folders,

respectively. All these new files and folders are stored inside the main model folder.

Parameter estimation

MATLAB offers a wide range of tools, such as various optimization algorithms, that can be utilized in model refinement.

This allows e.g. the optimization for single point parameter estimation. For this step, we have also developed MATLAB

code to automate the use of either of the listed methods with minimal user-defined input. Adjusted parameters can be

manually updated in the SBtab or SimBiology model. Our scripts allow the use of Genetic Algorithm, Simulated

Annealing, Pattern Search and Constrained Optimization for which MATLAB provides thorough documentation. The

equation used to calculate the score for how well the model outputs fit the experimental data can be found below. In

addition, we have incorporated a few other ways of calculating the score depending on the need (see documentation).

F (θ; ,)Y τ = ∑
l

k=1
∑
m

j=1
n
1 ∑

n

i=1
(τ ijk

Y −y (θ)ijk ijk)
2

Here, Y represents the simulation results from the original (validated) model and y are the simulations of the updated

model under parameterization θ. The allowed mismatch τ between the two simulation results is analogous to the standard

deviation of a Gaussian noise model in data fitting. The resulting F is the objective function for Particle Swarm

optimization. The error is summed over n, the number of points in a given experimental output, m, the number of

experimental outputs in an experiment which is four in our use case (see Fig. 3b), and l, the number of experiments (E0-E9

in this case) (see Fig. 2c).

Parameter estimation is generally based on experimental data. Here, however, we would like to demonstrate the workflow

with a simple use case and therefore the data we used represents the simulated time series of the concentrations of several

species using the original version of the model in SimBiology. After modifying the model, we minimized the difference

between the old behavior and the updated model’s response through optimization. The simulation results from the old

model can be considered as analogous to experimental data in a normal parameter estimation setting. Here we merely aim

to make an updated model agree with its earlier iteration, which itself was adjusted based on experimental data. When

changing a module in a model it is crucial to protect the unchanged parts which is why we performed parameter estimation

using the key species that intersect the calcium and dopamine cascades, namely PP1, calmodulin and DARPP-32 (Fig. 2

and 3b). We performed an optimization with the Particle Swarm algorithm to parameterize the replaced module and the

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.385203doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.17.385203
http://creativecommons.org/licenses/by-nc/4.0/

use of the simulated data of these four species proved to be sufficient for the particular task as adding more species did not

improve the fits.

Validation in Matlab

Parameter estimation resulted in a good fit for most of the species and the updated model was able to closely reproduce the

results seen with the original model (Fig. 3c). The Subcellular Workflow includes the updated model in SBtab, SBML and

MATLAB SimBiology along with a script that simulates the model in MATLAB and reproduces the traces of the updated

model shown in Fig. 3c-d.

Fig 3 (A) Illustration of the model inputs. Calcium burst (blue) at 4 s used in all simulations and a dopamine transient (orange) applied

at different timings in eight experiments and one without it. (B) Four species used in parameter estimation corresponding to the input

combination in A. Black traces represent the data produced by simulating the original model, red traces represent fits with the best new

parameter sets in the updated model. (C, D) Comparison of model performance with substrate phosphorylation as the main model

readout. (C) Normalized time series of substrate phosphorylation, the main readout, with calcium as an only input or dopamine

following it after 1 s. (D) Normalized area under the curve of substrate phosphorylation with different calcium and dopamine input

intervals

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.385203doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.17.385203
http://creativecommons.org/licenses/by-nc/4.0/

Global sensitivity analysis

In many cases parameter estimation of biochemical pathway models does not result in one unique value for a parameter.

Structural and practical unidentifiability (Raue et al. 2009) results in a large set of parameter values that all correspond to

solutions with a good fit to the data, i.e. there is a large uncertainty in the parameter estimates (Eriksson et al. 2019). When

this is the case local sensitivity analysis is not so informative, since this can be different depending on which point in

parameter space it is performed at. A global sensitivity analysis (GSA), on the other hand, covers a larger range of the

parameter space. Several methods for GSA exist (Zi 2011) but we have focused on a method by Sobol and Saltelli (Sobol

2001; Saltelli 2002; Saltelli 2004) as implemented by Halnes et al. (2009) which is based on the decomposition of

variances (Saltelli 2004). Single parameters or subsets of parameters that have a large effect on the variance of the output

get a high sensitivity score in this method. Intuitively, this method can be understood as varying all parameters but one (or

a small subset) at the same time within a multivariate distribution to determine what effect this has on the output variance.

If there is a large reduction in the variance, the parameter that was kept fixed is important for this output (Saltelli 2004).

Let the vector Θ denote the parameters of the model, and y=f(Θ) be a scalar output from the model. In the sensitivity

analysis Θ are stochastic variables, sampled from a multivariate distribution, whose variation gives a corresponding

uncertainty of the output, quantified by the variance V(Y). In this setting the different Θi are assumed to be independent

from each other. We consider two types of sensitivity indices, the first order effects S i and the total order effects . The ST i

first order effects describe how the uncertainty in the output depends on the parameter Θi , i.e. how much of the variance of

the output can be explained by the parameter Θi alone. As an example, Si=0.1 means that 10% of the output variance can

be explained by Θi alone. The total order effects give an indication on the interactive effect the parameter Θi has with the

rest of the parameters on the output. Parameters are said to interact when their effect on the output cannot be expressed as

a sum of their single effects on the output.

The first order sensitivity index of the parameter Θi is defined as , where Θ−i corresponds to all elements Si = V (Y)

V (E (Y |Θ))Θi Θ−i i

of Θ except Θi , and E(... |...) denotes conditional expected value. For first order sensitivity indices and for additive S ≤1∑

i
 i

models this is an equality (all assuming that the distributions of the different Θi are independent from each other). The total

order effects of the parameter Θi corresponds to , the sum of all is always larger than or equal to ST i = V (Y)
V (Y)−V (E(Y |Θ))i ST i

one (). If there is a large difference between S i and this is an indication that this parameter takes part in S ≥1∑

i
 T i ST i

interactions. For a detailed description see e.g. chapter 5 of Saltelli (2004).

The optimization described earlier takes place on log transformed parameter values (log10(Θ)) and for the sensitivity

analysis we perform the sampling on a lognormal distribution, meaning that log10(Θ)~ N(μ, σ). Below we use μ

=log10(Θ*) and sigma=0.1, where Θ* correspond to the optimal values received from the optimization. We have also

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.385203doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.17.385203
http://creativecommons.org/licenses/by-nc/4.0/

implemented some alternative distributions that can be used. We illustrate this method using only the six parameters

corresponding to the model module that has been replaced (Fig. 2) and the results can be seen in Fig. 4. Only four of the

parameters (k216-k219/k222-k225; Fig. 4) seem to be important for the output within the investigated parameter region. In

experiments 1 and 2 these four parameters are shown to have equal importance, whereas in experiments 4-6 the parameter

k219/k225 has the largest influence. Also, there seem to be some interactive effects between the parameters as shown by

 analysis (Fig. 4b).ST i

Fig 4 Stacked bar graphs of the sensitivity indexes. The first order, Si, and total order, , sensitivities indexes of the six new ST i

parameters (k216-k221 and k222-k227; see Fig. 2) for all ten experiments (E0-E9) are shown (panel A and B, respectively). The

sensitivities indexes are defined in the main text and were calculated based on the scores used in the optimization for each experiment

respectively. The parameters, Θ, were sampled independently from a multivariate lognormal distribution with log10(Θ)~ N(μ, σ), using

μ = log10(Θ*) and sigma=0.1, where Θ* correspond to the optimal values received from the optimization. A sample size of N=10000

was used (corresponding to 80000 reshuffled samples used in the calculations (Saltelli 2004)). The analysis took 170 minutes on 50

compute cores (Intel Xeon E5-2650 v3). Smaller differences could be seen in the sensitivity scores when different random seeds were

used

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.385203doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.17.385203
http://creativecommons.org/licenses/by-nc/4.0/

Compatibility and validation with other simulation environments

Conversion to SBML and simulations in COPASI

COPASI is one of the more commonly used modeling environments in systems biology and it can read SBML files

(Hoops et al. 2006). Our first validation step is to use the SBML model retrieved from the SBtab model in COPASI. As the

online conversion tool from SBtab to SBML turned out difficult to understand we wrote a new conversion function that

can be found in the GitHub repository of the paper. It interprets the biological model and converts it into plain ODEs in

VFGEN’s custom format (.vf), the VFGEN file can then be used to create output in various languages 2 (Weckesser 2008).

The conversion script (written in R) converts the SBtab saved as a series of .tsv files or one .ods file into a VFGEN vector

field file and as by-products also the SBML and a MOD file (see chapter Conversion to a MOD file and simulations in

NEURON). To create an SBML model libsbml has to be installed with R bindings. The SBML file can be imported

directly into COPASI, although it might be necessary to remove the superfluous unit definitions manually.

Another way to convert the model into SBML is through a single MATLAB SimBiology function. The models, however,

are created with long ID’s that carry no biological information (the ID’s are similar to hexadecimal hashes) for all model

components, the units are not properly recognized, and some units may just be incorrectly defined in the output. We,

therefore, created a script in R that asks for default units for the model and replaces the ones in the SBML file. It fixes

most issues (units, ID’s, and the time variable in assignments) allowing the model to be properly imported in3 COPASI. To

illustrate that the SBML-converted model imported into COPASI produces the same results as in SimBiology, we used a

simplified calcium input corresponding to one double exponential spike analogous to the dopamine transient and simulated

the model with deterministic solvers in both COPASI (LSODA solver) and MATLAB SimBiology under similar

conditions. Both simulation environments produced almost overlapping results (Fig. 5b-c) validating the converted model

in the SBML format.

2 Including, but not limited to: Python (NumPy), C (GNU Scientific Library (GSL), CVODE), GNU Octave (LSODE), R

(deSolve), and also core MATLAB (e.g. for ode15s)

3 It should be noted that the units may not show up correctly in COPASI (depending on the version) even if they are
correct in the SBML file itself.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.385203doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.17.385203
http://creativecommons.org/licenses/by-nc/4.0/

Fig. 5. Simulations in identical conditions in both MATLAB SimBiology and COPASI yielded almost identical results. (A) Inputs used

in both simulators. The calcium input is kept constant at 4 s for all simulations and dopamine input time is varied from time 0 to 8 s at

every one second. The difference from the previous simulations is in the calcium input which, for the sake of simplicity, is represented

by a double exponential spike. (B) and (C) show substrate phosphorylation curves analogous to Fig. 3, the red line represents results

obtained in MATLAB and blue line results from simulations in COPASI

Simulations in STEPS

The web-based subcellular application4 allows importing, combining and simulating models expressed in the BioNetGen

language (BNGL; Harris et al. 2016). It supports the import of SBML (level 2) models and their transformation to

rule-based BNGL form using Atomizer (Tapia and Faeder 2013). The BioNetGen file format was extended to provide

diffusion parameters, links to tetrahedral meshes describing the geometry of model compartments, as well as the additional

parameters for solvers and stimulation protocols required for spatially-distributed models. The subcellular application is

integrated with the network free solver NFsim (Sneddon et al. 2011) and it supports simulations of spatially distributed

systems using STEPS (Hepburn et al. 2012). STEPS provides spatial stochastic and deterministic solvers for simulations of

reactions and diffusion on tetrahedral meshes. Furthermore, the subcellular application provides a number of facilities for

the visualization of models’ geometries and the results of simulations.

To demonstrate the compatibility of the subcellular application with the workflow for model development described

above, we imported the SBML version of the use case model to the subcellular application and simulated it with the

4 The online application for subcellular simulations can be found in
https://subcellular.humanbrainproject.eu/model/simulations

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.385203doi: bioRxiv preprint

https://subcellular.humanbrainproject.eu/model/simulations
https://doi.org/10.1101/2020.11.17.385203
http://creativecommons.org/licenses/by-nc/4.0/

STEPS TetOpSplit solver. We have used a simple two-compartmental spine model with a tetrahedral compartment

corresponding to the spine compartment of the use case model. There is also a PSD compartment on one of the faces. The

results of the model simulations with a STEPS solver were qualitatively similar to the results obtained with the

deterministic model simulated in MATLAB. Examples of simulated time courses for molecule concentrations as shown in

Fig. 3 in comparison with corresponding MATLAB curves are shown in Fig. 6.

Fig 6 Validation of the model by stochastic STEPS simulation of substrate phosphorylation in a typical D1 MSN neuron spine. (A)

Normalized time course of substrate phosphorylation in the original model (violet and orange lines correspond to calcium and dopamine,

and calcium only stimuli, respectively) in comparison with averaged (n=50) stochastic STEPS simulations (blue - calcium and

dopamine; red - calcium only) for a typical size of D1 MSN neuron synaptic spine (V=0.02μm 3). The same stimulation protocol as in

Fig. 3 was used. Colored areas around averaged STEPS curves correspond to a range between 10% and 90% confidence intervals. (B)

Normalized area under the curve of substrate phosphorylation with different calcium and dopamine input intervals simulated for the

MATLAB version of the updated model (with MATLAB’s ode15s solver, blue line) and averaged stochastic STEPS simulations (n=30)

in the subcellular application version of the model. MATLAB statistical bar plots were added to the figure to characterize variability of

synaptic plasticity between subsequent induction protocol applications to the same synaptic spine. Note that despite high variability of

synaptic plasticity time courses averaged plasticity dynamics were in a good agreement with the ODE-based solution

Conversion to a MOD file and simulations in NEURON
As we suggested before, conversion between different modeling frameworks and formats facilitates collaboration. But

conversion is made harder by the differences in the capabilities of different modeling packages. A model, such as the one

above, could be useful for multiscale simulations investigating how network activity shapes synaptic plasticity. A large

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.385203doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.17.385203
http://creativecommons.org/licenses/by-nc/4.0/

number of cellular level models are built and simulated in the NEURON environment which also supports simplified

reaction-diffusion systems. It would thus be useful to be able to integrate a subcellular level model into a cellular level

model specified using NEURON. Models in NEURON are built by adding features with MOD files that are written in the

NMODL programming language which has very little documentation. While conversion from SBML to MOD is already

possible via NeuroML (instructions can be found in Lindroos et al. 2018) it is not an automated or user-friendly approach

and therefore we created a new conversion tool from SBtab to MOD which is the same one that creates an SBML file. As

one of the options it is also possible to generate a MOD file with or without state variable substitution by observing

conservation laws. An example on how to use the SBtab to VFGEN/MOD/SBML converter in R can be found in the

GitHub repository. The MOD file is meant to be a starting point for the modeler as the limited subcellular model in SBtab

form is not aware of its coupling to a larger model of the cell. The user must edit the resulting file manually to use it within

a larger scope and assign a role to this model component.

We validate the biochemical cascade model and our conversion tools in NEURON (see Information Sharing Statement) by

qualitatively reproducing the results obtained in MATLAB SimBiology. Our goal is to show that the cascade model can be

integrated into a single neuron model and bridge spatial and temporal scales of system behavior by linking the output of

the cascade to changes in the synaptic properties and ultimately to the electrical behavior of the neuron model. Therefore,

the biochemical model in the MOD format was incorporated into a single biophysically detailed and compartmentalized

D1 MSN model from Lindroos et al. (2018). To integrate the MOD file into single cell models a few user-specific

modifications have to be made to interface this model with the larger electrochemical system. First, the input is modified

so that the calcium burst is represented by calcium influx from the cell’s calcium channels and adjusted so that the overall

calcium level would be similar to the input used in MATLAB simulations. The dopamine transient is represented by an

assignment expression (available in the Expression table of the SBtab) that creates its double exponential form (this can be

used in other languages as well). When simulating the model with the same input timing combinations as in the MATLAB

experiments, we were able to qualitatively reproduce the substrate phosphorylation curve that illustrates both the

input-order and input-interval constraints seen in Fig. 3d. Minor differences can be explained by differences in the calcium

input and the solver as MATLAB simulations were performed with ode15s while NEURON uses cnexp.

In the D1 MSNs this biochemical signaling cascade causes synaptic strengthening via several mechanisms, one of which is

the phosphorylation of AMPA receptors. As mentioned above, the model instead includes a generic substrate whose level

of phosphorylation is the output of the cascade. For the purpose of illustrating the workflow with a proof-of-concept

example, we have here linked the fraction of phosphorylated substrate to the AMPA receptor conductance (the

conductance is scaled by (1 + fraction of the phosphorylated substrate), i.e. when there is very little substrate

phosphorylation, very little change in the AMPA conductance is elicited, and vice versa). Modifying the model to include

the reactions for AMPA receptor phosphorylation will be made in a future study.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.385203doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.17.385203
http://creativecommons.org/licenses/by-nc/4.0/

Fig 7 Inserting the biochemical signal transduction cascade into an electrical model in NEURON. (A) A schematic of the effects of the

two inputs of the model, dopamine and calcium, on a generic substrate, which in this case is taken to represent the fraction of

phosphorylated AMPA receptors with higher conductance levels. (B) Examples of the two inputs, calcium and dopamine. The large

calcium signal is due to an NMDA spike evoked via clustered excitatory synapses on a dendritic branch. (C) The calcium input from

NMDA receptors also qualitatively reproduces the timing dependence shown previously (Fig. 3d). (D, E) Predicted EPSP following a

single synaptic input in the relevant spine and in the soma. The readout of the substrate phosphorylation level was done at 7s after the

start of the calcium input. The relative timings of dopamine and calcium indicated with arrows in (C) are used, and the results are

compared to the experimental setting without the dopamine input

Discussion

In order to address the growing need for interoperability in biochemical pathway modeling within the neuroscience field,

we have developed a workflow that can be used to refine models in all phases of development, keeping in mind the fact

that many of the users (including us) are natural scientists and not professional programmers. For the model and data

storage we have chosen the SBtab format which can be easily read and modified by both modelers and experimentalists,

and can be converted into other formats, e.g. SBML, MATLAB SimBiology or MOD. Our workflow is modularized into

different steps allowing the use of each step depending on the need and ensuring interoperability with other tools, such as

those described in a similar endeavor named FindSim (Viswan et al. 2018). There are distinct advantages to the workflow,

by enforcing a common standard for information exchange, it inherently makes the models more generalizable and reduces

the likelihood that simulation results are artifacts of a particular simulator, and nonetheless, it gives users the flexibility to

leverage the strengths of each different simulation environment and provides distinct stages of processing that would not

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.385203doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.17.385203
http://creativecommons.org/licenses/by-nc/4.0/

be possible in any single simulator. The presented workflow aims to use software components that are free (apart from

MATLAB) and solve incremental sub-tasks within the workflow (with open standard intermediate files) to make the

workflow easy to branch into scenarios we have not previously considered. It is also possible to circumvent MATLAB

entirely, if desired (e.g. conversion from SBtab to a MOD file that is then used by NEURON).

When deciding which software packages to use we find that an important aspect that must be considered is the cost and

licensing. For some researchers price may be a relevant concern, in other cases a researcher may have to undergo

considerable overhead to make their institution/lab purchase a license and possibly operate a license server. Other than

MATLAB, we made the choice to disregard commercial products, keeping in line with the field’s trend towards open

source platforms. We will also expand our tools to support the use of more complex geometries, with several

compartments (which is also an SBML feature), and tetrahedral meshes that can be used with STEPS in the subcellular

application. Such advanced geometries can in principle be defined within SBtab tables. When it comes to multiscale

simulations, there is the possibility of using the Reaction-Diffusion module (RXD) in NEURON. Currently, however, it

does not support the import of SBML as it lacks the concept of spatially extended models, but SBML support might be

added to the future versions of RXD (McDougal et al. 2013).

Another interesting consideration is whether the user wants to define any model directly using rules (as in rule-based

modeling). This would make the use of Atomizer unnecessary. The transformation from rules to classical reactions seems

easier than the reverse, so even if a rule-based simulation is not necessary or too slow, a rule-based description may be

shorter and more fundamental in terms of model translation.

When it comes to model analysis, we have here implemented a functionality for global sensitivity analysis. This is a

thorough, but, computationally demanding approach and the model needs to be run in parallel on a supercomputer. There

are also faster but more approximate screening methods that could have been used (Saltelli 2004). In the future we also

intend to incorporate uncertainty quantification into the workflow (Eriksson et al. 2019).

In summary, we have here presented a workflow for biochemical pathway modeling and provided a concrete use case of

reward dependent synaptic plasticity. Multiscale models are crucial when trying to understand the brain using modeling

and simulations, e.g. how network activity shapes synaptic plasticity or how neuromodulation might affect cellular

excitability on sub second timescales. Structured approaches for bridging from detailed cellular level neuron models, to

more simplified or abstract cellular-, network-, and even brain region models are developing (Amsalem et al. 2020; Carlu

et al. 2020; Schmutz et al. 2020). In the currently illustrated workflow, we add to these efforts by bridging from the

subcellular scale to the cellular level scale. We updated parts of the use case model to accomplish a model with only

bimolecular reactions that are easier to represent in standards such as SBML. The idea is that users can look at our model

as a concrete test case, rerun the workflow (or parts thereof) and then replace the current example model with their own

models. In this particular use case, we specifically focused on creating scripts to achieve interoperability between human

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.385203doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.17.385203
http://creativecommons.org/licenses/by-nc/4.0/

readable model specification standards and machine- readable standards, and, we also wanted to facilitate how a

subcellular signaling model could be implemented in different solvers with different strengths, in this case both

SimBiology in MATLAB, as well as STEPS and NEURON. NEURON is currently the most commonly used simulation

software for detailed cellular level neuron models, and STEPS can, as said, simulate signaling cascades in arbitrary

dendritic morphologies both in a deterministic and stochastic manner. MATLAB on the other hand has a large number of

functions, for example for parameter estimation and we included an implementation for global sensitivity analysis. Several

other software is, however, used within the computational neuroscience community for cellular or subcellular model

simulations (Ray and Bhalla 2008; Oliveira et al. 2010; Resasco et al. 2012; Akar et al. 2019). To successively make as

many of those tools interoperable with standards for both model and data specification, various parameter estimation and

model analysis methods, visualization software, etc., will further facilitate the creation of FAIR multiscale modeling

pipelines in the future.

References:

Akar, N.A., Cumming, B., Karakasis,V., Küsters, A., Klijn, W., Peyser, A., Yates, S. Arbor – A morphologically-detailed neural network

simulation library for contemporary high-performance computing architectures. 2019 27th Euromicro International Conference on Parallel,

Distributed and Network-Based Processing (PDP) , Pavia, Italy, 2019, pp. 274-282.

Amsalem, O., Eyal, G., Rogozinski, N., Gevaert, M., Kumbhar, P., Schürmann, F., Segev, I. (2020). An efficient analytical reduction of detailed

nonlinear neuron models. Nature Communications, 11(1), 288.

Bhalla, U.S., Iyengar, R. (1999). Emergent properties of networks of biological signaling pathways. Science, 283(5400), 381-387.

Bhalla, U.S. (2004). Models of cell signaling pathways. Current Opinion in Genetics & Development, 14, 375–381.

Bois, F.Y. (2009). GNU MCSim: Bayesian statistical inference for SBML-coded systems biology models. Bioinformatics, 25, 1453–1454.

Cannon, R. C., Gewaltig, M.-O., Gleeson, P., Bhalla, U. S., Cornelis, H., Hines, M. L., Howell, F.W., Muller, E., Stiles, J.R., Wils, S., De

Schutter, E. (2007). Interoperability of neuroscience modeling software: current status and future directions. Neuroinformatics, 5(2), 127–138.

Carlu, M., Chehab, O., Dalla Porta, L., Depannemaecker, D., H éricé, C., Jedynak, M., Köksal Ersöz, E., Muratore, P., Souihel, S., Capone, C.,

Zerlaut, Y., Destexhe, A., di Volo, M. (2020). A mean-field approach to the dynamics of networks of complex neurons, from nonlinear

Integrate- and Fire to Hodgkin-Huxley models. Journal of Neurophysiology, 123(3), 1042-1051.

Chylek, L.A., Harris, L.A., Faeder, J.R., Hlavacek, W.S. (2015). Modeling for (physical) biologists: an introduction to rule-based approach.

Physical Biology, 12(4), 045007.

Eriksson, O., Jauhiainen, A., Maad Sasane, S., Kramer, A., Nair, A.G., Sartorius, C., Hellgren Kotaleski, J. (2019). Uncertainty quantification,

propagation and characterization by Bayesian analysis combined with global sensitivity analysis applied to dynamical intracellular pathway

models. Bioinformatics, 35(2), 284–292.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.385203doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.17.385203
http://creativecommons.org/licenses/by-nc/4.0/

Gillespie, D.T. (1976). A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions. Journal

of Computational Physics, 22(4), 403–434.

Gillespie, D.T (2001). Approximate accelerated stochastic simulation of chemically reacting systems. Journal of Chemical Physics, 115(4),

1716–1733.

Gleeson P., Steuber V., Silver R.A., Crook S. (2012) NeuroML. In: Le Novère N. (eds) Computational Systems Neurobiology . Springer,

Dordrecht.

Haario, H., Laine, M., Mira, A., Saksman, E. (2006). DRAM: Efficient adaptive MCMC. Statistics and Computing, 16, 339-354.

Halnes, G., Ulfhielm, E., Eklöf Ljunggren, E., Hellgren Kotaleski, J., Rospars, J.P. (2009). Modelling and sensitivity analysis of the reactions

involving receptor, G-protein and effector in vertebrate olfactory receptor neurons. Journal of Computational Neuroscience, 27(3), 471–491.

Harris, L.A, Hogg, J.S., Tapia, J.J., Sekar, J.A., Gupta, S., Korsunsky, I., Arora, A., Baruda, D., Sheehan, R.P., Faeder, J.R (2016). BioNetGen

2.2: advances in rule-based modeling. Bioinformatics, 1;32(21), 3366-3368.

Hedley, W. J., Nelson, M. R., Bullivant, D. P., Nielsen, P. F. (2001). A short introduction to CellML. Philosophical Transactions of the Royal

Society, Series A 359, 1073-1089.

Hellgren Kotaleski, J., Blackwell, K.T. (2010). Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches.

Nature Reviews Neuroscience, 11, 239–251.

Hepburn, I., Chen, W., Wils, S., De Schutter, E. (2012). STEPS: Efficient simulation of stochastic reaction-diffusion models in realistic

morphologies. BMC Systems Biolog y, 6:36.

Hines, M.L., Carnevale, N.T., (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209.

Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., Kummer, U. (2006). COPASI: a COmplex

PAthway SImulator. Bioinformatics, 22, 3067-74.

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., et al. (2003). The systems biology markup language (SBML): a

medium for representation and exchange of biochemical network models. Bioinformatics, 19, 524–531.

Klinger, E., Rickert, D., Hasenauer, J. (2018). pyABC: distributed, likelihood-free inference. Bioinformatics, 34(20), 3591-3593.

Li, L., Stefan, M.I.,. Le Novere, N. (2012). Calcium input frequency, duration and amplitude differentially modulate the relative activation of

calcineurin and CaMKII. PLoS One , 7:e43810.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.385203doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.17.385203
http://creativecommons.org/licenses/by-nc/4.0/

Lindroos, R., Dorst, M.C., Du, K., Filipović, M., Keller, D., Ketzef, M., Kozlov, A.K., Kumar, A., Lindahl, M., Nair, A.G., Péréz-Fernandez, J.,

Grillner, S., Silberberg, G., Hellgren Kotaleski, J. (2018). Basal ganglia neuromodulation over multiple temporal and structural

scales-simulations of direct pathway MSNs investigate the fast onset of dopaminergic effects and predict the role of Kv4.2. Frontiers in Neural

Circuits, 12, 3.

Lubitz, T., Hahn, J., Bergmann, F.T., Noor, E.,. Klipp, E, Liebermeister, W. (2016). SBtab: A flexible table format for data exchange in systems

biology. Bioinformatics , 15;32(16), 2559-61.

Maiwald, T., Timmer, J. (2008). Dynamical modeling and multi-experiment fitting with PottersWheel. Bioinformatics, 24(18), 2037-2043.

McDougal, R.A., Hines, M.L., Lytton, W.W. (2013). Reaction-diffusion in the NEURON simulator. Frontiers in Neuroinformatics, 7, 28.

Nair, A.G., Bhalla, U.S., Kotaleski J.H. (2016). Role of DARPP-32 and ARPP-21 in the emergence of temporal constraints on striatal Calcium

and Dopamine integration. PLoS Computational Biology, 1;12(9):e1005080.

Oliveira, R.F., Terrin, A., Di Benedetto, G., Cannon, R.C., Koh, W., Kim M., Zaccolo, M., Blackwell K.T. (2010). The role of type 4

phosphodiesterases in generating microdomains of cAMP: large scale stochastic simulations. PLoS One, 5(7):e11725.

Pepke, S., Kinzer-Ursem, T., Mihalas, S., Kennedy, M.B. (2010). A dynamic model of interactions of Ca2+, calmodulin, and catalytic subunits

of Ca2+/calmodulin-dependent protein kinase II. PLoS Computational Biology , 12;6(2):e1000675.

Raue, A., Kreutz, C., Maiwald, T., Bachman, J., Schilling, M., Klingmüller, U., Timer, J. (2009). Structural and practical identifiability analysis

of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics , 25(15), 1923-1929.

Ray, S., Bhalla, U.S. (2008). PyMOOSE: Interoperable scripting in Python and MOOSE. Frontiers in Neuroinformatics, 2, 6.

Resasco D.C., Gao, F., Morgan, F., Novak, I.L., Schaff, J.C., Slepchenko, B.M. (2012). Virtual Cell: computational tools for modeling in cell

biology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 4(2), 129-140.

Rodriguez, N., Pettit, J.-B., Dalle Pezze, P., Li, L., Henry, A., van Iersel, M.P., Jalowicki, G., Kutmon, M., Natarajan, K.N., Tolnay, D., Stefan,

M.I., Evelo, C.T., Le Novere, N. (2016). The systems biology format converter. BMC Bioinformatics, 17, 154.

Saltelli, A., (2002). Making best use of model evaluations to compute sensitivity indices. Computer Physics Communications , 145, 280–297.

Saltelli, A., (2004). Sensitivity analysis in practice: A guide to assessing scientific models . Chichester, England: Wiley.

Schmidt, H, Jirstrand, M. (2006). Systems Biology Toolbox for MATLAB: a computational platform for research in systems biology.

Bioinformatics, 22(4), 514–515.

Schmutz, V., Gerstner, W., Schwalger, T. (2020). Mesoscopic population equations for spiking neural networks with synaptic short-term

plasticity. The Journal of Mathematical Neuroscience, 10(1), 5.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.385203doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.17.385203
http://creativecommons.org/licenses/by-nc/4.0/

Schälte, Y., Fröhlich, F., Stapor, P., Wang, D., Vanhoefer, J., Weindl, D. et al. (2020). ICB-DCM/pyPESTO: pyPESTO 0.2.0 (Version v0.2.0).

Zenodo. http://doi.org/10.5281/zenodo.3928322

Sneddon, M.W., Faeder, J.R., Emonet, T. (2011). Efficient modeling, simulation and coarse-graining of biological complexity with NFsim.

Nature Methods , 8(2), 177-83.

Sobol, I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers

in Simulation, 55(1-3), 271-280.

Tapia, J.J, Faeder, J.R. (2013). The Atomizer: extracting implicit molecular structure from reaction network models. In: Proceedings of the

International Conference on Bioinformatics, Computational Biology and Biomedical Informatics (BCB’13) , ACM, New York, NY, pp.

726–727.

Viswan, N.A., HarshaRani, G.V., Stefan, M.I., Bhalla, U.S. (2018). FindSim: A framework for integrating neuronal data and signaling models.

Frontiers in Neuroinformatics , 12, 38.

Vlad, M.O., Ross, J. (1994). Thermodynamic approach to nonequilibrium chemical fluctuations. Journal of Chemical Physics, 100(10),

7295-7309.

Weckesser, W. (2008). VFGEN: a code generation tool. Journal of Numerical Analysis, Industrial and Applied Mathematics , 3, no.1-2,

151–165.

Wegscheider, R. (1901). Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reactionskinetik homogener

Systeme. Monatshefte für Chemie, 22, 849–906.

Welsh, C.M., Fullard, N., Proctor, C.J., Martinez-Guimera, A., Isfort, R.J., Bascom, C.C., Tasseff, R., Przyborski, S.A., Shanley, D.P., (2018).

PyCoTools: a Python toolbox for COPASI. Bioinformatics , 34(21), 3702-3710.

Zi, Z. (2011). Sensitivity analysis approaches applied to systems biology models. IET Systems Biology, 5(6), 336-6.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.385203doi: bioRxiv preprint

https://doi.org/10.1101/2020.11.17.385203
http://creativecommons.org/licenses/by-nc/4.0/

