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Abstract 

Neuroscience incorporates knowledge from a range of scales from molecular dynamics to neural networks. Modeling is a                 

valuable tool in understanding processes at a single scale or the interactions between two adjacent scales and researchers                  

use a variety of different software tools in the model building and analysis process. Systems biology, for instance, is                   

among the more standardized fields. However, conversion between different model formats and interoperability between              

various tools is still somewhat problematic. To offer our take on tackling these shortcomings and by keeping in mind the                    

FAIR (findability, accessibility, interoperability, reusability) data principles, we have developed a workflow for building              

and analyzing biochemical pathway models using pre-existing tools that could be utilized for the storage and refinement of                  

models in all phases of development. We have chosen the SBtab format which allows the storage of biochemical models                   

and associated data in a single file and provides a human readable set of syntax rules. Next, we implement custom-made                    

MATLAB® scripts to perform parameter estimation and sensitivity analysis used in model refinement. Additionally, we               

have developed a web-based application for biochemical models that allows simulations with either a network free solver                 

or stochastic solvers and incorporating geometry. Finally, we illustrate convertibility and use of a biochemical model in a                  

biophysically detailed single neuron model by running multiscale simulations in NEURON. By this we can simulate the                 

same model in three principally different simulators, describing different aspects of the system, and with a smooth                 

conversion between the different model formats. 
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Introduction 

Computational systems biology is a data-driven field concerned with building models of biological systems, most               

commonly the intracellular signaling cascades. Methods from systems biology have been proven valuable in neuroscience,               

particularly when studying the composition of synapses that can reveal the molecular mechanisms of plasticity, learning                

and various other neuronal processes (Bhalla and Iyengar 1999; Hellgren Kotaleski and Blackwell 2010; Li et al. 2012). A                   

wide variety of different software and toolboxes, each with their own strengths and weaknesses, are available within the                  

field. This diversity, however, can obstruct model reuse as interoperability between the different software packages and the                 

convertibility between various file types is only solved in part. Interoperability can either mean that the model built in one                    

simulator can be run in another or that both simulators interoperate at run-time either at the same or different scales                    

(Cannon et al. 2014). The former is addressed by standardizing model descriptions, and in systems biology by the standard                   

machine-readable model formats as XML-based SBML (Systems Biology Markup Language; Hucka et al. 2003) and               

CellML (Hedley et al. 2001), and human readable format as SBtab (Lubitz et al. 2016). An analogous model description                   

language for neurons and networks is the NeuroML (Neural Open Markup Language; Gleeson et al. 2010).  

We start by providing examples of the available systems biology tools. We then proceed to describe our approach in                   

developing a modular workflow to address some of these interoperability issues and present simulation results of an                 

example use case in various simulators and frameworks. Our workflow starts with a human-readable representation of the                 

model that is easily accessible to everyone and proceeds through various conversions into different simulation               

environments: MATLAB, COPASI, NEURON, and STEPS. Specifically, we will describe the conversion tools we created               

for this purpose. 

Examples of Software and Toolboxes used in Systems Biology 

No software package is perfectly suited for every task, some have programmable interfaces with scripting languages, like                 

MATLAB's SimBiology toolbox, some focus on providing a fixed array of functions that can be run via graphical user                   

interfaces, like COPASI, although it now offers a Python toolbox for scripting (Welsh et al. 2018). Most toolboxes and                   

software packages offer a mixture of the two approaches: fine-grained programmable interface as well as fixed high-level                 

operations. The extremes of this spectrum are a powerful but inflexible high-level software on one side and a complex,                   

harder to learn but very flexible library or toolbox with an API on the other. Some examples of general modeling                    
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toolboxes in MATLAB are the SBPOP/SBToolbox2 (Schmidt and Jirstrand 2006), and the PottersWheel Toolbox              

(Maiwald and Timmer 2008). Specifically, for Bayesian parameter estimation, there are the MCMCSTAT toolbox (Haario               

et al. 2006) in MATLAB, as well as pyABC (Klinger et al. 2018) and pyPESTO (Schälte et al. 2020) in Python, and the                       

standalone Markov Chain Monte Carlo (MCMC) software GNU MCsim (Bois 2009). For simulations in neuroscience,               

examples are NEURON (Hines and Carnevale 1997) and STEPS (Hepburn et al. 2012). Both are used for simulations of                   

neurons and can include reaction-diffusion systems and electro-physiology. 

These software packages do not all use the same model definition formats. Most have some compatibility with SBML,                  

others use their own formats (e.g. NEURON uses MOD files). Often an SBML file exported into one of these packages                    

cannot be imported into another package without errors. More generally, SBML has to be translated into code that can be                    

used in model simulations, i.e. the right-hand side of an ordinary differential equation. There are also several tools that                   

facilitate the conversion between formats, e.g. the SBFC (The Systems Biology Format converter; Rodriguez et al. 2016)                 

as well as the more general VFGEN (A Vector Field File Generator; Weckesser 2008). 

All toolboxes and software packages have great strengths and short-comings, and each programming language has               

different sets of (freely) available libraries which makes the development (or use) of numerical methods more (or less)                  

feasible than in another language. One such example is the R package CDvine for parameter dependency modeling using                  

copulas and vines, which has recently been used for modeling parameter spaces in-between MCMC iterations (Eriksson et                 

al. 2019). This package is not easily replaced in many other languages. The Julia language, however, has a far richer set of                      

differential equation solvers than R or MATLAB. Each researcher must therefore make decisions that result in the best                  

compromise for them. If a researcher is familiar with a given set of programming/scripting languages it is probably not                   

reasonable to expect them to be able to collaborate with other groups in languages they do not know. For this reason, it is                       

our firm opinion that the conversion of models between different formats is a very important task and it is equally                    

important to use formats that people can pick-up easily. To make format conversion flexible intermediate files are a great                   

benefit which leads to a modular approach with possible validation between modules. 

We also have to consider the FAIR data principles - the findability, accessibility, interoperability and reusability of data                  

and associated infrastructure (Wilkinson et al. 2016). Here, we would like to address the interoperability principle by                 

having developed a workflow for building biochemical pathway models using existing tools and custom-made, short,               

freely available scripts for the storage and refinement of models in all phases of development, ensuring interchangeability                 

with other formats and toolkits at every step in the pipeline with many standardized intermediate files (Fig. 1). To illustrate                    

all the tools in the workflow we have used it to retune a part of a model previously developed in our research group to                        

make it more compatible with various simulators and to create a concrete use case for others to reuse and modify. 
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Fig. 1 Simplified scheme of the workflow. Thick arrows indicate steps for which we have developed automated tools. Text in bold                     

refers to the generic components of the workflow and text in grey refers to existing software and data formats used in the current version                        

of the suggested workflow 

The workflow 

While the standard model storage format in systems biology is SBML, it has a few drawbacks for the reasons mentioned                    

above. Therefore, the workflow is centered around building an easy-to-use infrastructure with models and data expressed                

in a spreadsheet-based storage format called SBtab. We chose SBtab as the primary modeling source file because it is                   

human-readable, it can contain both the model and the data, and because it is easy to write parsing scripts for it, such as a                        

converter from SBtab to SBML using the libSBML1 interface in R. This ease of convertibility is used in another focus of                     

the workflow, convertibility between SBtab and other common formats and simulation software, since in systems biology                

and in any other computational sciences, the lack of compatibility between different tools and formats can often pose                  

problems. A partially working conversion tool between SBtab and SBML had already been developed by the SBtab team.                  

However, it can currently only read one table at a time and does not produce any functional SBML files with our model                      

example. To combat these shortcomings, we wrote scripts to convert the SBtab into SBML, either using the R language or                    

MATLAB, and validating it successfully in COPASI. 

The bulk of our workflow is available as MATLAB code, particularly the parameter estimation tools and functions for                  

global sensitivity analysis (SA). SA can be used to determine the importance of different parameters in regulating different                  

outputs. Local sensitivity analysis is based on partial derivatives and investigates the behavior of the output when                 

1 A library providing an application programming interface for SBML 
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parameters are perturbed in the close vicinity to a specific point in parameter space. Tools for local SA are already                    

included in the MATLAB suite. Global SA (GSA), on the other hand, is based on statistical approaches and has a much                     

broader range. GSA is more relevant for models that have a large uncertainty in their parameter estimates which is                   

common for systems biology models where many of the parameters have not been precisely measured and the data are                   

sparse. 

The standard approach within biochemical modeling is to use deterministic simulations and ordinary differential equations               

(ODE) that follow the law of mass action as it is computationally efficient and provides good results for sufficiently large                    

well-mixed biological systems. However, this approach has several restrictions in the case of neuronal biochemical               

cascades. First, such cascades are always subject to stochastic noise, which can be especially relevant in a compartment as                   

small as a dendritic spine where the copy number of key molecules are small enough that the effect of randomness                    

becomes significant (Bhalla 2004). For precise simulation of stochasticity in reaction networks several stochastic solvers               

are available, e.g. Gillespie’s Stochastic Simulation Algorithm (SSA) (Gillespie 1976) and explicit and implicit tau-leaping               

algorithms (Gillespie 2001). Second, the number of possible states of a biochemical cascade often grows exponentially                

with the number of simulated molecule types, such that it becomes difficult to represent all these states in the model. In                     

this case, for efficient simulation the reactions in the model could be represented and simulated in a network free form                    

using rule-based modeling approaches (Chylek et al. 2015). To tackle these problems, we developed the subcellular                

application, a web-based software component for model development. It allows the extension and validation of               

deterministic chemical reaction network-based models by simulating them with stochastic solvers for reaction-diffusion             

systems and network free solvers. 

Although the workflow is applicable to any biochemical pathway model our emphasis is on modeling biochemical                

signaling in neurons. Therefore, the last challenge we want to address is an important concept in the interoperability                  

domain of computational neuroscience called multiscale modeling which concerns the integration of subcellular models              

into electrical models of single cells or microcircuits. This can be achieved either by run-time interoperability between two                  

simulators of different systems or by expanding the capabilities of a single simulation platform as has been done with the                    

NEURON software (McDougal et al. 2013). With this purpose in mind we have written a conversion function from SBtab                   

to the MOD format which is used by NEURON. As such, the inputs and the outputs of a biochemical cascade can be                      

linked to any of the biophysiological measures of the electrical neuron model. 

Use case 

As a use case to illustrate the workflow we have chosen a previously developed pathway model of the emergence of                    

eligibility trace observed in reinforcement learning in striatal direct pathway medium spiny neurons (MSN) that carry the                 

D1 receptor (Nair et al. 2016). In this model, a synapse that receives excitatory input which leads to an increase in calcium                      
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concentration is potentiated only when the signal is followed by a reinforcing dopamine input. Fig. 2a represents a                  

simplified model scheme illustrating these two signaling cascades, one starts with calcium as the input and the other one                   

with dopamine. In simulation experiments the inputs are represented as a calcium train and a dopamine transient (Fig. 3a).                   

Calcium input refers to a burst of 10 spikes at 10 Hz reaching 5 μ M. Dopamine input is represented by a single transient of                        

1.5 μ M. The first cascade (species in blue) features the calcium-dependent activation of Ca2+/calmodulin-dependent protein               

kinase II (CaMKII) and the subsequent phosphorylation of a generic CaMKII substrate which serves as a proxy for long                   

term potentiation (LTP) and is the main output of the model. The second cascade (species in red) represents a G-protein                    

dependent cascade following the dopamine input and resulting in the phosphorylation of the striatal dopamine- and                

cAMP-regulated phosphoprotein, 32 kDa (DARPP-32) that turns into an inhibitor of protein phosphatase 1 (PP1) which                

can dephosphorylate both CaMKII and its substrate. The phosphorylation of the substrate is maximal when two constraints                 

are met. First, the time window between the calcium and dopamine inputs has to be short, corresponding to the                   

input-interval constraint which is mediated by DARPP-32 via PP1 inhibition. Second, intracellular calcium elevation has               

to be followed by the dopamine input, corresponding to the input-order constraint that is mediated by another                 

phosphoprotein, the cyclic AMP-regulated phosphoprotein, 21 kDa (ARPP-21), thanks to its ability to sequester              

calcium/calmodulin if dopamine arrives first (Fig. 3d). 

In the originally published model, CaMKII is autophosphorylated in two compartments, both the cytosol and the post                 

synaptic density (PSD), with a custom-written MATLAB rate function that was calculated based on the probability of two                  

neighboring subunits being fully activated as described in Li et al. (2012). To make it possible to run the model in different                      

software we replace the rate equation of autophosphorylation with a similar set of reactions in both compartments so that                   

the model would only contain bimolecular reactions. The reactions represent a simplified version of the               

autophosphorylation reactions in Pepke et al. (2010), where in our case only the fully activated CaMKII can be                  

phosphorylated. The same set of reactions is used in both compartments and the schematics is available in Fig. 2b along                    

with the required six new parameters. We used our parameter estimation software to find and constrain parameters that                  

preserved the behavior of the model. We used simulated data from the original model with different timings of the                   

dopamine input relative to the calcium input (Fig. 2c) to obtain a comprehensive picture of its behavior which we want the                     

updated model to reproduce. 
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Fig 2 (A) Simplified schematics of the use case model with relevant second messengers with calcium and dopamine as inputs and                     

phosphorylation of a generic CaMKII substrate (purple; top right) as the output. Species of the calcium cascade are blue, and species of                      

the dopamine cascade are red. Lines ending in arrows represent activation and lines ending in circles represent inhibition. Time courses                    

of the species with a beige background are later used in parameter estimation. Readjusted from Nair et al. (2016). (B) Schematics of the                       

bimolecular reactions used for CaMKII autophosphorylation with yellow circles depicting fully activated CaMKII bound to calmodulin                

and calcium, and blue circles depicting phosphate groups. Six newly introduced parameters are shown on the reaction arrows with their                    

ID’s in the updated model. (C) Timing (in seconds) of the dopamine input (Δt={-4,-3,-2,-1,0,1,2,3,4} corresponding to E0-E8) relative                  

to the calcium input (zero), and a single experiment without a dopamine input (E9) 

SBtab 

As described above we have chosen the SBtab format for model and data storage. This format allows the storage of                    

biochemical models and associated data in a single file and provides a set of syntax rules and conventions to structure data                     

in a tabulated form making it easy to modify and share. To ensure interoperability, SBtab provides an online tool to                    

convert the models into the SBML format. SBtab is suitable for storing data that comes in spreadsheet or table formats,                    

e.g. concentration time series or dose response curves, and it also supports various annotations. The SBtab file is intended                   

to be updated manually during the process of model building. Additional instructions on how to make SBtab files work                   

well within our toolchain can be found in the Subcellular Workflow GitHub repository. Some of the columns and sheets                   

that we use should be considered as extensions to the format. However, SBtab is easy to parse so adjustments to parsers                     

can be made quickly. 

The SBtab file should include separate sheets for compartments, compounds, reactions, assignment expressions,             

parameters, inputs, outputs, and experiments (as well as data tables). The use case model has 99 compounds, 138 reactions                   

and 227 parameters. An example of the SBtab reaction table can be found in Table 1. An important thing to note here is                       

that while most software tools use seconds as their default time units, the NEURON simulator which we use to incorporate                    
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the biochemical cascades into an electrical neuron model uses milliseconds instead. We found no easy way to convert the                   

parameter units in SBtab into the file format used by NEURON and hence, the time unit we use in the SBtab sheets                      

representing the model (but not the data) is millisecond.  

Table 1 An example of the tabulated representation of model reactions in the SBtab format. The kinetic law uses the parameter names                      

from the parameter table and species names from the compound table 

One of our goals with this study was to reproduce the original model behavior after replacing a single module inside the                     

model to convert the model to bimolecular reactions only. The data we used therefore represents the simulated time series                   

(20 s) of the concentrations of four selected species in response to different input combinations using the original model.                   

Each individual data sheet (named E0-E9, Fig. 2c) in SBtab represents the outputs of one experiment. Another sheet called                   

Experiments allows to define the input parameters differently for each experimental setup. By setting the initial                

concentrations of the unused species to zero the data could be mapped to a specific sub-module of the model (the                    

remaining species). In this case the initial conditions are the same for all experiments. The Experiments table can also                   

support various annotations relevant to each dataset. We used nine different timings (corresponding to E0-E8) between the                 

calcium and the dopamine signal starting with a dopamine signal preceding calcium by four seconds and finishing with                  

dopamine following calcium after four seconds as this corresponds to the time frame originally used in model development                  

(Δt={-4,-3,-2-1,0,1,2,3,4}). Additionally, we used simulations with calcium as the only input (E9) (Fig. 2). The time series                 

of the input species are in a separate sheet following each experiment sheet. An example of how experimental data is                    

stored can be found in Table 2.  

 

 

 

  

!ID !Name !KineticLaw !IsReversible !Location !ReactionFormula 

R0 ReactionFlux0 kf_R0*GaolfGTP FALSE Spine GaolfGTP <=> GaolfGDP 

R1 ReactionFlux1 kf_R1*D1R_Golf_DA FALSE Spine D1R_Golf_DA <=> 
Gbgolf + D1R_DA + GaolfGTP 

R2 ReactionFlux2 kf_R2*D1R_Golf*DA-kr_R2*D1R_Golf_DA TRUE Spine D1R_Golf + DA <=> 
D1R_Golf_DA 

R3 ReactionFlux3 kf_R3*D1R*DA-kr_R3*D1R_DA TRUE Spine D1R + DA <=> D1R_DA 

R4 ReactionFlux4 kf_R4*AC5*GaolfGTP-kr_R4*AC5_GaolfGTP TRUE Spine AC5 + GaolfGTP <=> AC5_GaolfGTP 

R5 ReactionFlux5 kf_R5*CaM*Ca-kr_R5*CaM_Ca2 TRUE Spine CaM + Ca <=> CaM_Ca2 

R6 ReactionFlux6 kf_R6*PP2B*CaM-kr_R6*PP2B_CaM TRUE Spine PP2B + CaM <=> PP2B_CaM 

!TimePoint !Time >Y0 SD_Y0 >Y1 SD_Y1 >Y2 SD_Y2 >Y3 SD_Y3 
E0T0 0 84.47891 1 2672.089 1 3200.526 1 36817.52 1 

E0T1 0.01 84.47891 1 2672.089 1 3200.526 1 36817.52 1 

E0T2 0.02 84.47891 1 2672.089 1 3200.526 1 36817.52 1 
E0T3 0.03 84.47891 1 2672.089 1 3200.526 1 36817.52 1 
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Table 2 An example of the tabulated representation of experimental time series data in the SBtab format. Columns titled Y0-Y3 refer to                      

each of the output species followed by a standard deviation column 

Model pre-processing tools 

Model building entails frequent changes to the model structure by adding new species, reactions, and parameters. This can                  

result in the emergence or disappearance of Wegscheider cyclicity conditions that refer to the relationships between                

reaction rate coefficients arising from conditions of thermodynamic equilibrium (Wegscheider 1901; Vlad and Ross 2004).               

Identified thermodynamic constraints show parameter dependencies that follow from physical laws and can reduce the               

number of independent parameters. These conditions are frequently difficult to determine by human inspection, especially               

for large systems. Similarly, identifying conserved moieties, like conserved total concentration of a protein, allows the                

reduction of the ODE model size, which leads to increased performance. In order to address these model pre-processing                  

needs our toolkit includes scripts in MATLAB/GNU Octave that use the stoichiometric matrix of the reaction network as                  

an input to determine the thermodynamic constraints as described in Vlad and Ross (2004), and conservation laws. These                  

diagnostic tools output any identified constraints that, if needed, are to be implemented manually before the parameter                 

estimation step. It should be noted that such constraints need to be re-examined after each addition of new reactions as the                     

structure of the model might change and make previously true constraints invalid. This is true for all major changes to the                     

model. 

MATLAB tools 

The bulk of our workflow is developed in MATLAB as it provides an easy-to-use biochemical modeling application with a                   

graphical user interface called SimBiology along with a wide range of toolboxes for mathematical analysis. The workflow                 

is divided into import, simulation, and analysis scripts. To ensure an easy and user-friendly usage, all operations are                  

controlled by a single settings file where all specification options needing user input are represented as modifiable                 

variables. An example settings file of the use case model along with instructive comments can be found in the GitHub                    

repository. 
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Import from SBtab to MATLAB 

The scripts we have written first convert the SBtab into a .mat format, this file is then used to generate representations of                      

the base model in three different formats: the MATLAB format, the SimBiology format and SBML (level 2 encoding),                  

while also creating scripts coding the input and each experiment inside the newly created ‘Formulas’ and ‘Data’ folders,                  

respectively. All these new files and folders are stored inside the main model folder. 

Parameter estimation 

MATLAB offers a wide range of tools, such as various optimization algorithms, that can be utilized in model refinement.                   

This allows e.g. the optimization for single point parameter estimation. For this step, we have also developed MATLAB                  

code to automate the use of either of the listed methods with minimal user-defined input. Adjusted parameters can be                   

manually updated in the SBtab or SimBiology model. Our scripts allow the use of Genetic Algorithm, Simulated                 

Annealing, Pattern Search and Constrained Optimization for which MATLAB provides thorough documentation. The             

equation used to calculate the score for how well the model outputs fit the experimental data can be found below. In                     

addition, we have incorporated a few other ways of calculating the score depending on the need (see documentation). 

F (θ; , )Y τ = ∑
l

k=1
∑
m

j=1
n
1 ∑

n

i=1
( τ ijk

Y −y (θ)ijk ijk )
2

 

Here, Y represents the simulation results from the original (validated) model and y are the simulations of the updated                   

model under parameterization θ. The allowed mismatch τ between the two simulation results is analogous to the standard                  

deviation of a Gaussian noise model in data fitting. The resulting F is the objective function for Particle Swarm                   

optimization. The error is summed over n, the number of points in a given experimental output, m, the number of                    

experimental outputs in an experiment which is four in our use case (see Fig. 3b), and l, the number of experiments (E0-E9                      

in this case) (see Fig. 2c). 

Parameter estimation is generally based on experimental data. Here, however, we would like to demonstrate the workflow                 

with a simple use case and therefore the data we used represents the simulated time series of the concentrations of several                     

species using the original version of the model in SimBiology. After modifying the model, we minimized the difference                  

between the old behavior and the updated model’s response through optimization. The simulation results from the old                 

model can be considered as analogous to experimental data in a normal parameter estimation setting. Here we merely aim                   

to make an updated model agree with its earlier iteration, which itself was adjusted based on experimental data. When                   

changing a module in a model it is crucial to protect the unchanged parts which is why we performed parameter estimation                     

using the key species that intersect the calcium and dopamine cascades, namely PP1, calmodulin and DARPP-32 (Fig. 2                  

and 3b). We performed an optimization with the Particle Swarm algorithm to parameterize the replaced module and the                  
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use of the simulated data of these four species proved to be sufficient for the particular task as adding more species did not                       

improve the fits.  

Validation in Matlab 

Parameter estimation resulted in a good fit for most of the species and the updated model was able to closely reproduce the                      

results seen with the original model (Fig. 3c). The Subcellular Workflow includes the updated model in SBtab, SBML and                   

MATLAB SimBiology along with a script that simulates the model in MATLAB and reproduces the traces of the updated                   

model shown in Fig. 3c-d.  

Fig 3 (A) Illustration of the model inputs. Calcium burst (blue) at 4 s used in all simulations and a dopamine transient (orange) applied                        

at different timings in eight experiments and one without it. (B) Four species used in parameter estimation corresponding to the input                     

combination in A. Black traces represent the data produced by simulating the original model, red traces represent fits with the best new                      

parameter sets in the updated model. (C, D) Comparison of model performance with substrate phosphorylation as the main model                   

readout. (C) Normalized time series of substrate phosphorylation, the main readout, with calcium as an only input or dopamine                   

following it after 1 s. (D) Normalized area under the curve of substrate phosphorylation with different calcium and dopamine input                    

intervals 

 

 

  

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.385203doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.385203
http://creativecommons.org/licenses/by-nc/4.0/


 

 
Global sensitivity analysis 

In many cases parameter estimation of biochemical pathway models does not result in one unique value for a parameter.                   

Structural and practical unidentifiability (Raue et al. 2009) results in a large set of parameter values that all correspond to                    

solutions with a good fit to the data, i.e. there is a large uncertainty in the parameter estimates (Eriksson et al. 2019). When                       

this is the case local sensitivity analysis is not so informative, since this can be different depending on which point in                     

parameter space it is performed at. A global sensitivity analysis (GSA), on the other hand, covers a larger range of the                     

parameter space. Several methods for GSA exist (Zi 2011) but we have focused on a method by Sobol and Saltelli (Sobol                     

2001; Saltelli 2002; Saltelli 2004) as implemented by Halnes et al. (2009) which is based on the decomposition of                   

variances (Saltelli 2004). Single parameters or subsets of parameters that have a large effect on the variance of the output                    

get a high sensitivity score in this method. Intuitively, this method can be understood as varying all parameters but one (or                     

a small subset) at the same time within a multivariate distribution to determine what effect this has on the output variance.                     

If there is a large reduction in the variance, the parameter that was kept fixed is important for this output (Saltelli 2004). 

Let the vector Θ denote the parameters of the model, and y=f(Θ) be a scalar output from the model. In the sensitivity                      

analysis Θ are stochastic variables, sampled from a multivariate distribution, whose variation gives a corresponding               

uncertainty of the output, quantified by the variance V(Y). In this setting the different Θi are assumed to be independent                    

from each other. We consider two types of sensitivity indices, the first order effects S i and the total order effects . The                    ST i   

first order effects describe how the uncertainty in the output depends on the parameter Θi , i.e. how much of the variance of                      

the output can be explained by the parameter Θi alone. As an example, Si=0.1 means that 10% of the output variance can                      

be explained by Θi alone. The total order effects give an indication on the interactive effect the parameter Θi has with the                      

rest of the parameters on the output. Parameters are said to interact when their effect on the output cannot be expressed as                      

a sum of their single effects on the output. 

The first order sensitivity index of the parameter Θi is defined as , where Θ−i corresponds to all elements            Si = V (Y )

V (E (Y |Θ ))Θi Θ−i i        

of Θ except Θi , and E(... |...) denotes conditional expected value. For first order sensitivity indices and for additive                S ≤1∑
 

i
 i     

models this is an equality (all assuming that the distributions of the different Θi are independent from each other). The total                     

order effects of the parameter Θi corresponds to , the sum of all is always larger than or equal to        ST i = V (Y )
V (Y )−V (E(Y |Θ ))i      ST i         

one ( ). If there is a large difference between S i and this is an indication that this parameter takes part in S ≥1∑
 

i
 T i           ST i            

interactions. For a detailed description see e.g. chapter 5 of Saltelli (2004). 

The optimization described earlier takes place on log transformed parameter values (log10(Θ )) and for the sensitivity                

analysis we perform the sampling on a lognormal distribution, meaning that log10(Θ )~ N(μ, σ). Below we use μ                  

=log10(Θ*) and sigma=0.1, where Θ* correspond to the optimal values received from the optimization. We have also                 
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implemented some alternative distributions that can be used. We illustrate this method using only the six parameters                 

corresponding to the model module that has been replaced (Fig. 2) and the results can be seen in Fig. 4. Only four of the                        

parameters (k216-k219/k222-k225; Fig. 4) seem to be important for the output within the investigated parameter region. In                 

experiments 1 and 2 these four parameters are shown to have equal importance, whereas in experiments 4-6 the parameter                   

k219/k225 has the largest influence. Also, there seem to be some interactive effects between the parameters as shown by                   

 analysis (Fig. 4b).ST i  

 

Fig 4 Stacked bar graphs of the sensitivity indexes. The first order, Si, and total order, , sensitivities indexes of the six new                 ST i        

parameters (k216-k221 and k222-k227; see Fig. 2) for all ten experiments (E0-E9) are shown (panel A and B, respectively). The                    

sensitivities indexes are defined in the main text and were calculated based on the scores used in the optimization for each experiment                      

respectively. The parameters, Θ, were sampled independently from a multivariate lognormal distribution with log10(Θ )~ N(μ, σ), using                 

μ = log10(Θ* ) and sigma=0.1, where Θ* correspond to the optimal values received from the optimization. A sample size of N=10000                    

was used (corresponding to 80000 reshuffled samples used in the calculations (Saltelli 2004)). The analysis took 170 minutes on 50                    

compute cores (Intel Xeon E5-2650 v3). Smaller differences could be seen in the sensitivity scores when different random seeds were                    

used 
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Compatibility and validation with other simulation environments 

Conversion to SBML and simulations in COPASI 

COPASI is one of the more commonly used modeling environments in systems biology and it can read SBML files                   

(Hoops et al. 2006). Our first validation step is to use the SBML model retrieved from the SBtab model in COPASI. As the                       

online conversion tool from SBtab to SBML turned out difficult to understand we wrote a new conversion function that                   

can be found in the GitHub repository of the paper. It interprets the biological model and converts it into plain ODEs in                      

VFGEN’s custom format (.vf), the VFGEN file can then be used to create output in various languages 2 (Weckesser 2008).                   

The conversion script (written in R) converts the SBtab saved as a series of .tsv files or one .ods file into a VFGEN vector                        

field file and as by-products also the SBML and a MOD file (see chapter Conversion to a MOD file and simulations in                      

NEURON). To create an SBML model libsbml has to be installed with R bindings. The SBML file can be imported                    

directly into COPASI, although it might be necessary to remove the superfluous unit definitions manually.  

Another way to convert the model into SBML is through a single MATLAB SimBiology function. The models, however,                  

are created with long ID’s that carry no biological information (the ID’s are similar to hexadecimal hashes) for all model                    

components, the units are not properly recognized, and some units may just be incorrectly defined in the output. We,                   

therefore, created a script in R that asks for default units for the model and replaces the ones in the SBML file. It fixes                        

most issues (units, ID’s, and the time variable in assignments) allowing the model to be properly imported in3 COPASI. To                    

illustrate that the SBML-converted model imported into COPASI produces the same results as in SimBiology, we used a                  

simplified calcium input corresponding to one double exponential spike analogous to the dopamine transient and simulated                

the model with deterministic solvers in both COPASI (LSODA solver) and MATLAB SimBiology under similar               

conditions. Both simulation environments produced almost overlapping results (Fig. 5b-c) validating the converted model              

in the SBML format. 

2 Including, but not limited to: Python (NumPy), C (GNU Scientific Library (GSL), CVODE), GNU Octave (LSODE), R                  

(deSolve), and also core MATLAB (e.g. for ode15s) 

3 It should be noted that the units may not show up correctly in COPASI (depending on the version) even if they are                       
correct in the SBML file itself. 
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Fig. 5. Simulations in identical conditions in both MATLAB SimBiology and COPASI yielded almost identical results. (A) Inputs used                   

in both simulators. The calcium input is kept constant at 4 s for all simulations and dopamine input time is varied from time 0 to 8 s at                            

every one second. The difference from the previous simulations is in the calcium input which, for the sake of simplicity, is represented                      

by a double exponential spike. (B) and (C) show substrate phosphorylation curves analogous to Fig. 3, the red line represents results                     

obtained in MATLAB and blue line results from simulations in COPASI 

Simulations in STEPS 

The web-based subcellular application4 allows importing, combining and simulating models expressed in the BioNetGen              

language (BNGL; Harris et al. 2016). It supports the import of SBML (level 2) models and their transformation to                   

rule-based BNGL form using Atomizer (Tapia and Faeder 2013). The BioNetGen file format was extended to provide                 

diffusion parameters, links to tetrahedral meshes describing the geometry of model compartments, as well as the additional                 

parameters for solvers and stimulation protocols required for spatially-distributed models. The subcellular application is              

integrated with the network free solver NFsim (Sneddon et al. 2011) and it supports simulations of spatially distributed                  

systems using STEPS (Hepburn et al. 2012). STEPS provides spatial stochastic and deterministic solvers for simulations of                 

reactions and diffusion on tetrahedral meshes. Furthermore, the subcellular application provides a number of facilities for                

the visualization of models’ geometries and the results of simulations. 

To demonstrate the compatibility of the subcellular application with the workflow for model development described               

above, we imported the SBML version of the use case model to the subcellular application and simulated it with the                    

4 The online application for subcellular simulations can be found in 
https://subcellular.humanbrainproject.eu/model/simulations 
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STEPS TetOpSplit solver. We have used a simple two-compartmental spine model with a tetrahedral compartment               

corresponding to the spine compartment of the use case model. There is also a PSD compartment on one of the faces. The                      

results of the model simulations with a STEPS solver were qualitatively similar to the results obtained with the                  

deterministic model simulated in MATLAB. Examples of simulated time courses for molecule concentrations as shown in                

Fig. 3 in comparison with corresponding MATLAB curves are shown in Fig. 6. 

 

Fig 6 Validation of the model by stochastic STEPS simulation of substrate phosphorylation in a typical D1 MSN neuron spine. (A)                     

Normalized time course of substrate phosphorylation in the original model (violet and orange lines correspond to calcium and dopamine,                   

and calcium only stimuli, respectively) in comparison with averaged (n=50) stochastic STEPS simulations (blue - calcium and                 

dopamine; red - calcium only) for a typical size of D1 MSN neuron synaptic spine (V=0.02μm 3). The same stimulation protocol as in                      

Fig. 3 was used. Colored areas around averaged STEPS curves correspond to a range between 10% and 90% confidence intervals. (B)                     

Normalized area under the curve of substrate phosphorylation with different calcium and dopamine input intervals simulated for the                  

MATLAB version of the updated model (with MATLAB’s ode15s solver, blue line) and averaged stochastic STEPS simulations (n=30)                  

in the subcellular application version of the model. MATLAB statistical bar plots were added to the figure to characterize variability of                     

synaptic plasticity between subsequent induction protocol applications to the same synaptic spine. Note that despite high variability of                  

synaptic plasticity time courses averaged plasticity dynamics were in a good agreement with the ODE-based solution 

Conversion to a MOD file and simulations in NEURON 
As we suggested before, conversion between different modeling frameworks and formats facilitates collaboration. But              

conversion is made harder by the differences in the capabilities of different modeling packages. A model, such as the one                    

above, could be useful for multiscale simulations investigating how network activity shapes synaptic plasticity. A large                
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number of cellular level models are built and simulated in the NEURON environment which also supports simplified                 

reaction-diffusion systems. It would thus be useful to be able to integrate a subcellular level model into a cellular level                    

model specified using NEURON. Models in NEURON are built by adding features with MOD files that are written in the                    

NMODL programming language which has very little documentation. While conversion from SBML to MOD is already                

possible via NeuroML (instructions can be found in Lindroos et al. 2018) it is not an automated or user-friendly approach                    

and therefore we created a new conversion tool from SBtab to MOD which is the same one that creates an SBML file. As                       

one of the options it is also possible to generate a MOD file with or without state variable substitution by observing                     

conservation laws. An example on how to use the SBtab to VFGEN/MOD/SBML converter in R can be found in the                    

GitHub repository. The MOD file is meant to be a starting point for the modeler as the limited subcellular model in SBtab                      

form is not aware of its coupling to a larger model of the cell. The user must edit the resulting file manually to use it within                          

a larger scope and assign a role to this model component. 

We validate the biochemical cascade model and our conversion tools in NEURON (see Information Sharing Statement) by                 

qualitatively reproducing the results obtained in MATLAB SimBiology. Our goal is to show that the cascade model can be                   

integrated into a single neuron model and bridge spatial and temporal scales of system behavior by linking the output of                    

the cascade to changes in the synaptic properties and ultimately to the electrical behavior of the neuron model. Therefore,                   

the biochemical model in the MOD format was incorporated into a single biophysically detailed and compartmentalized                

D1 MSN model from Lindroos et al. (2018). To integrate the MOD file into single cell models a few user-specific                    

modifications have to be made to interface this model with the larger electrochemical system. First, the input is modified                   

so that the calcium burst is represented by calcium influx from the cell’s calcium channels and adjusted so that the overall                     

calcium level would be similar to the input used in MATLAB simulations. The dopamine transient is represented by an                   

assignment expression (available in the Expression table of the SBtab) that creates its double exponential form (this can be                   

used in other languages as well). When simulating the model with the same input timing combinations as in the MATLAB                    

experiments, we were able to qualitatively reproduce the substrate phosphorylation curve that illustrates both the               

input-order and input-interval constraints seen in Fig. 3d. Minor differences can be explained by differences in the calcium                  

input and the solver as MATLAB simulations were performed with ode15s while NEURON uses cnexp. 

In the D1 MSNs this biochemical signaling cascade causes synaptic strengthening via several mechanisms, one of which is                  

the phosphorylation of AMPA receptors. As mentioned above, the model instead includes a generic substrate whose level                 

of phosphorylation is the output of the cascade. For the purpose of illustrating the workflow with a proof-of-concept                  

example, we have here linked the fraction of phosphorylated substrate to the AMPA receptor conductance (the                

conductance is scaled by (1 + fraction of the phosphorylated substrate), i.e. when there is very little substrate                  

phosphorylation, very little change in the AMPA conductance is elicited, and vice versa). Modifying the model to include                  

the reactions for AMPA receptor phosphorylation will be made in a future study.  
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Fig 7 Inserting the biochemical signal transduction cascade into an electrical model in NEURON. (A) A schematic of the effects of the                      

two inputs of the model, dopamine and calcium, on a generic substrate, which in this case is taken to represent the fraction of                       

phosphorylated AMPA receptors with higher conductance levels. (B) Examples of the two inputs, calcium and dopamine. The large                  

calcium signal is due to an NMDA spike evoked via clustered excitatory synapses on a dendritic branch. (C) The calcium input from                      

NMDA receptors also qualitatively reproduces the timing dependence shown previously (Fig. 3d). (D, E) Predicted EPSP following a                  

single synaptic input in the relevant spine and in the soma. The readout of the substrate phosphorylation level was done at 7s after the                        

start of the calcium input. The relative timings of dopamine and calcium indicated with arrows in (C) are used, and the results are                       

compared to the experimental setting without the dopamine input 

Discussion 

In order to address the growing need for interoperability in biochemical pathway modeling within the neuroscience field,                 

we have developed a workflow that can be used to refine models in all phases of development, keeping in mind the fact                      

that many of the users (including us) are natural scientists and not professional programmers. For the model and data                   

storage we have chosen the SBtab format which can be easily read and modified by both modelers and experimentalists,                   

and can be converted into other formats, e.g. SBML, MATLAB SimBiology or MOD. Our workflow is modularized into                  

different steps allowing the use of each step depending on the need and ensuring interoperability with other tools, such as                    

those described in a similar endeavor named FindSim (Viswan et al. 2018). There are distinct advantages to the workflow,                   

by enforcing a common standard for information exchange, it inherently makes the models more generalizable and reduces                 

the likelihood that simulation results are artifacts of a particular simulator, and nonetheless, it gives users the flexibility to                   

leverage the strengths of each different simulation environment and provides distinct stages of processing that would not                 
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be possible in any single simulator. The presented workflow aims to use software components that are free (apart from                   

MATLAB) and solve incremental sub-tasks within the workflow (with open standard intermediate files) to make the                

workflow easy to branch into scenarios we have not previously considered. It is also possible to circumvent MATLAB                  

entirely, if desired (e.g. conversion from SBtab to a MOD file that is then used by NEURON). 

When deciding which software packages to use we find that an important aspect that must be considered is the cost and                     

licensing. For some researchers price may be a relevant concern, in other cases a researcher may have to undergo                   

considerable overhead to make their institution/lab purchase a license and possibly operate a license server. Other than                 

MATLAB, we made the choice to disregard commercial products, keeping in line with the field’s trend towards open                  

source platforms. We will also expand our tools to support the use of more complex geometries, with several                  

compartments (which is also an SBML feature), and tetrahedral meshes that can be used with STEPS in the subcellular                   

application. Such advanced geometries can in principle be defined within SBtab tables. When it comes to multiscale                 

simulations, there is the possibility of using the Reaction-Diffusion module (RXD) in NEURON. Currently, however, it                

does not support the import of SBML as it lacks the concept of spatially extended models, but SBML support might be                     

added to the future versions of RXD (McDougal et al. 2013).  

Another interesting consideration is whether the user wants to define any model directly using rules (as in rule-based                  

modeling). This would make the use of Atomizer unnecessary. The transformation from rules to classical reactions seems                 

easier than the reverse, so even if a rule-based simulation is not necessary or too slow, a rule-based description may be                     

shorter and more fundamental in terms of model translation.  

When it comes to model analysis, we have here implemented a functionality for global sensitivity analysis. This is a                   

thorough, but, computationally demanding approach and the model needs to be run in parallel on a supercomputer. There                  

are also faster but more approximate screening methods that could have been used (Saltelli 2004). In the future we also                    

intend to incorporate uncertainty quantification into the workflow (Eriksson et al. 2019). 

In summary, we have here presented a workflow for biochemical pathway modeling and provided a concrete use case of                   

reward dependent synaptic plasticity. Multiscale models are crucial when trying to understand the brain using modeling                

and simulations, e.g. how network activity shapes synaptic plasticity or how neuromodulation might affect cellular               

excitability on sub second timescales. Structured approaches for bridging from detailed cellular level neuron models, to                

more simplified or abstract cellular-, network-, and even brain region models are developing (Amsalem et al. 2020; Carlu                  

et al. 2020; Schmutz et al. 2020). In the currently illustrated workflow, we add to these efforts by bridging from the                     

subcellular scale to the cellular level scale. We updated parts of the use case model to accomplish a model with only                     

bimolecular reactions that are easier to represent in standards such as SBML. The idea is that users can look at our model                      

as a concrete test case, rerun the workflow (or parts thereof) and then replace the current example model with their own                     

models. In this particular use case, we specifically focused on creating scripts to achieve interoperability between human                 
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readable model specification standards and machine- readable standards, and, we also wanted to facilitate how a                

subcellular signaling model could be implemented in different solvers with different strengths, in this case both                

SimBiology in MATLAB, as well as STEPS and NEURON. NEURON is currently the most commonly used simulation                 

software for detailed cellular level neuron models, and STEPS can, as said, simulate signaling cascades in arbitrary                 

dendritic morphologies both in a deterministic and stochastic manner. MATLAB on the other hand has a large number of                   

functions, for example for parameter estimation and we included an implementation for global sensitivity analysis. Several                

other software is, however, used within the computational neuroscience community for cellular or subcellular model               

simulations (Ray and Bhalla 2008; Oliveira et al. 2010; Resasco et al. 2012; Akar et al. 2019). To successively make as                     

many of those tools interoperable with standards for both model and data specification, various parameter estimation and                 

model analysis methods, visualization software, etc., will further facilitate the creation of FAIR multiscale modeling               

pipelines in the future.  
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