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Abstract

The present study develops and analyses a system of partial differential equations that model a single

population of dividing cells infected by lytic viruses in a closed system. This mean-field model stratifies

cells by cell size (continuous) and number of virus particles per cell (discrete) to couple the cell cycle

and the lytic cycle under mass conservation. We present numerical solutions to the mean-field model

and an equivalent stochastic model for parameter values representative of Escherichia Coli and lytic

bacteriophages such as Escherichia virus T4. This analysis suggests that dividing cells and lytic

virus populations in isolation can coexist in the absence of evolutionary, ecological and biochemical

processes. Coexistence emerges because viral load dilution via cell growth and viral load partitioning

via cell division both counteract viral load growth via viral synthesis and hence cell death by lysis.

Furthermore, we analytically determine the quasi-steady state solution of the mean-field model in the

continuum limit with respect to viral loads. From this solution we derive a condition for cell-virus

coexistence through viral load partitioning: that the product of the viral synthesis rate, cell lysis rate

and the time between cell divisions must be less than the product of log(2) and the cell growth rate.

Overall, the present study provides a theoretical argument for a stable relationship between cells and

lytic viruses simply by virtue of cell growth and division.
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1 Introduction

For over 1.5 billion years viruses have infected and coexisted with cells [1]. Once inside a cell, a

virus typically replicates until the host dies by lysis, which then allows numerous viral progeny to

infect new cells (see Figure 1A). This life cycle, called the lytic cycle, produces an unsustainable

predator-prey relationship between viruses and their target cells. To avoid the collapse of both viral

and cell populations, some viral species (e.g. Escherichia virus Lambda) can switch between the lytic

cycle and a dormant and heritable state within the cell (lysogenic cycle) [2]. However, for lytic viruses,

population collapse is avoided by the rapid evolution (due to large population sizes, selection pressures

and mutation rates) of diverse biochemical and ecological strategies spread across large spatial domains

[3–9]. Coevolutionary arm races emerge when mutant bacteria become dominant following the gain of

a new mechanism that resists viral infection [10]; once dominant in the cell population, mutant viruses

that bypass this new cellular mechanism subsequently become dominant in the virus population [11].

Through this evolutionary process, bacteria and viruses coevolve into phenotypically heterogeneous

communities that form complex infection networks shaped by diverse ecological strategies such as

predator-resistance, host-range trade-offs and bet-hedging [8, 12, 13].

System of Lotka-Volterra equations (system of ordinary differential equation) resembling the SIR

model (infectious disease transmission) are commonly used to mathematically model mean-field virus

and cell population dynamics as a predator-prey system [1, 14–17]. Lotka-Volterra models compart-

mentalise cells and viruses into susceptible cell, infected cell and extracellular virus classes and predict

cell-virus coexistence through the perpetual proliferation and infection of susceptible cells. These mod-

els successfully reproduce key features of infected cell population dynamics and are typically at the

core of theoretical investigations on virus-cell coexistence [1, 18]. However, the use of Lotka-Volterra

models often provides a narrow view of ecological systems. In this paper, we study cell and viral

coexistence using a McKendrick–von Foerster model that couples cell and viral growth together.

We hypothesise that the coupling between the cell cycle and the lytic cycle enables coexistence between

cells and viruses in the absence of evolutionary, ecological and biochemical processes (see Figure 1).

Our reasoning is as follows. Cell division partitions the contents of a cell between cell progeny. As such,

molecules that are synthesised at a rate lower than the cell growth rate dilute within proliferating cell

populations [19]. It is thus conceivable that lytic viruses also dilute within proliferating cell populations

such that proliferating cell populations continuously partition proliferating virus populations into viral

loads that are smaller than the burst size. In this way, both the lysogenic cycle and the cell cycle

promotes cell-virus coexistence via hereditary transduction of lysogenic and lytic viruses respectively.

The present study uses proof-of-concept mathematical modelling to test the verbal model above.

We build upon existing partial differential equations (PDE) that model bacteria growth via the use of a
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structural variable s to track cell size [20] by incorporating another structural variable v that tracks the

number of virus particle per cell. This approach produces an infinite system of first order hyperbolic

partial differential equations (PDE) with non-local and periodic boundary conditions which accounts

for cell-to-cell variance with respect to cell size and viral load [21] (as opposed to Lotka-Volterra/SIR

models that consider the mean-field population dynamics of homogeneous/compartmentalised infected

and uninfected cells). This system of equations models the time evolution of the distribution of cell

size s and viral loads v among cells as cells grow in size and divide, and synthesise new virus particles

and die by lysis. Viral loads concentrate due viral synthesis, dilute as cells grow and are partitioned

between cell progeny during cell division. We assume that the cell lysis rate is proportional to the the

number of virions per cell volume v/s, and that cells logistically grow in size and divide when cells

increase in size by the minimum cell size [22]. We use this new model to show that perpetual viral

synthesis and cell proliferation can stably maintain viral loads below excessive values that rapidly

trigger cell death by lysis. As such, the cells decision to divide or die (and hence whether a population

grows or decays in size) is determined by the relative rates of viral synthesis and cell growth. Our

model suggests that cells and lytic viruses coexist when the mean division time (the time taken for a

newborn cell to divide) is less than half the mean lysis time (the time between initial viral synthesis

and cell death).

The present study is organised as follows. In section 2 we introduce the mean-field PDE model of cell

and viral growth. This introduction is accompanied by the derivation of the model from first principles

in Appendix A, derivation of an equivalent stochastic model in Appendix B, and derivation of model

parameter values based on Escherichia coli and bacteriophages such as bacteriophage T4 and λ. In

section 3 we present and describe numerical time-dependent solutions of the mean field model and

numerical simulations of the stochastic model. These results demonstrate cell-virus coexistence for

typical parameter values associated with E. coli and bacteriophages. In section 4 we produce and

describe analytic expressions for the long time distribution of viruses and size among cells during the

exponential and stationary phase of cell population growth using a continuum approximation of the

mean field model (where the mean burst size is assumed to be very large). This analysis allows us to

determine the conditions for cell-virus coexistence in terms of the relationship between parameters of

cell and viral growth. The supplementary material presents an age- and viral load-structured model

which is representative of Eukaryotic cells and assumes that cells divide with a logistic rate following

a fixed time period for cell growth and that cell lysis occurs instantaneously at a critical viral load.

Model development and analysis mirrors that which is presented in the main text (i.e. derivation of a

mean-field and stochastic model, numerical time-dependent solution and analytical expressions from

the continuum approximation of the mean-field model). In section 5 we discuss the significance of our

findings.
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Figure 1: A schematic of passive coexistence between lytic viruses (small star) and bacterial cells (large ellipse). In the

lytic cycle (left), cells are infected with an extracellular virus which replicates within the host cell until the cell dies by

lysis. The lytic viruses that are released into the environment following cell lysis can repeat the cycle by infecting a new

cell. In the cell cycle (right), cells grow in size and then divide to produce two daughter cells. During cell division the

parent cell viral load is split between the two daughter cells. There are two fates of a virus-infected cell: cell death or

division.

2 Model derivation

We have derived and analysed equivalent mean-field (outlined in Appendix A) and stochastic (outlined

in Appendix B) model to study the coexistence of viruses and cells in a well-mixed and closed system.

These models consider the time evolution of a single infected cell population nv(t, s) and keep track

of cell size s ∈ R (µm3) and viral load v ∈ N (number of virions) as cells: synthesise new viruses

(which concentrates viral loads), grow logistically (which increases cell size and dilutes viral loads),

die by lysis (which removes cells and releases viruses), and divide (which partitions the viral load

and cell size of a single cell between two), as outlined in Figure 1A. The mass action kinetics of these

processes are outlined in Figure 1B. Model derivation and parameterisation was motivated by bacteria

and bacteriophages. We assume a constant viral synthesis rate and a cell lysis rate that is proportional

to the viral concentration, v/s (number of virions µm−3). Cell growth is modelled according to the

’adder’ mechanism of bacterial growth [22], which was expressed mathematically, and experimentally

validated, in Ref. [20]. We assume that newborn cells have size s = s0 and dividing cells have size

s = 2 s0. Coupling these processes together under mass conservation produces the following infinite

system of viral load- and size-structured, first order hyperbolic partial differential equations (PDE)
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with non-local, periodic boundary conditions:

∂nv
∂t

+γ
(

1− S

κ

)∂nv
∂s︸ ︷︷ ︸

Cell growth

= λ (nv−1 − nv)︸ ︷︷ ︸
Viral synthesis

−β v
s
n︸ ︷︷ ︸

Cell lysis

, nv(t, s0) = 2

∞∑
x=v

1

2x

(
x

v

)
nx(t, 2s0)︸ ︷︷ ︸

Cell division

. (1)

with s0 ≤ s ≤ 2 s0 and v = 0, 1, . . . (and n−1 = 0). We consider an initial condition where every cell

is infected but does not contain any virions n0(0, s) = σ(s) (and nv(0, s) = 0, v > 0) where σ(s) is

the initial cell size distribution. The total number of cells N = N(t), the collective volume of the cell

population S = S(t) and the total number of intracellular virus particles V = V (t) are respectively

defined as:

N =
∞∑
v=0

∫ 2s0

s0

nv ds , S =
∞∑
v=0

∫ 2s0

s0

s nv ds , V =
∞∑
v=0

∫ 2s0

s0

v nv ds . (2)

An alternative age- and viral load-structured model is derived and analysed in the supplementary

material. This model is similar to equation (1) except that: (i) cell size is neglected and cell age is

considered, (ii) cell division occurs at a logistic rate (dependent on the number of cells) following a

delay phase following the time of parental cell division and (iii) cell death by lysis is assumed to occur

instantaneously at the mean burst size.

3 Numerical results for bacteria-bacteriophage coexistence

The section presents and describes a numerical solution of the mean-field model (equation (1), Ap-

pendix A) and a numerical simulation of the stochastic model (Appendix B) using parameter values

(shown in Table 1) that are representative of E. coli infected with bacteriophage T4 or λ (see Appendix

C for derivation). The method of lines was used to numerically solve the mean-field model so as to

preserve the jump discontinuity in the solution nv(t, s) across s (unlike discretisation methods such as

Crank-Nicholson and upwind scheme). The Gillespie algorithm was used to simulate the stochastic

model.

Parameter Symbol Default value Range Dimension Source

Maximum division rate α 2 0 - 3 hr−1 [20]

Minimum division time τ 0.5 0.2 - 24 hr [20]

Newborn cell volume s0 1 0.3-3 µm3 [20]

Cell growth rate γ 2 1 - 10 µm3 hr−1 s0/τ

Virus synthesis rate λ 200 10-1000 particles hr−1 [1, 23]

Cell lysis rate β 0.005 0.001 - 0.01 particles [24]

Table 1: Default parameter values for E. coli infected with bacteriophages such as T4 and λ, derived in Appendix B.
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3.1 Coexistence ancestral lineage

Figure 2A presents a single simulation of the stochastic model for small numbers of cells (carrying

capacity κ = 30 µm3) from an initial condition where there is one infected cell with minimum cell size

s = s0 and no viral load v = 0. The cell and virus population are represented as a single ancestral

lineage that tracks cellular: (i) viral load v (virions per cell), (ii) viral concentration v/s (virions

per µm3 per cell), (iii) size s (µm3 per cell), (iv) age (via edge lengths), (v) division (branch points)

and (v) death by lysis (terminal nodes). As such, this representation shows how infected cells can

negate cell lysis through the dilution and partitioning of viral loads respectively via cell growth and

cell division. Viral load dilution reduces the likelihood of cell lysis and hence increases the likelihood

of cell replication (and viral load partitioning). Consequently, robust coexistence immediately follows

infection when the extent of viral load dilution is greater than the extent of viral load concentration

via virion synthesis. We note that the random partitioning (given by a binomial distribution) of

viral loads between cell progeny produces cell-to-cell differences which, together with stochastic viral

production and cell growth, can lead to different outcomes (i.e. death or division) for daughter cells

[21] and causes the total number of cells to randomly fluctuate around a positive value.

3.2 Viral load- and cell size-distribution during exponential and stationary growth

Figure 2B presents the total number of cells N , total cell volume S and total number of intracellular

virions V given by the mean of 100 simulations of the stochastic model for large numbers of cells

(carrying capacity κ = 104 µm3 and κ = 1012 µm3 = 1 mL). These simulations considered an initial

condition where there are 10 cells whose cell size is randomly generated from values between s = s0 and

s = 2 s0. Figure 2C presents the distribution of viral concentrations v/s (virions µm−3) among large

numbers of cells and contrasts the distribution profiles during the exponential phase and stationary

phase of cell population growth (where the cell population is respectively much lower than, and close

to, carrying capacity). During the exponential growth phase, constant cell growth counteracts constant

viral synthesis such that viral concentrations are stably contained at values where cell lysis rates are less

than cell division rates. Intercellular competition decelerates cell growth until the population reaches

the stationary growth phase. A reduction in cell growth and viral dilution rates (while viral synthesis

remains constant) concentrates viral loads and hence increases cell lysis rates. At the stationary phase

of population growth the viral load are stably distributed among cells at a mean concentration that

produces equal cell death and division rates.
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Figure 2: A A simulation of the stochastic model (Appendix A) with carrying capacity κ = 30 µm3 and initially one

infected cell with size s = 1 µm3 and no viral load v = 0. Model parameter values are shown in Table 1 and include a cell

growth rate variance of 1 µm3 hr−1 and cell division size variance of 0.1 µm3. Shown: the ancestral lineage (solid black

line) tracking cell division and lysis overlaying the cell population represented as a set of cells (coloured blocks, stacked

vertically) with size s µm3 (block length) and viral load v (block colour, top lineage) and the viral concentration v/s

(block colour, middle lineage) and the population size N (grey line) and volume S (black line) (bottom). B The mean

total number of cells N (left), population volume S (middle) and total number of intracellular viruses (right) from 100

simulations of the stochastic model with carrying capacity κ = 104 µm3 (blue) and κ = 1012 µm3 = 1 mL (red). C The

distribution of viral concentration v/s among cells generated from (i) a single simulation of the stochastic model with

carrying capacity κ = 104 µm3 (blue) and κ = 1012 µm3 = 1 mL (red) and (ii) a numerical solution to the mean-field

model (black line), see Figure 3.
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Figure 3: A numerical solution to equations (1) and (??) for the number of cells nv(t, s) with size s (µm3) and viral load

v (virions per cell) with carrying capacity κ = 106 µm3 = 10−6 mL) and an initial homogeneous cell size distribution

(σ(s) = 1 for 1 ≤ s ≤ 2 µm3). The parameter values are shown in Table 1. A The total number of cells N and the

collective size of all cells S (µm3) (defined in equation (2)). Inset plot depict the oscillations in S. B Colour-graded

contour plot for the proportion of cells with v virion particles per cell (given by
∫ 2

1
nv(t, s) ds/N). C Plots of the total

number of cells with v virion particles per cell
∫ 2

1
nv(t, s) ds at t =5, 5.2, 5.4 and 5.6 hours (left plot) and at t =20, 20.2,

20.4 and 20.6 (right plot). D Heat map plots of the total number of nv(t, s) with viral load v particles per cell and size

s µm3 at t =20.2 hours (left) and 20.6 hours (right).

3.3 Mean-field breather dynamics of cell-virus growth

Figure 3A shows the population size N and volume S during the exponential and stationary phase

of cell population growth (which closely matches stochastic model output shown in Figure ??). This
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solution has an initial condition where cell size is uniformly distributed across a cell population of size

1, σ(s) = 1/s0 (s0 ≤ s < 2 s0 µm3). The cell and virus population tends to a state where the total

number of infected cells N oscillate over time [25]. As opposed to a predator-prey interactions [1],

these oscillations arise in our model (equations (1) and (??)) because the distribution of viruses and

size among cells nv(t, s) dynamically cycles between quasi-steady states (i.e. a breather solution [26])

. Breather dynamics is underpinned by incremental increases in cell size s (cell growth) and viral load

v (viral synthesis) and non-local halving (approximately) of both s and v due to cell division.

Figure 3B and C show the distribution of viruses among the cell population
∫ 2

1 nv(t, s) ds and

illustrates the quasi-steady periodic state during the exponential phase and the stationary phase of

population growth. During the exponential growth phase, each periodic cycle close-to doubles the

number of cells with a period length of approximately 0.4 hours. From a broad uniform peak across

100 < v < 200, a sharp peak emerges with doubled magnitude around v = 100; this sharp peak slightly

decays in size over time while it broadens to a uniform distribution across 100 < v < 200. The sharp

peak is generated by the production of two daughter cells with a viral load that, on average, is half

the parental viral load and the slight decay in peak magnitude is generated by cell lysis. During the

stationary phase, the viral load-distribution dynamically cycles in a similar way to the exponential

phase except that: (i) each cycle has a period of approximately 0.8 hours, (ii) the total number of cells

after each cycle remain constant, (iii) the broad peak is distributed across 150 < v < 350 and (iv) the

sharp peak is initially centred around v = 175 virions per cell. We note that the distribution of viral

concentration among cells are shown in Figure ??B and hold steady profiles during the exponential

and stationary phase.

Figure 3D depicts the time-evolution of the distribution of v and s among cells nv(t, s) during the

stationary phase of population growth. These plots illustrate how the quasi-steady state breather

dynamics are produced by local increases in cell size s (cell growth) and viral load v (viral synthesis),

decay in the number of cells due to cell lysis, and non-local halving (approximately) of both s and v,

and cell doubling, due to cell division. The initial homogeneous distribution of cell size among cells

is preserved for all time. Furthermore, the distribution of viral loads among cells holds a smoothed

profile of the cell size distribution because both the cell size and viral loads are partitioned with

mass conservation between cell progeny. The cell size distribution is discontinuous and the viral load

distribution is smoothed because our model assumes that cell size is symmetrically halved and viral

loads are random partitioned (binomial distribution) during cell division.

4 Analytical results and the condition for coexistence

This section presents and describes a continuum approximation of the mean-field model (nondimen-

sionalised), which is fully developed and analysed in Appendix D. This model is analysed to find
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the quasi-steady state solution for the distribution n(t, s, v) of cell size s and viral load v during the

exponential and stationary phase of cell population growth, and the conditions (in terms of model

parameters) for cell and virus coexistence.

4.1 Nondimensional continuum mean-field model

The independent variables in the mean-field model (equation (1)) can be nondimensionalised by res-

caling each variable as follows:

t̃ ≡ t

τ
, s̃ ≡ s

s0
, ṽ ≡ v

µ
, ñ ≡ s0 µnv , σ̃ ≡ s0 µσ , S̃ ≡ S

s0
, Ṽ ≡ V

µ
, (3)

where parameter τ = s0/γ (hrs) is the mean division time (time taken for a newborn cell to divide)

and µ (virions cell−1) is the mean burst size (the mean number of viruses per cell during cell lysis in

the absence of cell growth and division, see Appendix B). The ranges of the independent variables are

1 ≤ s ≤ 2 and v ≥ 0. Note that the units for the number of cells remain in the model.

Burst sizes are typically large µ � 1 (number of virions per cell). As such, by definition of the

difference quotient and binomial distribution, it is reasonable to approximate virion synthesis and

viral load partitioning by the following continuous functions:

ñ(t̃, s̃, ṽ − 1/µ)− ñ
1/µ

≈ −∂ñ
∂ṽ

,
∞∑

x=µṽ

1

2x

(
x

µṽ

)
ñ(t̃, 2, x/µ) ≈ n(t̃, 2, 2 ṽ) .

Substitution of the rescaled variables in equation (3) into equations (1) and taking the continuum

limit µ→∞ produces the following two-dimensional first-order hyperbolic PDE with a non-local and

periodic boundary condition:

∂ñ

∂t̃
+
(
1− c S̃

)∂ñ
∂s̃

+ a
∂ñ

∂ṽ
= −b ṽ

s̃
ñ , ñ(t̃, 1, ṽ) = 2 ñ(t̃, 2, 2 ṽ) , n(0, 0, s̃) = σ̃(s̃) , (4)

where nondimensional parameters a, b and c are defined as:

a =
λ s0

µγ
=
λ τ

µ
, b =

β µ

γ
, c =

s0

κ
. (5)

Parameter a is given as the product of the mean lysis time µ/λ (the time between initial viral synthesis

and cell lysis in the absence of cell growth and division) and the mean division time τ = s0/γ. In the

following subsection we show that at steady state the mean lysis time µ/λ (the time between initial

viral synthesis and cell lysis in the absence of cell growth and division) is equal to the mean division

time τ = s0/γ such that a = 1. Lastly, the population size N and the rescaled values of the collective

cell volume S̃ and total number of intracellular viruses Ṽ are respectively defined as:

N =

∫ ∞
0

∫ 2

1
ñ ds̃ dṽ , S̃ =

∫ ∞
0

∫ 2

1
s̃ ñ ds̃ dṽ , Ṽ =

∫ ∞
0

∫ 2

1
ṽ ñ ds̃ dṽ . (6)
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4.2 Quasi-steady state solution during the exponential phase of population growth

The quasi-steady state solution for the distribution of viruses and size among cells during the exponen-

tial phase of population growth can be approximated by considering an unbounded carrying capacity

κ→∞ (c = 0), which assumes no intercellular competition. From equation (4) with c = 0, cells that

initially have the minimum size and no viral load (σ̃(1) > 0) converge to the characteristic line ṽ = a s̃

by evolving along the characteristic line ṽ = a(s̃− 1) for 0 ≤ t̃ < 1, ṽ = a(s̃− 1/2) for 1 ≤ t̃ < 2, etc.

The initial distribution of size among cells σ̃(s̃) is conserved for all time.

Consider the parametric solution ñ(t̃, x̃) = ñ(t̃, s̃(x), ṽ(x)) that exists only on the characteristic

line:

s̃ = x+ 1 , ṽ = a (x+ 1) , 0 ≤ x ≤ 1 , (7)

such that cells divide with a nondimensional time period of 1 (dimensional time period of τ hours,

the minimum division time). The initial size distribution is given as σ̃(s̃)/
√

1 + a2 (Euclidean norm).

With ṽ = a s̃, the viral concentration remains constant (at value a) such that ñ exponentially decays

with rate a b and doubles in magnitude as it transitions from x = 1 to x = 0 (given by the periodic

boundary condition stated in equation (4)) :

∂ñ

∂t̃
+
∂ñ

∂x
= −a b ñ , ñ(t̃, 0) = 2 ñ(t̃, 2) , ñ(0, x) =

σ̃√
1 + a2

. (8)

A simple application of the method of characteristics can be used to find the solution to equation (8)

for 0 ≤ t′ ≤ 2:

ñ =


σ̃(x−t̃)√

1+a2
e−a b t̃ , t̃ ≤ x < 1

2 σ̃(x−t̃+1)√
1+a2

e−a b t̃ , 0 ≤ x < t̃

, 0 ≤ t̃ < 1 , (9)

ñ =


2 σ̃(x−t̃+1)√

1+a2
e−a b t̃ , t̃− 1 ≤ x < 1

22 σ̃(x−t̃+2)√
1+a2

e−a b t̃ , 1 ≤ x < t̃− 1

, 1 ≤ t̃ < 2 . (10)

From this solution it is clear that the general solution for time j ≤ t̃ < j + 1 (j ∈ N):

ñ =


2j σ̃(x−t̃+j+1)√

1+a2
e−a b t̃ , t̃− j ≤ x < 1

2j+1 σ̃(x−t̃+j+2)√
1+a2

e−a b t̃ , 0 ≤ x < t̃− j
, j ≤ t̃ < j + 1 . (11)

The population size N , volume S̃ and viral content Ṽ can be found by substitution of equation (11)

into equation (6).

Figure 4 displays the solution to equation (8) given by equation (11) for the case where cell size and

virions are uniformly distributed among cells (σ̃ = 1, 1 ≤ s̃ ≤ 2). The profile of the initial distribution

is conserved as the population distribution decays with rate a b, incrementally translates to large cell

sizes (cell growth) and viral loads (viral synthesis) and doubles in magnitude with periodicity of 1 as

11
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Figure 4: Analytical quasi-steady state solution to the nondimensionalised continuum mean field model (equation (??11))

for the distribution of size s̃ and viral loads ṽ among cells ñ) parametrised on the characteristic line v = a s (s = x+ 1,

v = a(x+ 1), 0 ≤ x ≤ 1) during the exponential phase of population growth (where there is no intercellular competition

c = 0 (κ → ∞)). Shown are the solutions for a b = log(2)/2 (A), log(2) (B) and , 2 log(2) (C) for times t̃ = 0,

0 ≤ t̃ ≤ 0.5, 0 ≤ t̃ ≤ 1, 0 ≤ t̃ ≤ 1.5 and 0 ≤ t̃ ≤ 2 from columns left to right. The distribution at different times points

are represented in different colours as indicated by the colour bar. D The analytical solution for the total number of

cells N (solid line), volume S̃ (dashed line) and total number of viruses Ṽ (dotted-dashed line) for parameter values

a b = log(2)/2, log(2) and 2 log(2) (from left to right).

it passes through the periodic boundary from s = 2 and v = 2 a to s = 1 and v = a respectively (cell

division). These properties were observed in the numerical solution of the discrete mean-field model

shown in Figure 3. Equation (11) and Figure 4 show that the number of cells and viruses will grow

in size only if the population decay (rate a b) is less than population growth (periodicity of 1). As

12
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such, the condition for cell-virus coexistence is that the product of the viral synthesis rate λ (number

of virions per hour), the cell lysis rate β (virions µm−3 hours−1) and division time τ (hours) must be

less than the product of log(2) and the cell growth rate γ (µm3 hour−1):

a b =
λβ τ

γ
≤ log(2) , (12)

The population size N , volume S̃ and viral content Ṽ oscillate around fixed values for a b = log(2),

grow for a b < log(2) and decay for a b > log(2). Both N and S remain at a steady value when

a b = log(2) and the initial size distribution σ(s) is proportional to e−a bs.

4.2.1 Continuum steady state solution during the stationary phase of population growth

The steady state solution ñ∗(s̃, ṽ) ≡ limt̃→∞ ñ(t̃, s̃, ṽ) is a special case of the breather solution where

the solution does not change over time during the stationary population growth phase. The equation

that determines ñ∗(s̃, ṽ) can be found by setting ∂
∂t = 0 in equation (4):

(1− c S̃∗)∂ñ
∗

∂s̃
+ a

∂ñ∗

∂ṽ
= −b ṽ

s̃
ñ∗ , ñ∗(1, ṽ) = 2ñ∗(2, 2ṽ) . (13)

The method of characteristics can be used to find the solution ñ∗ to equation (13). Let ñ∗(s̃(x), ṽ(x))

be parameterised by variable 0 ≤ x ≤ T , where T is the time (nondimensional) taken for a newborn

cell to divide.It is clear from equation (13) that the steady state characteristic curve is given by:

s̃ =
x

T
+ 1 , ṽ = a (x+ T ) , T ≡ 1

1− c S̃∗
, (14)

where 1 ≤ s̃ ≤ 2 and a T ≤ ṽ ≤ 2a T . The viral concentration remains constant along the characteristic

curve such that the solution to ñ∗ is given by an exponential function of x:

dñ∗

dx
= −b ṽ

s̃
ñ∗ = −a b T ñ∗ =⇒ ñ∗ = ñ∗(0) e−a b T x . (15)

The boundary condition n∗(0) = 2n∗(T ) is satisfied when the division time is:

T =

√
log(2)

a b
. (16)

The definition of S̃∗ in equation (6) and (14) can be used to find the value of n∗(0):

ñ∗(0) =
2 S̃∗

(
log(2)

)2√
1 + a log(2)

b

. (17)

By the definition of the mean burst size (see Appendix B), equation (15) and (17) can be used to show

that the value of nondimensional parameter a is a = 1:

µ =
β τ

N∗

∫ ∞
0

∫ ∞
0

v2

s
ñ∗ dv ds =⇒ 1 =

b

N∗

∫ 2 aT

aT

∫ 2

1

ṽ2

s̃
ñ∗ dṽ ds̃ = a .
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This implies that the mean burst size is given by the product of the viral production rate and the

mean division time µ = λ τ . Indeed, the mean burst size has been shown to increase proportionally

to the Therefore, from equation (17) the steady state solution is:

ñ∗(ṽ(x), s̃(x)) =
2 log(2)N∗√

1 + log(2)
b

e−
√

log(2) b x . (18)

The steady state number of cells N∗, total population volume S̃∗ and total number of intracellular

viruses Ṽ is found by substitution of equation (18) into equation (6):

N∗ = log(2) S̃∗ , S̃∗ =
1

c

(
1−

√
b

log(2)

)
, Ṽ ∗ = N∗ . (19)

Equation(18) and (19) are plotted in Figure 5 for various values of nondimensional parameter b. From

this analysis it is clear that the condition for cell-virus coexistence is that the product of the viral

synthesis rate λ (number of virions per hour), the cell lysis rate β (virions µm−3 hours−1) and division

time τ (hours) must be less than the product of log(2) and the cell growth rate γ (µm3 hour−1):

a b = b =
λβ τ

γ
=
λβ s0

γ2
=
µβ

γ
≤ log(2) . (20)

Figure 5 shows that as the value of b changes from log(2) to 0 the population size N∗, the total

number of intracellular viruses V ∗ (equal to the product of the mean burst size µ = λ τ (virions) and

the number of cells N∗) and volume S̃∗ (dimensionalised by s0 µm3) tend from 0 to c log(2) and c

respectively (recall that c is the newborn cell size s0 µm3 divided by the carrying capacity κ µm3).

From both Figure 5 and equation (20) we see that for fixed viral synthesis rates λ (virions hr−1),

lysis rates β (virions µm−3 hr−1) and newborn cell sizes s0 (µm3), an increase in the cell growth

rate γ (µm3 hr−1) significantly promotes coexistence (cell population close to carrying capacity) by

increasing both viral dilution via cell growth and viral partitioning via cell division.

We note that the viral synthesis rate λ may depend on the cell growth rate γ [1, 23]. If this

relationship were linear (e.g. λ = ω γ) then the condition for coexistence is simply is that τ ≤

log(2)/(β ω). This condition imposes a strict requirement for rapid cell division (small times for

newborn cells to divide, τ), which implies that slowly dividing cells would be filtered from bacteria

populations which are heterogeneous with respect to cell division rates.

5 Discussion

5.1 Summary of results

Mathematical modelling of viral-infected cells was used to study coexistence between lytic viruses

and their host cells due to a coupling between the cell cycle and the lytic cycle (Figure 1). Model

analysis showed that the dilution and partitioning of viral loads (the number of viruses per cell) via
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Figure 5: The equilibrium solution to the non-dimensionalised mean-field model (equation (4)). A The equilibrium

population size N∗ (solid line), viral content Ṽ ∗ (solid line) and volume S̃∗ (dotted line) given by equation (19) and

the division time T (dashed line) given by equation (16) as a function of nondimensional parameter 0 ≤ b ≤ log(2).

B The parametric solution to equation (13) ñ∗(s̃(x), ṽ(x)), the equilibrium distribution of cell size s̃(x) and viral load

ṽ(x) (parametric variable 0 ≤ x ≤ b
log(2)

= T ) for b = 0.01 log(2) (red), 0.03 log(2) (blue), 0.1 log(2) (green), 0.3 log(2)

(orange) and log(2) (brown).

cell growth and division counteract viral load growth via viral synthesis, and hence cell death by lysis.

As such, the cell cycle negates the lytic cycle. Generality of the proposed theory was demonstrated

through the development and analysis of two different models. The model presented in the main text

is representative of bacteria and assumes that cells divide once they grow (logistically) by a critical

size [22] and that cell lysis rates are proportional to the viral concentration per cell. Conversely,

the model presented in the Supplementary Material is representative of Eukaryotic cells and assumes

that cells divide with a logistic rate following a fixed time period for cell growth and that cell lysis

occurs instantaneously at a critical viral load. For both approaches, we presented numerical time-

dependent solutions to equivalent stochastic and mean-field models (Figure 2 and 3), and derive

analytical expressions for the distribution of viruses among cells from a continuum approximation

of the mean field model (Figure 5 and 4). Model solutions were qualitatively different yet model

outcomes were equivalent. Long time coexistence between lytic viruses and their host cells is set by an

equilibrium between cell size growth (viral load dilution) and viral synthesis (viral load concentration),

and cell division (viral load partitioning) and cell death by lysis (viral load release).

The proposed mechanism of cell-virus coexistent is conceptually similar to lysogeny (viral dormancy

state). Lysogeny allows viruses to stably transfer to cell progeny as part of the host genome where it

can either switch to the lytic state and kill the cell or continue to be transferred to later cell generations

in the lysogenic state. Our findings suggest that viruses in the lytic state might also be transferred to

cell progeny where it can either lyse cell progeny or transfer to later cell generations.
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5.2 Ecologic effects of cell cycle-driven viral load dilution and partitioning

It is typically assumed that cells always die when infected with a lytic virus. This paradigm is suppor-

ted by Lotka-Volterra models that use said assumption and predict stable cell and virus populations

[1]. In these models, survival of the viral and cell population hinges on a few cells that remain un-

infected during the viral spreading, and proliferate following extracellular virus decay [1]. However,

predator-prey modelling often provides an incomplete and/or incorrect picture of ecological systems

[27]. In this case, it is unlikely that uninfected cells remain in closed and well-mixed systems (i.e.

chemostat) during viral infection cascades where cell rapidly produces tens-to-thousands of viruses

which rapidly attach to cells, slowly decay [18, 28] and diffuse throughout the environment (hampered

viral diffusion through structured environments such as biofilms promote cell survival [29, 30]). The

present study suggests that cells and lytic viruses can coexist in the absence of uninfected cells and

spatial effects due to the growth and division of infected cells, which can be observed from time-lapse

videos of bacteria infected with fluorescently labelled bacteriophage [21].

Prior to the evolution of bacteriophage-resistant mutants, oscillations in the total number of cells

and viruses are observed is laboratory settings (chemostats) [25]. This behaviour is characteristic of

predator-prey models. In these models, the number of extracellular viruses increase as infected cells

die by cell lysis and decrease to due virion decay in the presence of small numbers of uninfected cells;

the number of uninfected cells proliferate when the number of extracellular viruses are small which,

in turn, enables viruses to infect more cells. In our models, oscillations in the number of infected cells

are due to the breather dynamics [26] of the distribution of viruses and size among cells. Breather

dynamics arise from incremental increases in cell size due to cell growth and viral loads due to viral

synthesis and non-local halving (approximately) of both the cell size and viral load due to cell division.

Our findings suggests that lytic viruses and their host cells might not always require evolutionary

and ecological forces in order to coexist. Since cell growth and division are common properties of

single cells, then their effects of viral load dilution and partitioning might be a common property of

infected cells. Thus, if the dilution and partitioning of viral loads are global properties of infected cells

and is sufficient for cell-virus coexistence then sufficient coexistence strategies (such as lysogeny and

evolution) may not always be necessary. It is conceivable that the proposed mechanism contributes

to robust and ubiquitous cell-virus coexistence by complimenting several other sufficient strategies for

coexistence. For example, the coexistence of viruses and their host cells can arise through evolution

by the perpetual generation of new viral-resistant cell mutants and new viral mutants that target cell

mutants [8]. By establishing coexistence over short time scales, cell cycle-driven viral load dilution

and partitioning might support cell and viral evolution of long time scales and relax the requirement

for rapid coevolution. Furthermore, our theory states that viral infections acts as a filter for slowly
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dividing cells which forces rapid cell population turnover via cell division and cell death by lysis (since

the infected cell population never reaches the stationary phase of population growth). As such, lytic

viral infections could encourage cell evolution by forcing rapid cell population dynamics.

5.3 Conclusion

The present study has used mathematical modelling to suggest that the coexistence of lytic viruses and

their host cells can be sufficiently maintained through perpetual viral load growth (viral synthesis),

dilution (cell growth) and partitioning (cell division). Although model development was motivated by

bacteria and bacteriophages, our findings might also apply to multicellular organisms. In general, our

theory suggests that the cell cycle might acts as an intrinsic mechanism that enable irreplaceable, self-

renewing cell populations and sub-populations (such as stem or cancerous cells) to resist population

collapse in the face of a viral infection. Future work will explore the proposed theory in the human

context to investigate inherent viral-resistance of self-renewing cell sub-populations such as stem cells,

tumours and tissue-resident macrophages.
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6 Appendix

6.1 Appendix A: Mean field model derivation via mass action kinetics

We now derive simple functional forms that model virus and cell replication via the lytic and cell cycle

respectively. This derivation is complimented by the development of an equivalent stochastic model

in Appendix A. Motivated by recent advances in our understanding of E. coli growth [22], we extend

existing size-structured models of E. coli [20] where cell division is a function of cell size.

6.1.1 Lytic cycle

In a controlled laboratory setting, E. coli typically synthesise mature virus particles (virions) at a

constant rate following an initial delay period following infection (the eclipse phase) and up until cell

death by lysis [31]. For simplicity we assume that every cell in the model is infected and produce

virions at a constant rate λ (min−1):

nv
Synthesis−−−−−→

λ
nv+1 .

We neglect multiple infections, coupled virus synthesis and cell growth rates, and extracellular viruses.

Cell death by lysis is heterogeneous with respect to viral load; the burst size is calculated from

population averaging and not from a fixed threshold value of either the number or concentration of

virions per cell [24]. To model cell lysis we assume that cells die at a constant rate β (M−1 min−1)

that is proportional to the intracellular virion concentration v/s (M):

nv
Lysis−−−−−→
β v / s

∅ .

In this way, the variance in burst sizes is due to variances in both the viral loads and cell sizes.

6.1.2 Cell cycle

The constant size extension theory states that bacteria divide once they grow by a particular size,

say s0 (µm3) [20, 22, 32–34]. Without loss of generality we assume that the minimum and maximum

value of cell size can respectively be set to s0 (µm3), the volume of newborn cells, and 2 s0 (µm3), the

volume of cells at division, such that s0 ≤ s ≤ 2s0. During cell division we assume that the cell size

is symmetrically halved between cell progeny and that each virion is equally likely to be contained by

either daughter cell (resulting in a binomial distribution) such that:

nv(t, 2 s0)
Division−−−−−→
B(x|v)

nx(t, s0) + nv−x(t, s0) , B(x|v) =

(
v

x

)
2−v , 0 ≤ x ≤ v , (21)

where B(x|v) is the binomial distribution. To incorporate logistic population growth due to cell

crowding, we assume that cells grow with a maximum growth rate γ µm3 min−1 that linearly decreases

to zero as the total volume all cells S (µm3) approaches a mamximum value κ (µm3):

nv(t, s)
Growth−−−−−→ nv(t+ dt, s+ ds) , ds = γ(1− S/κ) dt . (22)
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6.2 Appendix B: Stochastic Model derivation

Let multiset nnn = {n1, . . . , nNi} represent N cells with collective size S µm3 at the discrete time point

ti = i∆ (i = 0, 1, . . . ). Each of the Ni cells are given as the set nj = (vj , sj aj), which quantifies the

viral load vj ∈ N virions per cell, cell size sj ∈ R µm3 and size grown since birth aj ∈ R µm3.

We now outline how we numerically simulate the stochastic model through updating nnn at each time

step. The functional form of the stated probabilities are defined in the following section. We suppose

that during time interval [ti, ti + 1] each cell has probability P Synthesis of synthesising k = 0, 1, . . .

virus particles and has probability P Growth of growing by size x ≥ 0 µm3. To model cell growth and

virus synthesis, at each time step we update each nj = (vj , sj , aj) by:

(vj , sj , aj)→ (vj + k, sj + x, aj + x) .

We suppose that during the time interval [ti, ti + 1], each of the cells have a probability P Lysis of

cell death by lysis and probability PDivision of cell division. These probabilities yield a set L cells

for cell death nnnL = {nσ1 , . . . , nσL} and a set of D cells for cell division nnnD = {nµ1 , . . . , nµD} where

1 ≤ σ`, µd ≤ Ni and σ` 6= σ`′ 6= µd 6= µd′ for any `, `′, d and d′. To model cell death and division we

update nnn as follows:

nnn
Lysis−−−→ nnn\nnnL

nnn
Division−−−−−→

(
nnn\nnnD

)⋃
mmm .

where multiset mmm is the set of cell progeny produced by the division of cells of set nnnD:

mmm = {(v′µ1 , s
′
µ1 , 0), (v − v′µ1 , s− s

′
µ1 , 0), . . . , (v′µD , s

′
µD
, 0), (v − v′µD , s− s

′
µD
, 0)} , (23)

where the values 0 ≤ v′µd ≤ vµd and 0 ≤ s′µd ≤ sµd are determined by the likelihood that a parent cell

with size s produce cell progeny with s′ and s − s′, P s partition(s′|s), and that a parent cell with size

s and viral load v produces cell progeny with v′ and v − v′, P v partition(v′|v, s, s′). These terms are

derived in the following subsection.

6.2.1 Probability of cell lysis

We assume that cell lysis is independent of age aj and that a cell with viral load vj has the probability of

undergoing lysis during the time interval [t, t+∆t] given by the following cumulative logistic function:

P Lysis
j = β∆

vj
sj

,

where B (particles per cell) is the mean burst size, β (per hour) is the maximum rate of cell lysis and

φ (per particle per cell) is a measure of variance with respect to the burst size.

19

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.384842doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.384842
http://creativecommons.org/licenses/by-nd/4.0/


6.2.2 Probability of cell division

We assume that cell division is independent of viral load vj and that a cell that has grown in size by

aj µm3 has the probability of undergoing cell division during the time interval [t, t+ ∆t] given by the

following cumulative normal distribution:

P Division
j =

∆

2

[
1 + erf

(aj − s0

σ
√

2

)]
,

where s0 µm3 is mean volume added between cell division events and σ µm3 is the variance.

6.2.3 Probability of synthesising k new virus particles

To model the synthesis of ν = 0, 1, . . . new virus particles per cell during time interval [t, t + ∆], we

update each aj and vj as follows:

vj
synthesis−−−−−→ vj + k where P Synthesis

k =
(λ∆)k

k!
e−ν∆ .

Here we assume that virus particles are created independently such that λ is determined by the

Poission distribution and γ (per hour) is the mean synthesis rate of mature virus particles.

6.2.4 Probability of growing by size x

Bacterial cells grow in size with a variable growth rate that is determined by the normal distribution

[34]. As such, we assume that the probability that a cell grows in in size by x µm3 during time interval

∆ is given by the normal distribution:

P Growth(x, S) =
1

σ
√

2π
e−

1
2σ2

(x−γ∆(1−S
κ

))2 , (24)

where logistic term γ (1− S
κ ) is the mean growth rate and σ is the growth rate variance.

6.2.5 Volume and virus partitioning between daughter cells

We assume that volume is partitioned between daughter cells divide according to a normal distribution

centred around half the parental cell volume:

P s partition(s′|s) =
1

ω
√

2π
e−

1
2ω2

(s′−s/2)2 , (25)

where ω is the division size variance. Furthermore, we assume that viral loads are partitioned between

daughter cells according to the binomial distribution with probabilities equal to the daughter cell

volumes:

P v partition(v′|v, s′, s) =

(
v

v′

)(s′
s

)v′(s− s′
s

)v−v′
. (26)
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6.3 Appendix C: Model Parameterisation

Here we paramterise the model using typical values derived form E. coli and bacteriophages such as

the Escherichia virus T4 and the λ-phage.

6.3.1 Cell growth rate γ and newborn cell size s0

The nutrients available to a cell governs the rate of cell growth γ (µm3 hr−1), the newborn cell size

s0 (µm3) and hence the time between cell division τ (hr). Furthermore within a single cell population

these values significantly vary from cell-to-cell. For E. coli, the population average newborn cell size

and division time respectively ranging between s0 = 0.3 µm3 and τ = 2 hr in nutrient poor media

to s0 = 3 µm3 and τ = 0.25 hr in nutrient rich media [20]. Nevertheless we assume that both the

newborn cell size and the cell growth is constant such that the value of τ is given as:

τ =
s0

γ
. (27)

For default values we assume E. coli that in the absence of intercellular competition the minimum

division time is τ = 0.5 hr and that every newborn cell has size s0 = 1 µm3 such that the maximum

growth rate is γ = 2 µm3 hr−1.

6.3.2 Viral synthesis rate λ

For E. coli infected with bacteriophage T4 and λ, the time period between virion production and

cell lysis (the latent period) ranges from 20 to 60 mins and the mean burst size ranges from 50 to

300 virions per cell [23, 24]. Both the burst size and length of the latent period strongly depends on

cell growth [1]. During this phase virion synthesis is approximately linear with respect to time. For

default parameter values we consider a mean burst size of µ = 150 virions per cell and viral synthesis

rate of λ = 200 virions per hr, which corresponds to a latent period of 45 mins.

6.3.3 Cell lysis rate β

To estimate the cell lysis rate we calibrate our model to the burst size distribution presented in Ref.

[24]. To find burst size distribution form our model we consider the time evolution of the number of

viruses per cell in the absence of cell growth such that:

∂nv
∂t

=λ(nv−1 − nv)− β
v

s
nv =⇒ nv = σ(s)

e−λ t

v!

(λ s
β

(1− e−β t/s)
)v

, (28)

The burst size distribution Bv is defined as:

Bv =

∫ ∞
0

∫ ∞
0

β
v

s
nv dt ds (29)
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Integrating equation (28) across t yields:∫ ∞
0

nv dt =
σ(s)

v!

(λ s
β

)v ∫ ∞
0

v∑
j=0

(
v

j

)
(−1)je(−λ+β j/s) t dt (30)

=
σ(s)

v!

(λ s
β

)v v∑
j=0

(
v

j

)
(−1)j

λ+ β j/s
(31)

=
s σ(s)

β

(λ s
β

)v (λ sβ − 1)!

(λ sβ + v)!
. (32)

For a homogeneous size distribution where σ(s̄) = 1 and σ(s) = 0 for s 6= s̄ the burst size distribution

is given as:

Bv = v
(λ s̄
β

)v (λ s̄β − 1)!

(λ s̄β + v)!
. (33)

Figure 6 displays a comparison between the burst size distribution in E. coli measured by Delbruck

(1945) [24] and the burst size distribution predicted by the model for the case that assumes a ho-

mogenous size distribution (σ(s̄) = 1) and for the case that uses a cell size distribution measured

by Delbruck (1945) [24]. We find that the modelling case with a homogeneous cell size distribution

sufficiently agrees with the data. Furthermore, the the mean burst size µ (virions per cell), defined

as
∑

v v Bv is approximately given as µ ≈ 5
4

√
λ s̄
β . Thus, from a measured mean burst size µ, viral

synthesis rate λ and mean size σ̄, we set the lysis rate as

β ≈ 52 λ s̄

24 µ2
≈ 3× 52 λ s0

25 µ2
µm3 hr−1 particle−1 (34)

6.4 Appendix D: Model analysis

We now determine the distribution of size and virions among cells during the exponential and station-

ary phase of cell population growth using a continuum approximation of the mean-field model.
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