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Abstract 

The cochlear implant (CI) allows profoundly deaf individuals to partially recover hearing. Still, 

due to the coarse acoustic information provided by the implant, CI users have considerable difficulties 

in recognizing speech, especially in noisy environments, even years after implantation. CI users 

therefore rely heavily on visual cues to augment speech comprehension, more so than normal-hearing 

individuals. However, it is unknown how attention to one (focused) or both (divided) modalities plays a 

role in multisensory speech recognition. Here we show that unisensory speech listening and speech 

reading were negatively impacted in divided-attention tasks for CI users - but not for normal-hearing 

individuals. Our psychophysical experiments revealed that, as expected, listening thresholds were 

consistently better for the normal-hearing, while lipreading thresholds were largely similar for the two 

groups. Moreover, audiovisual speech recognition for normal-hearing individuals could be described 

well by probabilistic summation of auditory and visual speech recognition, while CI users were better 

integrators than expected from statistical facilitation alone. Our results suggest that this benefit in 

integration, however, comes at a cost. Unisensory speech recognition is degraded for CI users when 

attention needs to be divided across modalities, i.e. in situations with uncertainty about the upcoming 

stimulus modality. We conjecture that CI users exhibit an integration-attention trade-off. They focus 

solely on a single modality during focused-attention tasks, but need to divide their limited attentional 

resources to more modalities during divided-attention tasks. We argue that in order to determine the 

benefit of a CI for speech comprehension, situational factors need to be discounted by presenting 

speech in realistic or complex audiovisual environments. 

Significance statement 

Deaf individuals using a cochlear implant require significant amounts of effort to listen in noisy 

environments due to their impoverished hearing. Lipreading can benefit them and reduce the burden 

of listening by providing an additional source of information. Here we show that the improved speech 

recognition for audiovisual stimulation comes at a cost, however, as the cochlear-implant users now 

need to listen and speech-read simultaneously, paying attention to both modalities. The data suggests 

that cochlear-implant users run into the limits of their attentional resources, and we argue that they, 

unlike normal-hearing individuals, always need to consider whether a multisensory benefit outweighs 

the unisensory cost in everyday environments. 
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Introduction 
 

Speech comprehension is a challenging task. First, the speech signal itself might be hard to 

recognize due to poor pronunciation, semantic ambiguities and highly variable and rapid articulation 

rates (>200 words/min 1). Second, in common everyday environments, even highly salient speech 

signals are frequently embedded in acoustic background noise and are masked by other talkers. 

During face-to-face conversation, non-acoustic cues from seeing a talker's mouth can improve speech 

recognition in those situations, through the integration of visual and auditory information 2–6. 

Multisensory integration is beneficial for normal-hearing and normally sighted individuals, 

whenever multisensory stimuli are in spatial-temporal congruence. The effects of audiovisual 

integration include behavioral benefits such as shorter response-reaction times7–9, increased accuracy 

and precision7,10, better selection, and reduced ambiguity11. At the neuronal level, these effects are 

typically reflected by enhanced activity9,12,13. This also applies to more complex auditory stimuli; 

supplemental visual input enhances speech perception, and audiovisual speech recognition 

embedded in noise is considerably better than for auditory speech alone14–17. 

The necessity to integrate non-acoustic information to improve performance becomes 

especially clear for individuals with hearing impairments, such as profoundly deaf individuals using a 

cochlear implant (CI). The CI typically recovers hearing to an extent that allows the CI user to 

understand speech in quiet situations, yet creates significant problems under more challenging 

listening conditions (e.g., noisy surroundings). In these cases, the CI user should rely more on the 

information obtained from lip reading. Evidence suggests that CI users are indeed better able to 

integrate visual information with the perturbed acoustic information than normal-hearing individuals 
18,19. 

Due to all the observed benefits of multisensory integration, one may forget that it requires 

paying attention to multiple sensory modalities at the same time. Attention is a neural mechanism by 

which the brain is able to effectively select a relevant signal from a multitude of competing sources 

(e.g., finding someone with a red coat in a busy street). When attention is fully focused on a particular 

sensory modality, say auditory, performance in auditory selection tasks will markedly increase, but 

visual stimuli will likely be missed, because attention has limited capacity. The opposite occurs when 

attention is focused on vision. In natural environments, however, the most relevant sensory modality of 

a potential target may not be known in advance, and therefore focusing attention on a single sensory 

modality may not be an optimal strategy to maximize perceptual performance. Instead, in such cases, 

attention should be divided across the relevant modalities. In case of speech perception, these 

modalities are auditory (listening) and visual (lipreading) signals. Dividing attention across modalities 

will allow the brain to integrate the multimodal signals when they originate from the same source, and 

filter out the perturbing background from unrelated sources. 

However, because of its limited capacity, dividing attention in an uncertain sensory 

environment may lead to decreased performance for stimuli that happen to be unisensory, as each 

modality will receive less attentional amplification than during a fully focused attention task. Here we 

compared word-recognition performance during focused and divided attention tasks for CI users and 

normal-hearing individuals, by presenting unisensory and/or bi-sensory spoken sentences in different 
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sensory-noise regimes. Because CI users have more difficulty to process the perturbed auditory input, 

more effort (i.e., more attention) will be required to understand auditory speech. Therefore, we 

reasoned that in a divided-attention task, the lapse in attention to audition (and vision) may lead to 

poorer unisensory performance scores in CI users. In principle, the same reasoning may hold for 

normal-hearing participants. So far, it remains unclear from the literature whether CI users can 

successfully divide their attention across modalities, and whether divided attention affects their 

speech-comprehension abilities. 

 

Results 
 
Overview 

Fourteen normal-hearing participants and seven post-lingually deaf unilateral implanted CI 

users had to identify 50 words (Table 1, see Methods), presented in 155 unique five-word sentences, 

by selecting the words they recognized (10-alternative, open-ended choice) on a screen. The speech 

material has been used in a previous study20, in which further details about the material can be found. 

The stimuli were either presented in two separate unisensory, focused-attention blocks, or in one 

divided-attention block. We varied task difficulty in both experiments, by blurring the video, and by 

presenting acoustic background noise at several levels. 

In the focused-attention experiment (Fig. 1; purple), the sentences were either presented in an 

acoustic-only block (Fig. 1A,C, purple circles), or in a visual-only block (Fig. 1B,D, purple circles), in 

which the participant could focus solely on listening or lipreading, respectively. In the divided-attention 

experiment auditory (Fig. 1A,C, green diamonds), visual (Fig. 1B,D, green diamonds) and audiovisual 

(Fig. 2) sentences were presented in pseudo-random order, all interleaved in one block. In this task, 

participants were free to focus on one modality, or to divide attention across both modalities. 

To estimate parameters of interest, such as the signal-to-noise ratio and blur at which 

performance level was 50% and (attentional) lapse probabilities, we fitted psychophysical-function 

curves through the data (as fully explained in the Methods). We report on the mean and 95%-highest-

density interval (HDI) of the fitted estimate distributions of the group-level parameters, and show both 

the fitted curves for each group and the data averaged across participants in the figures. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 19, 2020. ; https://doi.org/10.1101/2020.11.17.384586doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.384586


 
 

Figure 1. Unisensory speech recognition. (A,C) Auditory-only speech recognition (proportion 

correct) as a function of signal-to-noise ratio (dB) for (A) normal-hearing participants (n=14) and (C) CI 

users (n=7) in the focused- (purple circles) and divided-attention (green diamonds) tasks. Note that 

although the unisensory stimuli were the same for both tasks, CI users recognized more auditory 

words correctly in the focused-attention task (purple) than in the divided-attention task (green). This 

effect was absent for the normal-hearing participants. (B,D) Visual-only speech recognition as a 

function of spatial blur (in units of pixel standard deviations) for (B) normal-hearing participants and 

(D) CI users in the focused- (purple circles) and divided-attention (green diamonds) tasks. Note that 

due to the large similarity in visual recognition scores for both tasks, a psychometric curve was fitted 

through the combined data (black curve and patch). Symbols and bars indicate mean and 95%-

confidence intervals, respectively, of the raw data (proportion correct) pooled across participants. 

Curves and patches indicate means and 95%-HDI, respectively, of the psychophysical-function group-

level fits. 
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Unisensory speech perception 

When sentences were presented only acoustically (Fig. 1A,C), the two groups clearly differed 

in their ability to recognize words, as expected. Typically, the normal-hearing participants (Fig. 1A) 

recognized 50% of the words correctly in the unisensory hearing condition at a signal-to-noise ratio 

(auditory threshold, eqn. 1) of -12 dB (HDI = [-12.4, -11.5] dB) vs. -3.1 dB for the CI users (HDI = [-4.4, 

-1.7] dB, Fig. 1C) for either of the tasks (green and purple). For both groups, the proportion of correctly 

recognized words strongly depended on the actual signal-to-noise ratio; to increase performance 

levels from 5%- to 95%-word recognition (psychometric curve width), the signal-to-noise ratio needed 

to be increased by 7.4 dB on average for the normal-hearing participants (HDI = [6.5, 8.5] dB; Fig. 1A) 

and slightly more for CI users by on average 10.4 dB (HDI = [8.8, 12.2] dB; Fig. 1C). As expected, 

both these results confirm the well-known fact that listening for CI users is considerably more difficult 

than for normal-hearing participants. 

The parameter of main interest in this study is the lapse probability (eqn. 3). Lapses occurred 

even in the focused-attention task as evidenced by the non-perfect performance at the highest signal-

to-noise ratios; the average performance of normal-hearing participants and CI users saturated at 

around 90 and 84 % correct, respectively (Fig.1A,C, purple; HDI = [85, 94] and [74, 92] %). A larger 

lapse probability for the CI users compared to the lapse probability for the normal-hearing participants 

may be expected due to technical limits of the cochlear implant and the maximal comfortable loudness 

levels experienced by the CI users, but note that evidence for any difference was actually small (mean 

5%, HDI = [-5, 17] %).  

More importantly and more clearly, in the divided-attention task the CI users lapsed more 

often, recognizing 22% (HDI = [6.7, 38] %) less words than in the focused attention task (Fig. 1C, 

green vs purple). This difference was not clearly evident for the normal-hearing participants (mean 

difference 3.9%, HDI = [-4.0, 14] %; Fig. 1A, green vs purple). Evidence for group differences in 

auditory lapse probability during the divided-attention experiment was substantial (on average, the 

lapse probability for normal-hearing participants was 24 % lower than for the CI users, HDI = [8, 41] 

%). 

When sentences were presented only visually (Fig. 1B,D), the proportion of correctly 

recognized words depended on the amount of blur, and were largely similar for both groups; the visual 

threshold (i.e. the blur at 36% of the maximal lipreading performance, eqn. 2) was on average 17.7 

and 18.3  pixels for CI users (Fig. 1D) and normal-hearing (Fig. 1B) participants, respectively (HDI = 

[16.0,19.7] and [15.2, 21.8] pixels, respectively) for both tasks. Of course, lipreading abilities were far 

from perfect even without blurring.  

No major difference in lipreading performance was observed for the visual lapse probability, 

so we pooled the data from both tasks to estimate this parameter. Normal-hearing participants (Fig. 

1B) lapsed in 54% of the cases (HDI = [42, 65] %), while CI users (Fig. 1D) incorrectly recognized 

unblurred visual words in 46% of the cases (HDI = [36, 56] %). While one may expect CI users to be 

better lip-readers than normal-hearing participants, differences between groups were actually small 

(on average 8 %, HDI = [-8, 23] %). 
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In summary, largely in contrast to the normal-hearing participants, the CI users experienced 

more speech-recognition problems when attention had to be divided between more than one sensory 

modality. These problems were especially conspicuous for listening, the sensory modality that faced 

the largest difficulties for the CI users. 

 

Multisensory integration 

 We next analyzed whether speech perception of audiovisual stimuli would be enhanced for 

both groups of participants in the divided-attention task (Fig. 2). Figs. 2A and B show examples of 

individual participants (NH3 and CI4) in the divided-attention task at a visual blur of 10 pixels. The 

unisensory data and fits for these two participants (Figs. 2A,B brown and green for speech reading 

and listening, respectively) are in line with the group-level data and fits as described in the previous 

section (cf. Fig. 1, green). The audiovisual speech recognition (Fig. 2A, blue and Fig. 2B red for NH3 

and CI4, respectively) outperforms or equals either unimodal speech recognition; for very low and high 

signal-to-noise ratios, audiovisual performance tends to equal visual or auditory performance. For 

intermediate signal-to-noise ratios, audiovisual performance is clearly enhanced. Such an 

enhancement of multisensory performance could potentially be due to mere statistical facilitation, if the 

participants would recognize a word by using either the available auditory, or visual information, 

without actually integrating both inputs. The percept is then determined by whichever sensory channel 

wins the race (probability summation). The audiovisual enhancement would then be fully determined 

by the unisensory auditory and visual recognition performance during the divided-attention task. To 

check for this possibility, we compared the data to the prediction from this probability-summation 

model (Fig. 2A,B, black curve, see Methods). For the normal-hearing participant (Fig. 2A; cf. black 

markers and blue curve), the model’s prediction corresponded quite well to the data. Hence, despite 

the improvement in audiovisual recognition rates, the normal-hearing participant did not seem to 

benefit from multisensory integration. In contrast, although the CI user evidently had difficulty to 

recognize a pure auditory speech signal in the multisensory divided-attention task (Fig. 2B, green; 

note the increased threshold and the larger lapse probability), they outperformed the probability-

summation model for the combined audiovisual speech signals by about 10% at the highest signal-to-

noise ratios (Fig. 2B, compare red vs black curves).  
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Figure 2. Multisensory speech recognition. Individual data and fit for (A) normal-hearing (NH) 

participant NH3 and (B) CI user CI4. (C) Audiovisual speech recognition scores as a function of 

acoustic signal-to-noise ratio (dB) for normal-hearing participants (blueish diamonds) and CI users 

(reddish diamonds) for four blur values (as indicated by contrast). Symbols and bars indicate mean 

and 95%-confidence intervals, respectively, of the raw data (proportion correct) pooled across 

participants. The data was obtained (by definition) from the divided-attention task. Curves and patches 

indicate means and 95%-HDI, respectively, of the psychophysical-function population fits. (D) 

Multisensory enhancement index as a function of acoustic signal-to-noise ratio (dB) for normal-hearing 

participants (blue colors) and CI users (red colors) for four blur values (as indicated by contrast). The 

multisensory enhancement index quantifies the multisensory enhancement of the trade-off model over 

strict probability summation. 
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We quantified the audiovisual performance for all participants of both groups (visualized as a 

function of the acoustic signal-to-noise ratio for four different magnitudes of visual blur, Fig. 2C) by 

fitting a probability-summation model that was fully determined by the unisensory auditory and visual 

recognition performance (eqns. 1-4). Typically, the observed multisensory enhancement should be 

compared to probability-summation of unisensory performance obtained from the same experimental 

regime, which in the current experiment would be from the divided-attention task. We term this model 

the strict probability-summation model. In Fig. 2C, we show the results of an alternative model, which 

we designate the trade-off model, that actually captures the multisensory enhancement by using the 

unisensory data obtained during the focused-attention task. We did this because the increased lapse 

probability for listening by the CI users in the divided-attention task (Fig. 1C) appeared to equal the 

multisensory enhancement over the strict probability-summation model (e.g. Fig. 2B, compare the red 

fit curve to the black curve). In essence, the difference in recognition scores between the two tasks 

was captured by the difference in auditory lapse probability, the single trade-off model parameter free 

to vary between tasks.  

 Nevertheless, the trade-off model describes the data for both tasks quite well (Table I, see 

Methods, and Figs. 2A,B). Note that the pooled data generally appear to be at higher performance 

levels than the group-level fits of the trade-off model, at least for the normal-hearing participants (Fig. 

2C, blue). This follows from the fact that we individualized the stimulus parameters for each 

participant; the data was obtained at lower signal-to-noise ratios and higher blurs more often for the 

better performers. The group-level fits better describe the expected overall group performance through 

extrapolation to a larger range of signal-to-noise ratios and blurs. By comparing the fits to the 

audiovisual data (Fig. 2C) to the unisensory fits (cf. Fig. 1), one can observe that audiovisual speech 

recognition is better than unisensory speech recognition; even at a blur of 20 pixels and a signal-to-

noise ratio of -15 dB for the normal-hearing and of -7.5 dB for the CI users (around 0.2 vs 0.35 for 

unisensory and multisensory stimulation, respectively).  

 

Table 1. Model comparison. The difference in the Bayesian information criterion (BIC) relative to the 

model with the lowest BIC, ΔBIC, separately for normal-hearing participants (left column) and CI users 

(right column). R2 and mean signed error are shown for the model with the lowest BIC (ΔBIC=0). 

ΔBIC Normal-hearing CI users 

Trade-off 0 0 

Strict 12 35 

R2 (trade-off) 0.89 0.78 

Mean signed error (trade-off) 0.00 +0.01 
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To illustrate the benefits of multisensory stimulation more clearly, we determined the 

multisensory enhancement index (MEI, eqn. 5). This index quantifies by how much multisensory 

performance of the trade-off model was improved over the strict probability-summation model (Fig. 

2D). A multisensory enhancement index close to zero is in line with strict statistical facilitation, while 

positive values are evidence for audiovisual enhancement due to multisensory integration.  The index 

shows marginal improvement for the normal-hearing group (between 0.005-0.036, depending on 

signal-to-noise ratio and blur, Fig. 2D), and a far more prominent benefit for CI users that was about 4-

6 times larger (0.023-0.22).  

A larger multisensory enhancement index for lower-informative stimuli or poorer-performing 

individuals would be evidence for inverse effectiveness8,12. This effect seemed to occur for the groups 

and the blurs; CI users exhibited more enhancement than the normal-hearing participants (Fig. 2D, 

red vs blue) and the relative multisensory improvements were largest for the highest blurs (Fig. 2D, 

e.g. the multisensory enhancement index for the 0-pixel blur was lower than for the 20-pixel blur, 

especially for the CI users). In contrast, for acoustic information a direct, rather than inverse, 

relationship was observed: the lowest signal-to-noise ratios elicited the smallest enhancements (Fig. 

2D, the MEI curves all decline for lower signal-to-noise ratios). 

Discussion 
 
Summary 

Results show that CI users benefit from multisensory integration in a divided-attention task 

(Fig. 2), but that their unisensory performance under such conditions deteriorates when compared to 

listening under focused attention (Fig. 1). Interestingly, their multisensory benefit matches the 

prediction obtained from probability summation of their (better) focused-attention performance (Fig. 2). 

In contrast, the normal-hearing participants do not have poorer unisensory performance in a divided-

attention task, and their multisensory scores are accounted for by strict probability summation. 

Unisensory performance of normal-hearing individuals versus CI users 

Normal-hearing participants reached higher auditory recognition scores than the CI users. As 

expected, these results confirm the well-known fact that listening for CI users is considerably more 

difficult. Factors that likely contribute to the difficulties in understanding auditory speech in noise 

environments are the lack of access to finely-detailed spectral information and a limited dynamic 

range21.  

In contrast, CI users and normal-hearing participants had similar lipreading skills (Fig. 1B,D). 

This was slightly unexpected, as others have reported better lipreading abilities by CI users18,22. The 

current experiment, however, entailed recognition of a limited closed-set matrix of only 50 words. This 

potentially makes lipreading for normal-hearing individuals, who might be unaccustomed to lipreading 

in general, easier than in open sets with many more alternatives. Also, both the CI users and normal-

hearing participants do have normal vision. As such, one might perhaps expect similar visual, 

lipreading skills. 
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Attentional lapse in unisensory performance 

CI users lapsed less when they could focus on listening alone (in the focused-attention task, 

Fig. 1C) than in situations with uncertainty about the modality of the upcoming stimulus modality (in 

the divided-attention task). Note that this is precisely the sensory condition of every-day life. This may 

suggest that due to impoverished sensory information more effort is required by CI users to be able 

recognize speech at higher performance levels. However, the extra effort cannot be maintained by CI 

users if attention has to be spread out across multiple, potentially-informative sensory modalities.  The 

CI users seem to have reached the limits of attentional resources in the divided-attention task. These 

limits are not reached when sensory information is not impoverished, i.e. for normal-hearing 

individuals and for lipreading (Figs. 1A, B, D; lapse probabilities are similar across tasks). 

 

Multisensory integration 

Following this line of reasoning, one may wonder why CI users attempt to lipread at all. 

Barring any other benefits, the optimal decision would be to focus on the most-informative sensory 

modality, and ignoring the other.  Even for CI users, listening is generally (i.e. in quiet environments) 

the far better modality for the purposes of speech recognition. Probabilistic, uninformed switching 

between listening and lipreading would lead to an overall worse performance23. One benefit to offset 

this drawback could be that switching enables individuals to scan the specific environment and 

determine whether listening or lipreading would be the most informative modality for the given 

situation24,25.   

Obviously from the current experiments, another benefit could be that the detriment in 

listening is accompanied by an enhancement of speech recognition for multisensory stimuli. Indeed, 

although CI users had poorer unisensory recognition scores in the divided-attention task than in the 

focused attention task (Fig. 1), they outperformed the strict probability-summation model (Fig. 2D). 

Conversely, the normal-hearing individuals do follow strict probability summationcf. 20. Because of this, 

CI users appear to be better multisensory integrators than the normal-hearing individualscf. 26 (Fig. 2D). 

 

Integration-attention trade-off  

Intriguingly, the trade-off model suggests that the exact compensation of the listening decline 

(Fig. 1C) by multisensory enhancement (Fig. 2D) may be explained by an integration-attention trade-

off mechanism for CI users. To benefit from multisensory integration, attention needs to be divided 

across all relevant signals. Only then will integration be able to enhance source identification and 

selection by filtering out irrelevant noise sources. The cost of this benefit is the decline in attentional 

amplification of unisensory signals. In our model, this is fully and solely captured by the change in 

auditory lapse probability (eqn. 3), which amounted to be about 22% on average for CI users. The 

multisensory enhancement follows directly from this increase in lapses (through the trade-off 

probability-summation model, eqns. 4 and 5); the multisensory enhancement should equal this in 

magnitude for the weakest visual signals and strongest auditory signals (note that the multisensory 

enhancement index is 0.22 for the highest blur at a signal-to-noise ratio of 0 dB), and be less for 

stronger visual signals and weaker acoustic signals (Fig. 2D).  
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Conclusion 

Normal-hearing participants can attend extensively on auditory and visual cues, while CI users 

need to divide their limited attentional resources across modalities to improve multisensory speech 

recognition - even though this leads to a degradation in unisensory speech recognition. We argue that 

in order to determine the acoustic benefit of a CI towards speech comprehension per se, situational 

factors need to be discounted by presenting speech in realistic audiovisual environments. 

 

Methods 
Participants 

Fourteen native Dutch-speaking, normal-hearing participants (mean age: 22.3 years ± 1.8, 10 female) 

and 7 native Dutch-speaking, post-lingually deaf unilateral implanted CI users (mean age 64.1 years ± 

5.3, 3 female) were recruited to participate in this study. All CI users had at least one year of 

experience with their CI, with a mean of 3.6 years ± 1.8. Five CI users were implanted on the left. The 

cause of deafness was progressive sensorineural hearing loss for all but three CI users (Ménière's 

disease, sudden deafness and hereditary hearing loss). Additional contralateral hearing aids were 

turned off during the experiment. The unaided pure tone average (range 1-4 kHz) of the non-implanted 

ear ranged between 70 and >120 dB Hearing Loss. However, no CI users had any speech intelligibility 

for words in quiet with their non-implanted ear at levels < 90 dB Sound Pressure Level (SPL). All 

normal-hearing participants were screened for normal hearing (within 20 dB HL range 0.5 - 8 kHz), 

and reported normal or corrected-to-normal vision. All participants gave written informed consent 

before taking part in the study. 

The experiments were carried out in accordance with the relevant institutional and national regulations 

and with the World Medical Association Helsinki Declaration as revised in October 2013 (Declaration). 

The experiments were approved by the Ethics Committee of Arnhem-Nijmegen (project number 

NL24364.091.08, October 18, 2011). 

 

Stimuli 

The audiovisual material was based on the Dutch version of the speech-in-noise matrix test developed 

by Houben et al. 27. In general, a matrix test uses sentences of identical grammatical structure in 

which all available words are taken from a closed set of alternatives (Table 2). The sentences are 

syntactically fixed (subject, verb, numeral, adjective, object), but semantically unpredictable. 

  
The audiovisual material (Fig. 3) including the masking speech noise are reported previously 20. 

Briefly, the stimulus material consisted of digital video recordings of a female speaker reading aloud 

the sentences in Dutch. Auditory speech (Fig. 3A,C) was presented with varying levels of acoustic 

background noise (Fig. 3B). Visual speech consisted of the video fragments of the female speaker. 

Saliency of the visual speech was altered through blurring, by filtering every image of the video with a 

2-D Gaussian smoothing kernel at several pixel standard deviations. 
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Figure 3. Example sentence. (A) Temporal waveform of the auditory speech signal “Tom vond tien 

kleine munten” (translation: Tom found ten little coins.) (B) Waveform of the auditory noise. (C) 

Spectrogram of the recorded sentence.  
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Set-up 

The experiments were performed in an experimental room, in which the walls and ceiling were 

covered with black acoustic foam that eliminated echoes for sound frequencies >500 Hz 28. Stimulus 

presentation was controlled by a Dell PC (Dell Inc., Round Rock, TX, USA) running Matlab version 

2014b (The Mathworks, Natick, MA, USA). were seated in a chair 1 m in front of a PC screen (Dell 

LCD monitor, model: E2314Hf). Sounds were played through an external PC sound card (Babyface, 

RME, Germany) and presented through one speaker (Tannoy, model Reveal 502) placed above the 

PC screen, 1 m in front of the participant (30° above the interaural plane). Speaker output was 

calibrated with an ISO-TECH Sound Level Meter, type SLM 1352P at the position of the participant’s 

head, using the masking noise. 

 

Table 2 Words of the Dutch matrix test 

Name Verb Numeral Adjective Object 

Anneke geeft twee dure bloemen 

Christien had drie goede boeken 

Heleen kiest vier groene boten 

Jan koopt vijf grote dozen 

Mark maakte zes kleine fietsen 

Monique tekent acht mooie messen 

Pieter telde negen nieuwe munten 

Sarah vond tien oranje ringen 

Tom vroeg twaalf vuile schoenen 

Willem wint achttien zware stenen 
Bold words indicate an example sentence: ‘Tom vond tien kleine munten’ (translation: ‘Tom found ten 

small coins’, see Fig. 3) 

 

Paradigm 

All participants were tested on a closed-set recognition of six Matrix lists of 20 sentences each (180 

words). Participants were instructed to select words from the Matrix list which they recognized. 

 

Familiarization 

To familiarize participants with the Matrix test procedure and to obtain an initial estimate for the 

auditory threshold, 40 unique auditory-only sentences were presented. The signal-to-noise ratio varied 

adaptively in accordance with the Brand and Kollmeier procedure29, and the auditory 50% speech 

recognition threshold was calculated as the average signal-to-noise ratio of the last nine sentences. 

This threshold was used to individualize the signal-to-noise ratios in focused-attention experiment. For 

normal-hearing participants, the speech level was fixed at 60 dB SPL, while for the CI users the noise 

level was fixed at 60 dB SPL. This was also true for both experiments. 
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Focused-attention task: unisensory speech listening or reading 

In this experiment participants listened to auditory-only sentences in one block and viewed visual-only 

sentences in another block. The participants were asked to accurately indicate the words (10-

alternative open-ended choice per word) after each sentence. Each trial was self-paced. Participants 

either heard 40 or 60 unique sentences in each block. 

 

In the auditory-only block, the auditory speech was presented in acoustic background noise with 

uninformative visual input (i.e. a black screen for 6 normal-hearing participants; or a heavily blurred 

video (70 pixel blur) for 8 normal-hearing participants and all CI users). For each sentence, the signal-

to-noise ratio was pseudo-randomly picked from 4 to 12 values, that were selected individually based 

on the results from the adaptive tracking procedure. 

 

In the visual-only block, the video fragments of the female speaker were shown on the screen together 

with the acoustic background noise and without auditory speech signal. For each sentence, the 

standard deviation of the Gaussian blurring kernel of the video images was pseudo-randomly picked 

from 5 to 10 values; the 5 most common values were 0, 6, 12, 16, and 20 pixels both for normal-

hearing participants and CI users. 

 

To avoid priming effects of sentence content (but not word content), a sentence was never repeated 

within a block. For each participant a different set of random signal-to-noise ratios, spatial blurs, and 

sentence permutations were selected. Importantly in this experiment, participants should focus on one 

sensory modality, and ignore the other, in order to reach maximum performance. 

 

Divided-attention task: multisensory speech listening and reading  

In this experiment, audiovisual sentences (80 to 120 trials) were presented in one block. This 

experiment was conducted on another day than the focused-attention experiment. For each sentence, 

a visual blur and an auditory signal-to-noise ratio were chosen in pseudo-random order from five 

values, yielding 25 audiovisual stimulus combinations, selected in pseudo-random order. These 

values were selected individually based on the performance in the focused-attention experiment. We 

aimed for a unisensory speech-recognition performance of 0, 25, 50 and 75% for each participant, but 

as the maximum performance did not always reach 75%, other values were then chosen by the 

experimenter. The most common values were the same as for the previous experiment. In the 

unisensory trials of this task, the visual blur was extreme with a standard deviation of 70 pixels for the 

acoustic-only trials, and the auditory signal-to-noise ratio was -60 dB for the visual-only trials. 

Importantly, in contrast to the focused-attention task, participants could use information from both the 

auditory and visual modality in order to recognize words throughout most of the experiment, although 

some sentences were only informative in one sensory modality, but not in the other due to either 

extreme visual blurring (70-pixel blur) or an extremely poor acoustic signal-to-noise ratio (-60 dB 

signal-to-noise ratio).  
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Data analysis 

Proportion correct 

For graphical purposes, the proportion of words correct responses are plotted in raw form pooled 

across participants for each group as mean and 95%-HDI in Figs. 1 and 2 for the most common 

signal-to-noise ratios and blurs. 

 

Unisensory psychometric functions 

To relate each participant’s responses to the intensity of the unisensory stimuli (i.e. auditory signal-to-

noise ratio or visual blur), x, we fitted a psychometric function F��, �� to the unisensory data, the shape 

of which depended on the sensory modality, m. 

For the auditory-only data, a logistic function 20 was fitted: 

 

F����; ��; ��� 	 �1 � 

��

� �� �

��
 �������

���    (1) 

 

where F����; ��; ��� characterizes the change in auditory word recognition rate as a function of the 

auditory signal-to-noise ratio, ��; �� is the auditory recognition threshold for which holds F�
���0.5� and 

��is the auditory recognition width, the stimulus-level range in which F� ranges from 0.1 to 0.930,31. 

 

For the visual-only data, an exponential function F	 was taken with only a single parameter: 

F	��	; �	� 	 

�

�	
�


	
�

 

      (2) 

 

where F	��	; �	� characterizes the change in visual word recognition rate as a function of the visual 

blur, �	; �	is the visual recognition threshold for which holds F	
���0.3679�, i.e. for �	 = �	. Both 

functions (eqn. 1 and 2) have a sigmoidal shape and fitted the data well (i.e. Fig 1). 

 

Lapse 
To infer the probability of correct-word recognition �, we included a lapse probability, �, to the 

psychometric function F for both modalities m: 

�
,� 	 �1 � �
,���
    (3) 

 

The lapse probability, �, was required to account for the less-than-perfect recognition probability for 

visual words without blurring and for auditory words at the highest signal-to-noise ratios, both for the 

CI users and the normal-hearing participants. With probability �
,� a participant lapses (i.e. makes a 

choice independent of stimulus intensity) for modality m during experiment e. With probability (1 – �) 

the participant does not lapse and has a chance of F
 to give the correct answer. The lapse 

probability could reflect several issues: e.g. a momentary lapse of attention, blinking during the visual 

trials, or the lack of increase in information with increasing stimulus intensity due to for example 

processing issues of the cochlear implant.  
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Crucially, the estimate for the lapse probability was, at first, inferred separately for the experimental 

tasks (focused-attention vs divided), as we hypothesized that the separate tasks could differentially 

affect attentional demands, potentially leading to observed differences in attentional lapses.  

We modified this slightly, as we observed no significant differences in the visual lapse probability 

between experimental tasks (Fig. 1). Thus, the final fitted model (eqns. 1-4), as reported here, 

included the auditory lapse probability as the only parameter that was free to vary between 

experimental tasks. Constraining the model in such a way had no effect on the conclusions. 

 

Multisensory psychometric function defined by probability summation 

We modelled the audiovisual speech recognition as a mere statistical-summation effect that is distinct 

from true neural audiovisual integration. In this model of probability summation (see Introduction), 

participants recognize a word from either the auditory-only or the visual-only condition, which are 

considered independent processing channels. Thus, if a subject fails to recognize a word from either 

one of the modalities, the probability of failure is �1 � ��� � �1 � �	�. It then follows that the probability 

of word recognition in the presence of the two modalities without integration is given by: 

 

�
�
 	 �� � �	 � �� � �	      (4) 

 

where �
�
 is the probability to successfully recognize a word according to the summation model, �� 

is the probability to recognize an auditory word in the auditory-only condition, and �	 is the probability 

of recognizing a visual word. From this, one can observe that having both modalities available, rather 

than one, automatically increases the probability of stimulus recognition.  

We chose to fit this model because previous evidence20 showed that speech recognition of the 

audiovisual materials could be described well by probability summation. Importantly, the data was 

accurately fitted by this model (see also the section on Model Selection), with one caveat: the fit was 

better if the lapse probabilities for the audiovisual stimuli (by definition, only presented in the divided-

attention task) was set to equal the lapse probabilities as found in the focused-attention task.  

 

This meant that model could only predict an enhancement of speech recognition for multisensory 

stimuli through a combination of mere statistical facilitation and a change in auditory lapse probability 

across experimental tasks. To visualize this (Fig. 2D), we determined the multisensory enhancement 

index, MEI: 

 

MEI 	 ���
������

�������

� 1      (5) 

 

with ������� and ����������  the probability to successfully recognize a word according to the summation 

model with an auditory lapse probability taken from the divided-attention (strict) and focused-attention 

(trade-off) tasks, respectively. An MEI close to zero is in line with statistical facilitation, and no change 

in lapse probability. Positive values are evidence for an observed multisensory enhancement and an 

increased auditory lapse probability. 
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Guess probability 
We also included a guess rate of 10% that accounts for a fixed probability of 0.1 of correctly choosing 

one of the ten alternatives by chance alone (0.9�
,� � 0.1). This was the same for every participant, 

modality and experimental task, as it depended on the design of the Matrix test itself.  

 

Approximate Bayesian inference 

Parameter estimation was performed using approximate Bayesian inference. The models described 

by eqns. 1-4 was fitted on all data simultaneously. The parameters were estimated for every 

participant, which depended on the estimation of overarching group parameters, separately for the 

normal-hearing participants and CI users, in a hierarchical fashion.  

The estimation procedure relied on Markov Chain Monte Carlo (MCMC) techniques. The estimation 

algorithms were implemented in JAGS 32 through matJAGS33. Three MCMC chains of 10,000 samples 

were generated. The first 10,000 samples were discarded as burn-in. Convergence of the chains was 

determined visually, by checking that the shrink factor � is less than 1.1 and by checking that the 

effective sample size is larger than 100034,35. From these samples of the posterior distributions, we 

determined the mean and the 95%-HDI as a centroid and uncertainty estimate of the parameters, 

respectively. 

 

Model Selection 
To test for the appropriateness of the models in eqns. 1-4, we compared them against less-restrictive 

models. To that end, we performed a qualitative check via visual inspection (c.f. Figs. 1 and 2), but we 

also quantitatively determined the Bayesian Information Criterion (BIC) for each model:  

 

BIC 	 ln�#� $ � 2 ln�&'�      (6) 

 

where k denotes the number of parameters of the model, n the number of samples, and &' the 

maximized value of the binomial likelihood function. 

 

Data availability 

All data are available from the Donders Institute for Brain, Cognition and Behaviour repository at: 

http://hdl.handle.net/11633/aacawqmr. 
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