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Abstract

In an empirical analysis of transposable element (TE) abundance within natural populations

of Mimulus guttatus and Drosophila melanogaster, we found a surprisingly high variance of TE

count (e.g., variance-to-mean ratio on the order of 10 to 100). To obtain insight regarding those

evolutionary genetic mechanisms that are may underlie the overdispersed population distributions

of TE abundance, we developed a mathematical model of TE population genetics that includes

the dynamics of element proliferation and purifying selection on TE load. The modeling approach

begins with a master equation for a birth-death process and it extends the predictions of the clas-

sical theory of TE dynamics in several ways. In particular, moment-based analysis of stationary

population distributions of TE load reveal that overdispersion is most likely to arise via copy-

and-paste (as opposed to cut-and-paste) dynamics. Parameter studies suggest that overdispersed

population distributions of TE abundance are probably not a consequence of purifying selection

on total element load.
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1 INTRODUCTION

The genomics revolution has revealed that a significant portion of eukaryotic genomes are comprised

of transposable elements (TEs, also called mobile DNA elements or transposons). Notable examples

include the human and maize genomes, 44% and 85% of which are TE sequences (Mills et al., 2007;

Springer et al., 2009). TEs are capable of moving throughout a genome via copy-and-paste or cut-

and-paste mechanisms. Their effect can range from having little to no consequence on phenotype

to being powerful mutagens (Bourque et al., 2018). In addition to the innate tendency of TEs to

proliferate, factors such as recombination, epigenetics, and selection contribute to the complex genomic

distribution of these elements (Kent et al., 2017). While it is clear that TEs have been an integral part

of the long-term evolution of genome architecture, much about the role of TEs in evolution remains

unknown. Knowledge of the dynamics of TE abundance in natural populations is an important step

toward an increasing understanding of how genomes evolve.

The seminal and most commonly cited population genetic theory of TEs was developed in 1983 via

a combination of mathematical analysis, computer simulation and a limited amount of experimental

data (Charlesworth and Charlesworth, 1983). This modeling considered a single class of TEs with a

drift-diffusion representation of TE proliferation, with either no selection or weak selection acting on

total TE copy number. While such models have informed our understanding of the population genetics

of TEs for several decades, the classical theory does not reproduce experimentally observed within-

population variances that often greatly exceed the population mean. The cause of this discrepancy

is that the classical model assumes a binomial distribution of within-population TE loads, which

constrains the population variance to be no greater than the population mean.

This paper begins with a brief review of classical TE population genetics. This is followed by an

examination of genome-sequence data from two natural populations (Mimulus guttatus and Drosophila

melanogaster). Notably, in both cases, we observe that the within-population variance of TE load is

highly overdispersed. Because these empirical results violate the expectation of classical TE modeling,

we developed a master equation formulation of the population distribution of TE loads in a large

randomly mating population. This master equation formulation extends the predictions of the classical

theory of TE dynamics in several ways. In particular, our calculations and moment-based analysis

of stationary distributions of TE load reveal that overdispersion is most likely to arise via copy-and-

paste (as opposed to cut-and-paste) dynamics. Parameter studies further suggest that overdispersed

population distributions of TE abundance are probably not a consequence of purifying selection on

total element load.
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1.1 Classical population genetics of TEs

A good starting point for discussing the evolutionary dynamics of TEs is the seminal paper by

Charlesworth and Charlesworth (1983) and subsequent work (Brookfield and Badge, 1997; Charlesworth

and Charlesworth, 2010; Deceliere, 2004; Le Rouzic and Deceliere, 2005). This classical theory rep-

resents a chromosome as a finite set of m available insertion sites (loci) per haploid genome, each of

which can either be occupied by a transposable element (or not). For a single family of TEs, the state

of an infinite diploid population at a given chromosomal site i, for i = 1, 2, . . . ,m, is described by

its frequency, xi, where 0 ≤ xi ≤ 1. Assuming insertion sites exhibit no linkage disequilibrium, the

set of frequencies, {xi}mi=1, describes the state of the population. The mean copy number of TEs per

individual is n̄ = 2
∑m
i=1 xi, where the factor of 2 accounts for diploidy.

The evolutionarily neutral version of the classical theory includes two processes affecting TE load

(gain and loss). Gain of TEs is represented by a proliferation rate (per individual per element per

generation) in the germ line of an individual with n elements. This proliferation rate, denoted un, is

typically assumed to be a decreasing function of TE load (dun/dn < 0). Loss of TEs is represented

by a first-order excision rate constant (per individual per element per generation) denoted by ν. The

change (per generation) in the mean TE copy number per individual is thus

∆n̄ = E[nun]− νn̄ , (1)

where n is the diploid TE load of a randomly sampled individual, the expected value is taken over

individuals in the population, and n̄ = E[n] is the population mean of TE copy number. Expanding

Eq. 1 around the mean TE load gives the following second-order approximation,

∆n̄ ≈ n̄(un̄ − ν) +
Vn
2

(
2
dun̄
dn̄

+ n̄
d2un̄
dn̄2

)
, (2)

where Vn denotes the population variance in TE copy number (Charlesworth and Charlesworth, 1983).

If the higher order terms that scale the population variance are negligible, the change in mean TE copy

number per generation is ∆n̄ ≈ n̄(un̄ − ν). For this neutral model of TE population dynamics, one

concludes that n̄ will approach an (stable) equilibrium value satisfying un̄ ≈ ν provided dun̄/dn̄ < 0.

To extend this model of TE population genetics to include the effect of natural selection, it is

customary to assume an individual viability function, wn, that is a decreasing function of total genome-

wide TE load (dwn/dn < 0) . Approximating the mean fitness of the population (E[wn]) by the fitness

of an individual with an average number of copies (wn̄), Eq. 2 can be extended to include the effect

of selection on TE load (Charlesworth and Charlesworth, 2010),

∆n̄ ≈ Vn
d lnwn̄
dn̄

+ n̄(un̄ − ν) +
Vn
2

(
2
dun̄
dn̄

+ n̄
d2un̄
dn̄2

)
. (3)
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As a specific example, consider the proliferation rate function un = ξ0/n with ξ0 > 0 and the selection

function wn = e−γn for γ > 0 (viability is a decreasing function of TE copy number). Because

dun/dn = −ξ0/n2 and d2un/dn
2 = 2ξ0/n

3, the higher order terms involving derivatives of un evaluate

to zero. Consequently, Eq. 3 becomes

∆n̄ ≈ Vn
d lnwn̄
dn̄

+ ξ0 − νn̄ .

Substituting d lnwn̄/dn̄ = −γ and setting ∆n̄ = 0 gives 0 = −γVn + ξ0 − νn̄. Solving for the

equilibrium mean TE load gives,

n̄ =
ξ0 − γVn

ν
. (4)

This result is biologically meaningful for ξ0 > γVn. As expected, the equilibrium TE load is an

increasing function of the proliferation rate constant, ξ0, and a decreasing function of the excision rate

constant, ν. Furthermore, stronger selection against TE load (greater γ) decreases the mean value of

the equilibrium TE load in the population.

1.2 Population variance in the classical model

Analysis of the classical model of TE population genetics often proceeds by making further assumptions

regarding the population variance Vn. For example, Charlesworth and Charlesworth (1983) assume

the population variance takes the form

Vn = n̄
(

1− n̄

2m

)
− 2mσ2

x + 4
∑
i<j

Dij , (5)

where D is a matrix of linkage disequilibrium coefficients (Bulmer, 1980), and σ2
x = 1

m

∑m
i=1(xi − x̄)2

is the variance in element frequency across loci (see Supplemental Material, Section S1). If one further

assumes that linkage effects are small enough to be ignored, then

Vn ≈ n̄
(

1− n̄

2m

)
− 2mσ2

x . (6)

Charlesworth and Charlesworth (1983) argue that for a large enough population, one expects the vari-

ance in element frequency across loci to be eventually become negligable, σ2
x → 0 and, consequently,

the equilibrium population variance of TE load should approach that of a binomial distribution,

Vn ≈ n̄
(

1− n̄

2m

)
. (7)

In that case, assuming occupiable loci are not limiting (n̄ << 2m), the population variance will be

well-approximately by the mean (Vn ≈ n̄). Substituting this value into Eq. 4, the classical model

indicates that the equilibrium TE load will be

n̄ =
ξ0

γ + ν
. (8)
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As in Eq. 4, the equilibrium TE load is an increasing function of the copy-and-paste rate (ξ0), and

a decreasing function of both the excision rate constant (ν) and the strength of selection against TE

load (γ).

The classical model (Eqs. 3–8) has informed expectations regarding the population genetics of

TEs for several decades. For example, an extension of this classical theory predicts that in a finite

population of effective size Ne, the the stationary distribution of TE frequency (x) will take the form

ρ(x) ∝ xa−1(1 − x)b−1 where a = 4Nen̄un̄/(2m − n̄) and b = 4Ne(ν + |d lnwn̄/dn̄|) (Le Rouzic

and Deceliere, 2005). For un = ξ0/n, wn = e−γn, and n̄ << 2m, this gives a = 4Neξ0 and b =

4Ne(ν+γ). On the other hand, the classical approach to modeling TE population genetics has obvious

limitations. For one thing, the derivation and analysis of the classical model makes assumptions about

the population variance that may not be consistent with experimental observations (see Results).

Furthermore, the population variance of TE load ought to be an emergent property of the model used

to understand the population genetics of TEs, rather than a modeling assumption imposed upon a

preexisting framework (Eq. 7).

The remainder of this paper summarizes recent work that addresses these two issues in detail.

We begin by presenting empirical evidence that population variance of TEs is neither binomial nor

well-approximated by the mean. This motivates the presentation of an alternative population genetic

framework that may be used to predict both the population variance as well as the mean TE load.

This model of TE population genetics is then interrogated in order to elucidate those evolutionary

genetic mechanisms that have the greatest influence on the population variance of TE load.

2 RESULTS

2.1 Dispersion of TE loads in the classical model

In the classical modeling of TE population genetics discussed above, analytical results are obtained

by assuming a randomly mating population with a binomial distribution of TE loads,

n ∼ Binomial(2m, n̄/2m) , (9)

with mean E[n] = n̄ and variance Var[n] = n̄(1−n̄/2m) (Eqs. 5–7). A simple measure of the variability

of TE load within a population is the index of dispersion (Fano factor) given by

Fano[n] =
Var[n]

E[n]
. (10)

Substituting the mean and variance of the binomial distribution into Eq. 10, it is apparent that the

classical model of TE population genetics predicts (i.e., assumes) a Fano factor that is less than one,

Fano[n] = 1− n̄

2m
< 1 . (11)
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In fact, when the number of sites occupied by TEs is small compared to the total number of occupiable

loci (m→∞ with n̄ fixed), the Fano factor approaches one from below (Fano[n]→ 1). In this limit,

the binomial distribution of Eq. 9 is well-approximated by n ∼ Poisson(n̄). If it were the case that the

TE load within a population were Poisson distributed, then the mean and variance of TE load would

be equal (E[n] = Var[n] = n̄) and the index of dispersion would be Fano[n] = 1. With our expectations

set by the classical model of TE population genetics discussed above, empirical observations of a Fano

factor greater than one (Fano[n] > 1) would indicate overdispersion of TE load within a population.

2.2 Overdispersion of empirical TE counts

Fig. 1 presents analysis of two data sets, both of which indicate that the variance of TE load in

experimentally studied populations is far greater than would be predicted by classical models of TE

population genetics. The first data set consists of whole-genome sequence data from 164 lines of

Mimulus guttatus derived from a naturally occurring population in Iron Mountain, Oregon, USA

(estimated population size is about 300,000). The second data set comes from an analysis of 131 lines

of Drosophila melanogaster from the Drosophila Genetic Reference Panel (DGRP) (Cridland et al.,

2013). Their analysis identified over 17,000 TE insertions across individual lines that were derived

from a large population in Raleigh, NC, USA. See Section ?? of the Supplementary Material for a

description of experimental methods and data analysis.

Comparison of the marker locations in Fig. 1A with the dashed line (labelled Poisson) shows that in

both species, Mimulus guttatus and Drosophila melanogaster, the population distribution of TE load

is overdispersed (the variance of TE load is greater than the mean TE load). In D. melanogaster, this

overdispersion is greater for so called cut-and-paste TEs with a DNA intermediate as opposed to copy-

and-paste TEs with an RNA intermediate (compare open triangle to open circle). The corresponding

Fano factors (TE load variance relative to mean, as defined in Eq. 10) are 16 and 2.7, respectively,

values that indicate overdispersion (see Table 1). Overdispersion of TE load is even more pronounced

in M. guttatus. In this case, the Fano factors are 61 for copy-and-paste elements LINE and LTR (filled

red symbols), and 646 for cut-and-paste elements including DNA and Helitron (filled blue symbols).

Fig. 1B (left) shows the estimated number of copy-and-paste and cut-and-paste TEs in each of the

164 lines of M. guttatus (horizontal bar graph). In both cases, the variance (illustrated by the width

of red and blue histograms) is far greater than the variance that would be consistent with classical

model of TE population genetics (gray curves). Fig. 1B (right) shows the corresponding analysis for

the 131 lines of D. melanogaster. From these analyses we conclude that in both species, Mimulus

guttatus and Drosophila melanogaster, and for both classes of TEs, copy-and-paste and cut-and-paste,

the distribution of TE load within the studied population is highly overdispersed.
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Figure 1: A: Mean-variance plot of TE copy number in M. guttatus and D. melanogaster populations

compared to theoretical expectation (Poisson line). B: Estimated TE copy number for 164 M. guttatus

individuals (left panels) and 131 D. melanogaster individuals (right). TE counts are separated by class

(red, copy-and-paste; blue, cut-and-paste). The variability in TE load can be observed in the counts

from individuals (bottom) as well as histograms (top). The overdispersion in TE load is apparent

in the deviation of the observed counts (red and blue histograms) from the corresponding Poisson

distributions (gray lines). The black dotted lines show the population mean of TE load.
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Species TE class E[n] Var[n] Fano[n]

M. guttatus
copy-and-paste 8,082 4.9× 105 61

cut-and-paste 27,559 1.8× 107 646

D. melanogaster
copy-and-paste 128 2,053 16

cut-and-paste 60 164 2.7

Table 1: Empirically observed mean, variance, and index of dispersion (Fano factor) of the population

distribution of TE load in 164 M. guttatus and 131 D. melanogaster individuals (cf. Fig. 1).

2.3 Overdispersion is not explained by distinct TE families

The overdispersion documented in Fig. 1 cannot be explained away as a consequence of the hetero-

geneity of the properties of distinct TE types. That is, if the population variances of two different

families of TEs follow the classical model (i.e., n1 and n2 are binomially distributed according to

Eq. 9), then E[ni] = n̄i, Var[ni] = n̄i(1− n̄i/2m), and Fano[ni] ≤ 1 for i = 1, 2. If these families of TEs

were independently distributed in the population, but not distinguished, the composite mean, E[n] =

E[n1] + E[n2] = n̄1 + n̄2, and variance, Var[n] = Var[n1] + Var[n2] = n̄1(1− n̄1/2m) + n̄2(1− n̄2/2m),

would yield

Fano[n] =
n̄1(1− n̄1/2m) + n̄2(1− n̄2/2m)

n̄1 + n̄2
≤ 1 .

This composite Fano factor is less than one, indicating that the presence of different varieties of TEs

does not explain observed overdispersion in the classical model.

In fact, a stronger statement can be made; one that does not depend on the variance of each TE

family being underdispersed (Fano[ni] ≤ 1). Consider two families of TEs with mean TE loads n̄1 and

n̄2 and Fano factors F1 and F2. In that case, the variances of TE load are F1n̄1 and F2n̄2, respectively.

If these two families were not distinguished, the observed composite mean load, n̄1 + n̄2, and variance,

F1n̄1 + F2n̄2, yield the following index of dispersion,

F =
F1n̄1 + F2n̄2

n̄1 + n̄2
.

Because F is a weighted average of Fano factors for each family, the composite overdispersion is

bounded by min(F1, F2) ≤ F ≤ max(F1, F2). The dispersion of TE load that results when families

are not distinguished is always less than the overdispersion of at least one of the TE families.
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2.4 Master equation for TE population dynamics

Our modeling aims to clarify the observed overdispersion of TE load in Mimulus guttatus and Drosophila

melanogaster, following classical TE population genetics, but with a few important modifications. Be-

cause the variance in TE load is not the result of heterogeneity in TE types (see above), our analysis

will focus on a single TE family.

Let pn(t) denote the probability that a randomly sampled haploid genome (gamete) has a TE count

of n at time t. Prior to considerations of selection, our neutral model of TE population dynamics will

take the form of a skip-free birth-death process with gain and loss rates denoted un and vn. The state

space for haploid TE load is n ∈ {0, 1, 2, . . . ,m} and the state-transition diagram of the stochastic

process is

nn− 1 n+ 1

vn

un−1

vn+1

un

· · ·10

v1

u0

· · · m− 1 m .

vm

um−1

The master equation for this stochastic process is the following system of m+ 1 differential equations,

dp0

dt
= −u0p0 + v1p1 (12)

dpn
dt

= −(un + vn)pn + un−1pn−1 + vn+1pn+1 1 ≤ n ≤ m− 1 (13)

dpm
dt

= −vmpm + um−1pm−1 . (14)

The expected value of TE load of a randomly sampled diploid genotype is

n̄ = E[n] = 2
m∑
n=0

npn = 2µ1 . (15)

where µ1 =
∑m
n=0 npn is the mean TE load of a randomly sampled haploid gamete. By differentiating

Eq. 15 to obtain

dn̄

dt
= 2

m∑
n=0

n
dpn
dt

(16)

and substituting Eqs. 12–14, the master equation formulation is found to be consistent with the

classical model (Section S2). For example, if we assume that TE excision occurs with first order rate

constant

vn = νn , (17)

one may derive from Eqs. 12–16 the following differential equation for the mean diploid TE load,

dn̄

dt
= E[n(un − vn)] = E[nun]− νn̄ , (18)

which is a continuous-time version of Eq. 1.

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.382945doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.16.382945
http://creativecommons.org/licenses/by-nc-nd/4.0/


Limit E[n] = n̄ Var[n] = σ2
n Fano[n] = Var[n]/E[n]

η = 0
2mη0/ν

m+ η0/ν

2m2 η0/ν

(m+ η0/ν)2

m

m+ η0/ν

ν > η, m→∞ 2η0

ν − η
2η0ν

(ν − η)2

ν

ν − η

Table 2: The evolutionarily neutral moment equations (Eqs. 23 and 24) for the mean and variance of

TE load make predictions in various limits (see Sections S2.2 and S2.3).

2.5 Master equation predicts the variance of TE load

One feature of the master equation formulation (Eqs. 12–14) is that the dynamics of the population

variance of TE load are an emergent property of the model. To illustrate, let us assume that the

insertion rate for a single family of TEs is

un = (η0 + ηn)(1− n/m) , (19)

where η is the copy-and-paste rate per transposon (a first-order rate constant), η0 is the rate at which

transposons are arriving from other sources (a zeroth order rate constant), n is the TE copy number,

and m is the number of occupiable loci (in a haploid gamete). Substituting this constitutive relation

for un, as well as vn = νn, into Eqs. 12–14 gives

dp0

dt
= −η0p0 + νp1 (20)

dpn
dt

= − [(η0 + ηn)(1− n/m) + νn] pn

+ [η0 + η(n− 1)] [1− (n− 1)/m] pn−1 + ν(n+ 1)pn+1 1 ≤ n ≤ m− 1 (21)

dpm
dt

= −νmpm + [η0 + η(m− 1)] [1− (m− 1)/m] pm−1 . (22)

Fig. 2 shows representative numerical solutions of this master equation for the population dynamics

of TE load. When the copy-and-paste rate constant is zero (η = 0) and occupiable loci are not limiting

(n̄ << 2m), the stationary probability distribution is well-approximated by a Poisson distribution with

Var[n] ≈ n̄ and Fano[n] ≈ 1 (blue histograms). For both Mimulus- and Drosophila-like parameters, no

overdispersion is observed provided that the copy-and-paste rate constant is zero (η = 0). These results

should be compared to the green and red histograms, for which the copy-and-pate rate is nonzero

(see caption for parameters). Notably, an increase in the copy-and-paste rate leads to significant

overdispersion of the TE load for both simulated populations (Fano[n] ranging from 7 to 100).
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0 100 200 300 400 5000 10,000 20,000 30,000 40,000 50,000

Figure 2: Top: Stationary population distributions of TE load in haploid genomes (gametes) calculated

using the evolutionarily neutral master equation model (Eqs. 20–22). For mean loads similar to

Mimulus (left) and Drosophila (right), no overdispersion is observed in simulations absent copy-and-

paste transposition (η = 0, Fano[n] ≈ 1). Green and red histograms show overdispersed population

distributions of TE load that are obtained when copy-and-paste transposition is included. Mimulus

parameters: ν = 0.1, m = 109; η0, η = 2000, 0 (blue), 200, 0.095 (red), 20, 0.099 (green). Drosophila

parameters: ν = 0.1, m = 5000; η0, η = 20, 0 (blue), 1, 0.1 (green), 2, 0.1 (red). See Section S5 For

details of numerical methods.

2.6 Moment equations for mean and variance of TE load

The previous section showed that the evolutionarily neutral master equation model provides infor-

mation about the population variance of TE load that is unavailable in classical theory. Because

this realism comes at the expense of a more complex model formulation (Eqs. 20–22 compared to

Eq. 2), we derived ordinary differential equations (ODEs) that summarize the dynamics of the mean

and variance of the population distribution of diploid TE loads predicted by the master equation.

Section S2 of the Supplementary Material shows that the mean and variance of TE load solve the
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following ODEs,

dn̄

dt
= 2η0 −

(
ν − η +

η0

m

)
n̄− η

m

(
σ2
n +

n̄2

2

)
(23)

dσ2
n

dt
= 2η0 +

(
ν + η − η0

m

)
n̄− 2

(
ν − η +

η0 + η/2

m

)
σ2
n

− 2η

m

(
n̄σ2

n +
n̄2

4
+ E[(n− n̄)3]

)
. (24)

The term E[(n − n̄)3] that appears in Eq. 24 is the third central moment of the within-population

diploid TE load. Analysis of this system of ODEs and the third central moment is provided below

(Section 2.9).

If number of occupiable loci are not limiting (n̄ << 2m), we may take the limit of Eqs. 23 and 24

as m→∞ to obtain simpler equations for the mean and variance,

dn̄

dt
= 2η0 − (ν − η)n̄ (25)

dσ2
n

dt
= 2η0 + (ν + η)n̄− 2(ν − η)σ2

n . (26)

This reduced system of ODEs is linear and in this limit the equation for the variance (Eq. 26) does

not depend on the third central moment. The steady-state solution of Eqs. 25 and 26 given by

n̄ =
2η0

ν − η (27)

σ2
n =

2η0ν

(ν − η)2
=

νn̄

ν − η (28)

is physical provided ν > η, that is, when m is large, the rate of excision ν must be greater than the

copy-and-past rate constant η for positive mean TE load (n̄ > 0). This physical steady state is stable

because the Jacobian of Eqs. 25 and 26, given by the 2×2 matrix with entries J11 = −(ν−η), J12 = 0,

J21 = ν + η, J22 = −2(ν − η), has real valued eigenvalues λ = −(ν − η) < 0 and 2λ < 0.

The values for the steady-state mean and variance of TE load given by Eqs. 27–28 correspond to

the following index of dispersion,

Fano[n] =
σ2
n

n̄
=

ν

ν − η . (29)

Notably, that the condition for a stable steady state (ν > η) implies an index of dispersion greater

than unity (Fano[n] > 1) for any nonzero copy-and-paste rate constant (η > 0). For this reason, we

conclude that a steady state within-population distribution of TE loads will be overdispersed whenever

the number of occupiable loci are not limiting (n̄ << 2m). Further analysis of the moment equations

(Eqs. 23 and 24) shows that overdispersion will not occur in the absence of copy-and-paste dynamics

(see η = 0 case in Table 2).

This preliminary analysis of an evolutionarily neutral master equation for TE proliferation (Eqs. 20–

22) indicates that a nonzero copy-and-paste rate may lead to overdispersed population distributions of
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Figure 3: Parameter studies of the neutral master equation model showing the mean (n̄), variance

(σ2
n), and index of dispersion (Fano[n]) of within-population TE load as a function of the copy-and-

paste rate constant (η). Other parameters: m = 4 × 103 and as in legend. Cyan curves indicate

analytical approximations in the limit as m → ∞ (see Table 2). These calculations were accelerated

using a Fokker-Planck approximation to Eqs. 20–22 (see Section S5).

TE load (Eq. 29). That is, copy-and-paste TE dynamics is one possible explanation for our empirical

observations of overdispersed TE counts (Fig. 1). Furthermore, this analysis predicts that a large in-

dex of dispersion may be a consequence of balanced dynamics of TE gain and loss (i.e., Fano[n]→∞
as ν decreases to η in Eq. 29). While the divergence in the analytical result is an artifact of taking the

m→∞ limit, the parameter study shown in Fig. 3 confirms that blowup of Fano[n] occurs in master

equation simulations when m is large and the dynamics of TE gain and loss are balanced (η ≈ ν).

2.7 Influence of selection on overdispersion

To investigate the effect of purifying selection on the population variance of TE load, we assume a

selection coefficient (wn) that depends on total diploid TE load (n) with dwn/dn < 0 (higher load is
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0.97

1.06

8.66

haploid load

no selection
s = 0.01, α = 10
s = 0.1, α = 1
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diploid load

wn for s = 0.01
wn for s = 0.1

16,000 18,000 20,000 22,000

Fano=1.00

0.580.20

haploid load

no selection
s = 0.0001, α = 100
s = 0.001, α = 100

32,000 36,000 40,000 44,000
diploid load

wn for s = 0.0001
wn for s = 0.001

Figure 4: Stationary population distributions of TE abundance with and without selection given by

numerical solution of Fokker-Planck equation associated to the master equations (Eqs. 31 and 32).

Parameters as in Fig. 2 and legends.

less viable). For concreteness, let

wn = (1− s)` for 0 ≤ s << 1 , (30)

where s is the strength of selection against TE load. When the neutral model (Eqs. 20–22) is modified

to include selection, the master equation becomes

dpn
dt

= α(p′n − pn)− [(η0 + ηn)(1− n/m) + νn] pn

+ [η0 + η(n− 1)] [1− (n− 1)/m] pn−1 + ν(n+ 1)pn+1 . (31)
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for 1 ≤ n ≤ m. The first term in this expression represents each load probability pn relaxing to a

target probability p′n given by

p′n =
pn
∑
j wn+jpj∑

i pi
∑
j wi+jpj

0 ≤ i, j ≤ m (32)

where wi+j = (1 − s)i+j . The equations for for dp0/dt and dpm/dt have fewer gain/loss terms than

Eq. 31, but are analogous (cf. Eqs. 20 and 22). The parameter α that occurs in Eq. 31 is the inverse

of the generation time. The quantity w̄ =
∑
i pi
∑
j wi+jpj is the mean fitness under the assumption

of random mating (Gillespie, 2004).

Fig. 4 shows steady-state distributiosn of haploid (top row) and diploid (bottom) TE loads calcu-

lated using Eq. 31 both with and without of selection on diploid load. As expected, for both Mimulus-

and Drosophila-like mean loads, the effect of weak selection (red and green histograms) is to decrease

the TE load in the population as compared to the neutral model (blue histograms). This decrease in

mean TE load occurs for a wide range of generation times (1/α) and selection coefficients (s).

More important (and less obvious) is the impact of selection on the variance of TE load and

overdispersion. Using Drosophila parameters, Fig. 4 (top right) shows an example simulation (green

histogram) in which selection leads to increased dispersion (the Fano factor increases from 1 to 8.66).

However, in a second case (red histogram), selection increases the index of dispersion only slightly

(to a Fano factor of 1.06). Notably, in three representative simulations using Mimulus parameters,

selection does not increase the dispersion of TE load (Fig. 4, left). This observation is consistent with

the moment-based analysis presented in the following section.

2.8 Moment equations with selection

For a deeper understanding of the impact of selection on the distribution of TE load in a population,

one may begin with Eqs. 31 and 32 and derive the dynamics of the mean and variance of TE load

under the action of simple selection functions. For example, in the limit of weak selection 0 < s << 1,

Eq. 30 is well-approximated by wn = 1 − sn. In this case, as derived in Section S3, the dynamics of

the mean and variance of TE load solve

dn̄

dt
= − αs

1− sn̄ · σ
2
n + 2η0 −

(
ν − η +

η0

m

)
n̄− η

m

(
σ2
n +

n̄2

2

)
(33)

dσ2
n

dt
= − αs

1− sn̄ · E[(n− n̄)3] + 2η0 +
(
ν + η − η0

m

)
n̄− 2

(
ν − η +

η0 + η/2

m

)
σ2
n

− 2η

m

(
n̄σ2

n +
n̄2

4
+ E[(n− n̄)3]

)
. (34)

These ODEs may be compared to the moment equations for the neutral model (Eqs. 25 and 26). As

expected, the influence of selection on the mean TE load is proportional to the population variance
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n
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n/dt = 0

solutions
Poisson
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Figure 5: The phase plane for the dynamics of mean (n) and variance (σ2
n) of TE load (Eqs. 42

and 43). The red and green curves are the nullclines for the mean and variance, respectively, with

intersection corresponding to the steady state (open circle). (A) Mean loads similar to Mimulus. The

blue trajectories show the dynamics of equilibration. (B) Mean loads similar to Drosophila. Increased

selection decreases the index of dispersion (Fano[n]).
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(through the factor −αsσ2
n/(1− sn̄) in Eq. 35). Similarly, the influence of selection on the population

variance is proportional to the third central moment of the diploid load (through the factor −αsE[(n−
n̄)3]/(1− sn̄) in Eq. 34). In both cases, the quantity 1− sn̄ is the mean fitness of the population, i.e.,

w̄ = E[wn] = E[1− sn] = 1− sn̄.

Under the assumption that mean TE load is much smaller than the number of loci (n̄ << 2m),

we may simplify the moment equations with selection (Eqs. 33 and 34) by taking the limit m → ∞
to obtain

dn̄

dt
= − αs

1− sn̄ · σ
2
n + 2η0 − (ν − η)n̄ (35)

dσ2
n

dt
= − αs

1− sn̄ · E[(n− n̄)3] + 2η0 + (ν + η)n̄− 2(ν − η)σ2
n . (36)

Setting the left side of Eq. 35 to zero, we observe that the steady-state mean and variance are related

as follows,

n̄ =
2η0

ν − η −
αs

1− sn̄ ·
σ2
n

ν − η =
2η0

ν − η

[
1− αs

1− sn̄ ·
σ2
n

2η0

]
. (37)

Comparing this expression to Eq. 27, noting that the variance is nonnegative (σ2
n ≥ 0), we see that the

effect of weak selection (0 < s << 1) is to decrease the mean TE load in the population as compared

to the neutral model (as expected). Similar analysis of Eq. 36 shows how selection may impact on the

variance of of TE load and, consequently, the index of overdispersion. Setting the left side of Eq. 36

to zero and solving for the steady-state variance, gives

σ2
n

[
1 +

αs

1− sn̄ ·
ν + η

2(ν − η)2

]
=

2η0ν

(ν − η)2
− αs

1− sn̄ ·
E[(n− n̄)3]

2(ν − η)
, (38)

where the first term on the right side, 2η0ν/(ν − η)2, is the variance of TE load in the absence of

selection. Consistent with the master equation simulations shown in Fig. 4, Eq. 38 shows that the

effect of selection is to either decrease or increase the population variance of TE load, depending on

the sign of the third central moment (E[(n− n̄)3]).

2.9 Moment closure and the (n̄, σ2
n) phase plane

In their current form, the moment equations (Eqs. 33 and 34) are an open system of ODEs, because

the equation for the variance (σ2
n) depends on E[(n − n̄)3], the unknown third central moment. As

discussed in Section S4, a moment closure technique that is applicable in this situation assumes the

third central moment of the diploid load is algebraic function of the mean and variance,

E[(n− n̄)3] = ψ(n̄, σ2
n) . (39)

We investigated two possibilities for this function based on the properties of the beta-binomial and

negative binomial distributions. The beta-binomial moment closure, derived in Section S4.3, is a
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Figure 6: The moment equations derived under the assumption of weak selection (Eqs. 33 and 34)

with beta-binomial moment closure (Eq. 40) enabled these parameter studies of the mean, variance,

and dispersion of TE load as a function of generation time (1/α). Parameters: ν = 0.1, η0 = 10,

η = 0.1, and as in legend.

complicated expression involving the mean, variance, and number of loci m,

ψBB(n̄, σ2
n) = σ2 (m− n̄)(n̄2 − 2mn̄− 2σ2 + 4mσ2)

mn̄(2m− n̄− 4) + 2mσ2 + 2n̄2
. (40)

Moment closure motivated by the properties of the negative binomial distribution results in a simpler

expression that does not involve the number of loci m,

ψNB(n̄, σ2
n) = σ2

n

(
2σ2

n − n̄
n̄

)
. (41)

Although the beta-binomial closure (Eq. 40) is arguably a better approximation, in our experience it

does not perform markedly better than the negative binomial closure (Eq. 41), as assessed through

comparison of moment ODE and master equation simulations. In the analysis that follows, we use
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the negative binomial closure, motivated by its simplicity and the fact the two expressions coincide

the number of loci are not limiting (to see this, observe that ψBB → ψNB as m → ∞). When the

algebraic relationship representing the negative binomial closure (Eq. 41) is substituted into Eqs. 23–

24, we obtain the following system of ODEs for the mean and variance of diploid load under the

influence of selection:

dn̄

dt
= − αs

1− sn̄ · σ
2
n + 2η0 −

(
ν − η +

η0

m

)
n̄− η

m

(
σ2
n +

n̄2

2

)
(42)

dσ2
n

dt
= − αs

1− sn̄ · σ
2
n

(
2σ2

n − n̄
n̄

)
+ 2η0 +

(
ν + η − η0

m

)
n̄− 2

(
ν − η +

η0 + η/2

m

)
σ2
n

− 2η

m

[
n̄σ2

n +
n̄2

4
+ σ2

n

(
2σ2

n − n̄
n̄

)]
. (43)

Fig. 5A presents a representative (n, σ2
n) phase plane for the dynamics of the mean and variance

of TE load predicted by Eqs. 42 and 43. The red and green lines are the nullclines for the mean

and variance, respectively, with intersection corresponding to the steady state. This calculation uses

parameters resulting in a steady-state TE load similar to our empirical observations of Mimulus

guttatus (counts on the order of 105). This steady state predicted by the moment equations is located

far above the broken black line denoting σ2
n = n and Fano factor of 1. The blue curves show two

numerically integrated solutions using initial conditions for which the population variance is equal to

the mean. Interestingly, these solutions show that dynamics of TE load can include a transient phase

in which the index of dispersion is far greater or less than the steady-state value.

Fig. 5B shows how the nullclines for the mean and variance of TE load depend on the strength of

selection in three cases with parameters corresopnding to TE loads similar to Drosophila melanogaster

(counts on the order of 100). As the strength of selection increases, both the mean and variance of

TE load decrease, in such a manner that the index of dispersion decreases (compare slopes of broken

black lines).

Although the model obtained by moment closure and the phase plane analysis of Fig. 5 does not

assume n̄ << 2m, we may consider Eqs. 42 and 43 in the limit as m→∞,

dn̄

dt
= − αs

1− sn̄ · σ
2
n + 2η0 − (ν − η)n̄ (44)

dσ2
n

dt
= − αs

1− sn̄ · σ
2
n

(
2σ2

n − n̄
n̄

)
+ 2η0 + (ν + η)n̄− 2(ν − η)σ2

n . (45)

Setting the left sides of Eqs. 42–43 to zero, and assuming weak selection (0 ≤ s << 1), we can derive

first-order accurate asymptotic expressions for the steady-state mean and variance,

n̄ ≈ 2η0

ν − η

[
1− αs ν

(ν − η)2

]
(46)

σ2
n ≈ 2νη0

(ν − η)2

[
1− αs (ν + η)

(ν − η)2

]
. (47)
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Because v/(ν − η)2 > 0, this expression indicates that weak selection decreases the mean TE load,

consistent with our intuition. Similarly, the factor (ν + η)/(ν − η)2 is positive, so we conclude that

weak selection decreases the population variance when m is large. As for the index of dispersion, this

analysis indicates that under weak selection the Fano factor is

σ2
n

n̄
≈ ν

ν − η

[
1− αs η

(ν − η)2

]
. (48)

Because η/(ν − η)2 is positive any nonzero copy-and-paste rate (η > 0), we conclude that the Fano

factor is also expected to decrease, because weak selection causes the within-population variance of TE

load to decrease more than the mean. This conclusion that selection on diploid TE load is unlikely

to be responsible for overdispersion is consistent with numerical parameter studies summarized in

Fig. 6 that were enabled by the moment equations with selection (Eqs. 33 and 34) and beta-binomial

moment closure (Eq. 40).

3 DISCUSSION

Although mathematical modeling has informed our understanding of the population genetics of trans-

posable elements (TEs) for several decades, classical theory has emphasized analytical results that

assume a binomial distribution of TE loads in a randomly mating population (Sections 1.1 and 1.2).

Because the variance of a binomial distribution is less than or equal to its mean, the classical theory

effectively assumes that the population distribution of TE loads are underdispersed (Fano[n] ≤ 1).

In an empirical analysis of TE copy number in two natural populations (M. guttatus and D.

melanogaster), we found (in both cases) that the population distribution of TE loads was dramatically

overdispersed (Fig. 1 and Table 1). Because the classical theory of TE population genetics is not

applicable to this situation, we extended this theory and explored mechanisms that may be responsible

for observed overdispersion. The model presented here predicts the entire distribution function of TE

loads, and from this distribution we calculate the mean, variance, and index of dispersion as a function

of model parameters.

Prior to considerations of selection, the parameters of neutral model encode assumptions regarding

the dynamics of TE proliferation (cut-and-paste, copy-and-paste, and excision rate constants) as well

as an estimate of the number of loci that may be occupied by TEs. Using parameter sets that yield TE

counts in the observed ranges (tens of thousands for M. guttatus, hundreds for D. melanogaster), we

found (in both cases) that copy-and-paste TE proliferation dynamics often resulted in an overdispersed

TE loads (Fig. 2). Moment-based analysis of the neutral model suggests that overdispersed population

distributions are to be expected when the copy-and-paste transposition rate constant (η) and excision

rate constant (ν) are comparable in magnitude (Fig. 3 and Table 1).
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We next extended the master equation model to include purifying selection on TE load. For a

parameter set corresponding to M. guttatus, selection decreased the mean and variance of TE load;

however, because the variance decreased more than the mean, purifying selection had the effect of

decreasing the index of dispersion (Fig. 4, left). For a parameter set corresponding to D. melanogaster,

we found that purifying selection, when sufficiently strong, may lead to an increased index of dispersion

of TE load (Fig. 4, right). Most importantly, in both parameter regimes, our simulations (Fig. 6) and

analysis (Eqs. 46–48) agree that weak purifying selection decreases both the mean and variance of

TE load in such a way that the index of dispersion is unchanged or slightly increases. Moment-based

analysis of the master equation confirmed that weak selection has the effect of decreasing the index

of dispersion (Section 2.9).

3.1 Comparison of M. guttatus and D. melanogaster

Parameter studies using the master equation model indicate that the mechanism of copy-and-paste

transposition may lead to overdispersed population distributions of TE load, whereas cut-and-paste

transition is less likely to do so (Fig. 2). When our empirical analysis of TE load in D. melanogaster

was refined to consider these two broad classes of TEs, we found that copy-and-paste TEs were

6-fold more highly overdispersed than cut-and-paste TEs (see Table 1), consistent with the model

prediction. On the other hand, our empirical analysis of TE load in M. guttatus shows that in this

natural population copy-and-paste TEs are far less dispersed than cut-and-paste TEs.

3.2 Limitations of the model

The master equation for the dynamics of TE proliferation presented here extends the classical theory

in several ways. Most importantly, in the master equation simulations, the relationship between the

population variance and mean is a prediction of the model (as opposed to a modeling assumption,

as in the classical theory). This feature of the model enables parameter studies exploring how the

dynamics of TE proliferation and purifying selection influence the dispersion in TE load.

One limitation of our model is the harsh (but common) assumption that selection acts on overall

TE load (Brookfield and Badge, 1997; Charlesworth and Charlesworth, 1983, 2010; Deceliere, 2004;

Le Rouzic and Deceliere, 2005). This choice is consistent with the finding that most TE insertions

have negative fitness consequences and are located outside of genes (Bartolomé et al., 2002; Duret

et al., 2000; Mackay, 1989; Pasyukova et al., 2004). On the other hand, many TEs are located in

heterochromatic regions of the genome. It is unlikely that these large masses of TEs have fitness

consequences comparable to TEs that are proximal to genes. In future work, our model could be

extended to include variability in the selective cost of TE insertions.
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The most significant limitation of the master equation model is that the dynamics of recombi-

nation are not represented. Indeed, the population distribution of TE load is modeled without any

representation of the location of TEs within the genome. To the extent that recombination promotes

linkage equilibrium, one expects that recombination will decrease the dispersion of TE load and, con-

sequently, is not a likely explanation for observed overdispersion. We recommend interpreting the

master equation model as a representation of the dynamics of a single linkage class of TEs, with the

tacit understanding that the index of dispersion for a genome composed of multiple linkages classes

will be less than the model prediction. Admittedly, this viewpoint does not account for the fact that

recombination is less frequent in regions of the genome that have a high density of TEs. Studying the

influence of such density-dependent recombination on the dispersion of TE load is beyond the scope

of this paper, as it would require a modeling framework that is explicitly spatial.

We note that events involving the loss or gain of multiple TEs (as could occur via ectopic recom-

bination or other mechanisms) are expected to contribute to overdispersion. To see this, consider a

master equation simulation in which the gain and loss of TEs occurs in blocks of size b. If there is

no other change to the model, we may reinterpret the random variable n as the number of blocks of

TEs in a randomly sampled diploid genome. In that case, the mean and variance of TE count are

increased by a factor of b and b2, respectively. The Fano factor, given by the ratio of variance to

mean, increases by a factor of b,

Fano[bn] =
Var[bn]

E[bn]
=
b2Var[n]

bE[n]
= bFano[n] .

This scaling implies that block-wise inheritance of TEs is expected to increase the index of dispersion

by a factor proportional to the representative block size. This intriguing and relatively simple expla-

nation for empirically observed overdispersion could be studied using an explicitly spatial model of

TE population genetics, preferably one that includes a mechanistic account of ectopic recombination

and perhaps other genome rearrangements.
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Supplemental Materials

Population genetics of transposable element load: a mechanis-

tic account of observed overdispersion

Ronald D. Smith, Joshua R. Puzey, Gregory D. Conradi Smith

S1 Comments on the classical model

In the classical model of TE population genetics, the state of an infinite diploid population at a given

chromosomal site i, for 0 ≤ i ≤ m, is described by its frequency, xi, where 0 ≤ xi ≤ 1. Assuming

insertion sites exhibit no linkage disequilibrium, the set of frequencies, {xi}mi=1, describes the state of

the population. The TE load of a randomly sampled diploid individual is a random number n given

by

n =

m∑
i=1

xi +

m∑
i=1

yi . (S1)

where xi and yi are pairs of i.i.d. Bernoulli random variables with parameters xi. Thus, E[xi] =

E[yi] = xi and the mean copy number of TEs per individual is

n̄ = E[n] =
m∑
i=1

E[xi] +
m∑
i=1

E[yi] = 2
m∑
i=1

xi = 2mx̄

where in the last equality we have written n̄ in terms of the number of loci and the mean frequency,

x̄ = (1/m)
∑m
i=1 xi. The variance of a Bernoulli random variable with parameter xi is xi(1− xi). As

a consequence, the variance of TE load is

Var[n] =
m∑
i=1

Var[xi + yi] = 2
m∑
i=1

xi(1− xi) .

The diploid load given by Eq. S1 is the sum of two i.i.d. Poisson-binomial random variables, that is,

n = X + Y where X =
∑m
i=1 xi is the sum of independent Bernoulli random variables that are not

necessarily independent (and similarly for Y =
∑m
i=1 yi). It is well-known that

Var[X] = mx̄(1− x̄)−mσ2
x . (S2)

where σ2
x = (1/m)

∑m
i=1(xi − x̄)2 is the “variance” among the parameters of the Poisson-binomial

distribution, {xi}mi=1 (i.e., the variability of frequencies of occupation of the TE loci). Using Var[Y] =

Var[X] and Var[n] = 2Var[X], and Eq. S2, we see that the variance of TE load is

Var[n] = 2mx̄(1− x̄)− 2mσ2
x .
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Substituting x̄ = n̄/2m in the above expression gives Eq. 6.

To extend this model of TE population genetics to include the effect of natural selection, Charlesworth

and Charlesworth (1983) assume a viability function, wn, that is a decreasing function of total genome-

wide TE load (dwn/dn < 0). The effect of selection is to decrease the occupation frequency at each

loci in a manner that is proportional to 1
2xi(1−xi), which is the variance of a Bernoulli random vari-

able with parameter xi, and also proportional the derivative, with respect to xi, of the mean fitness

of the population, w̄ = E[wn],

∆xi =
xi(1− xi)

2w̄

∂w̄

∂xi
= xi(1− xi)

∂ ln w̄

∂n̄
.

The second equality is obtained using (1/xi)∂w̄/∂xi = ∂ ln w̄/∂xi and noting that n̄ = 2
∑m
i=1 xi

implies ∂n̄/∂xi = 2. Summing over all sites gives

∆n̄ = 2

m∑
i=1

∆xi = n̄
(

1− n̄

2m

) ∂ ln w̄

∂n̄
.

Using Vn = n̄(1 − n̄/2m) and approximating the mean fitness of the population (w̄ = E[wn]) by the

fitness of an individual with an average number of copies (wn̄) gives the first term of Eq. 3.

S2 Derivation of moment equations with gain and loss terms

Let n be a random variable representing TE load of a randomly sampled diploid individual, and x

and y be random variables representing the TE load of randomly sampled haploid genomes (gametes).

Define the moments of the probability distribution of haploid TE loads (given by pi for 0 ≤ i ≤ m) as

µq = E[xq] =
m∑
n=0

nqpn for q = 0, 1, 2, · · · (S3)

where µ0 = 1 (conservation of probability), µ1 = E[x] and Var[x] = E[x2]−E[x]2 = µ2−µ2
1. We assume

random mating for which the diploid TE load is the sum of two i.i.d. gametic loads (n = x + y). In

the case, the mean and variance of the within-population diploid TE load are related to µ2 and µ1 as

follows,

E[n] = 2E[x] = 2µ1 (S4)

Var[n] = 2Var[x] = 2(µ2 − µ2
1) . (S5)

Using Eqs. S4–S5 we see that the Fano factor of the diploid load is

Fano[n] =
Var[n]

E[n]
=

2(µ2 − µ2
1)

2µ1
=
µ2

µ1
− µ1 .

Because the factor of two occurs in both the numerator and denominator of the above expression, the

dispersion of the diploid load is equal to that of the haploid load, i.e. Fano[n] = Fano[x].
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S2.1 ODEs for the dynamics of µ1 and µ2

The moment equations for the haploid TE load are derived by differentiating Eq. S3 to obtain

dµq
dt

=
m∑
n=0

nq
dpn
dt

.

Substituting Eqs. 20–22 into the above expression gives

dµq
dt

=
m∑
n=0

nq[−(un + vn)pn + un−1pn−1 + vn+1pn+1]

= −
m∑
n=0

nqvnpn +
m∑
n=0

nqvn+1pn+1︸ ︷︷ ︸
Vq

−
m∑
n=0

nqunpn +
m∑
n=0

nqun−1pn−1︸ ︷︷ ︸
Uq

.

The terms Vq are evaluated as follows,

Vq =

m∑
n=0

nqvn+1pn+1 −
m∑
n=0

nqvnpn =

m∑
n=1

(n− 1)qvnpn −
m∑
n=1

nqvnpn

=
m∑
n=1

[(n− 1)q − nq]vnpn =
m∑
n=0

[(n− 1)q − nq]vnpn ,

where we use v0 = 0. For q = 1, [(n− 1)q − nq] = −1; thus, V1 is given by

V1 = −
m∑
n=0

vnpn = −
m∑
n=0

νnpn = −ν
m∑
n=0

npn = −νµ1 , (S6)

where we use vn = νn. Similarly,

Uq =

m∑
n=0

nqun−1pn−1 −
m∑
n=0

nqunpn =

m−1∑
n=0

(n− 1)qunpn −
m−1∑
n=0

nqunpn

=
m−1∑
n=0

[(n+ 1)q − nq]unpn =
m∑
n=0

[(n+ 1)q − nq]unpn .

Using q = 1, um = 0, [(n+ 1)q − nq] = +1, and un = (η0 + ηn)(1− n/m), we obtain

U1 =
m∑
n=0

unpn =
m∑
n=0

(η0 + ηn)(1− n/m)pn = η0

m∑
n=0

(1− n/m)pn + η
m∑
n=0

n(1− n/m)pn .

Thus, U1 is given by

U1 = η0 − η0µ1/m+ ηµ1 − ηµ2/m . (S7)

Combining the expression for U1 and V1 gives the ODE for µ1, the first moment of haploid TE load,

dµ1

dt
= η0[1− µ1/m]− νµ1 + η[µ1 − µ2/m] = V1 + U1 . (S8)

Similar calculations give dµ0/dt = 0 (conservation of probability) and

V2 = νµ1 − 2νµ2 (S9)

U2 = η0[1− µ1/m] + 2η0[µ1 − µ2/m] + η[µ1 − µ2/m] + 2η[µ2 − µ3/m] . (S10)
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Using these expressions, the ODE for the second moment, dµ2/dt = V2 + U2, is found to be

dµ2

dt
= η0[1− µ1/m] + 2η0[µ1 − µ2/m] + νµ1 − 2νµ2 + η[µ1 − µ2/m] + 2η[µ2 − µ3/m] . (S11)

Eqs. S8–S11 are the first two ODEs in a sequence for which dµ1/dt depends on µ1 and µ2, dµ2/dt

depends on µ1, µ2 and µ3, and so on, as follows,

dµ1

dt
= f1(µ1, µ2) (S12)

dµ2

dt
= f2(µ1, µ2, µ3) (S13)

...

dµq
dt

= fq(µq−1, µq, µq+1) . (S14)

Section S4 shows how this open system of ODEs can be closed by assuming an algebraic relationship

between the third moment and those of lower order. The influence of selection on the both the

master equation and moment equation models is discussed in Section S3. The following two sections

(Sections S2.2 and S2.3) explore parameter regimes for which the moment equations decouple and it

is possible to derive analytical steady states for the population mean and variance of TE load.

S2.2 Moment ODEs in absence of copy-and-paste transposition

When there is no copy-and-paste transposition (η = 0), Eqs. S8–S11 simplify as follows:

dµ1

dt
= η0(1− µ1/m)− νµ1

dµ2

dt
= η0(1− µ1/m) + 2η0(µ1 − µ2/m) + νµ1 − 2νµ2 .

Notice that the dependence of dµ1/dt on µ2, and dµ2/dt on µ3, vanishes when η = 0. Regrouping

terms gives

dµ1

dt
= η0 − (ν + η0/m)µ1

dµ2

dt
= η0 + (v + 2η0 − η0/m)µ1 − 2(ν + η0/m)µ2 .

This system has steady state given by

µ1 =
η0

ν + η0/m
=

mη0/ν

m+ η0/ν

µ2 =
η0 + (ν + 2η0 − η0/m)µ1

2(ν + η0/m)
= µ2

1 +
ν

ν + η0/m
µ1 .

The central moment µ̂2 = µ2 − µ2
1, the variance in haploid load, is thus

µ̂2 =
ν

ν + η0/m
µ1 =

η0ν

(ν + η0/m)2
=

m2 η0/ν

(m+ η0/ν)2
.
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Noting that Var[n] = σ2
n = 2µ̂2 and E[n] = n̄ = 2µ1, we find

n̄ =
2η0

ν + η0/m
=

2mη0/ν

m+ η0/ν

σ2
n =

2η0ν

(ν + η0/m)2
=

2m2 η0/ν

(m+ η0/ν)2
=

ν n̄

ν + η0/m
=

mn̄

m+ η0/ν
.

The index of dispersion for the diploid load is thus

Fano[n] =
ν

ν + η0/m
=

m

m+ η0/ν
.

S2.3 Moment ODEs when occupiable loci are not limiting

When occupiable loci are not limiting (µ1 << m), we may consider Eqs. S8–S11 in the limit as

m→∞,

dµ1

dt
= η0 − νµ1 + ηµ1

dµ2

dt
= η0 + 2η0µ1 + νµ1 − 2νµ2 + ηµ1 + 2ηµ2 .

Note that the large m limit uncouples the moment ODEs. Regrouping terms, we see that

dµ1

dt
= η0 − (ν − η)µ1

dµ2

dt
= η0 + (2η0 + η + ν)µ1 − 2(ν − η)µ2 .

Provided ν > η, this system has the stable steady state given by

µ1 =
η0

ν − η

µ2 =
η0 + (2η0 + η + ν)µ1

2(ν − η)
= µ2

1 +
ν

ν − ηµ1 .

The central moment µ̂2 = µ2 − µ2
1, the variance in haploid load, is thus

µ̂2 =
ν

ν − ηµ1 =
η0ν

(ν − η)2
.

Noting that Var[n] = σ2
n = 2µ̂2 and E[n] = n̄ = 2µ1 gives Eqs. 27–28, namely,

n̄ =
2η0

ν − η
σ2
n =

2η0ν

(ν − η)2
=

νn̄

ν − η .

The index of dispersion for the diploid load is thus

Fano[n] =
ν

ν − η .
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S2.4 Central moment equations

Recall that the open system of moment equations for the probability distribution of TE load take the

form

dµ1

dt
= η0(1− µ1/m)− νµ1 + η(µ1 − µ2/m)

dµ2

dt
= η0(1− µ1/m) + 2η0(µ1 − µ2/m) + νµ1 − 2νµ2 + η(µ1 − µ2/m) + 2η(µ2 − µ3/m) ,

where dµ3/dt = f3(µ2, µ3, µ4), and so on (cf. Eqs. S12–S14). Rearranging terms in the equations for

the first two moments gives

dµ1

dt
= η0 −

(
ν − η +

η0

m

)
µ1 −

η

m
µ2 (S15)

dµ2

dt
= η0 +

(
ν + η + 2η0 −

η0

m

)
µ1 − 2

(
ν − η +

η0 + η/2

m

)
µ2 −

2η

m
µ3 (S16)

It is convenient to express Eqs. S15–S16 in terms of the central moments. The first central moment

of the haploid TE load is the mean, µ1 = E[x]. The second central moment is the variance

µ̂2 = Var[x] = E[(x− E[x])2] = E[x2]− E[x]2 = µ2 − µ2
1 .

The third central moment is

µ̂3 = E[(x− E[x])3] = µ3 − 3µ1µ2 + 2µ3
1 = µ3 − 3µ1µ̂2 − µ3

1 . (S17)

To find an ODE for the dynamics of the variance, we differentiate µ̂2 = µ2 − µ2
1 to obtain

dµ̂2

dt
=
dµ2

dt
− 2µ1

dµ1

dt
. (S18)

Substituting Eqs. S15–S16 into this expression we obtain,

dµ1

dt
= η0 −

(
ν − η +

η0

m

)
µ1 −

η

m

(
µ̂2 + µ2

1

)
(S19)

dµ̂2

dt
= η0 +

(
ν + η − η0

m

)
µ1 − 2

(
ν − η +

η0 + η/2

m

)
µ̂2 −

η

m
(4µ1µ̂2 + µ2

1 + 2µ̂3) . (S20)

Using E[n] = n̄ = 2µ1 and Var[n] = σ2
n = 2µ̂2, and E[(n − n̄)3] = 2µ̂3, Eqs. S19–S20 may be

transformed into equations for the mean and variance of diploid load. To see this, write µ1 = n̄/2 and

µ̂2 = σ2
n/2 and differentiate to obtain

1

2

dn̄

dt
=
dµ1

dt
and

1

2

dσ2
n

dt
=
dµ̂2

dt
.

Substitution gives

1

2

dn̄

dt
= η0 −

1

2

(
ν − η +

η0

m

)
n̄− η

2m

(
σ2
n +

n̄2

2

)
1

2

dσ2
n

dt
= η0 +

1

2

(
ν + η − η0

m

)
n̄−

(
ν − η +

η0 + η/2

m

)
σ2
n −

η

m

(
n̄σ2

n +
n̄2

4
+ E[(n− n̄)3]

)
,
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where we gave used Eq. S17. After simplifying, these equations become

dn̄

dt
= 2η0 −

(
ν − η +

η0

m

)
n̄− η

m

(
σ2
n +

n̄2

2

)
(S21)

dσ2
n

dt
= 2η0 +

(
ν + η − η0

m

)
n̄− 2

(
ν − η +

η0 + η/2

m

)
σ2
n

− 2η

m

(
n̄σ2

n +
n̄2

4
+ E[(n− n̄)3]

)
. (S22)

Taking the limit as m→∞ gives Eqs. 25–26.

S3 Selection in the master equation and moment equation

models

In the master equation formulation, pn is the probability of randomly sampling a gamete with a TE

load of n. Under the assumption of random mating, selection leads to the following probabilities for

each load in the next generation,

p′i =
pi
∑
j wi+jpj∑

i pi
∑
j wi+jpj

=
piw̄i∑
i piw̄i

=
piw̄i
w̄

0 ≤ i, j ≤ m

where

w̄ = E[wn] =
∑
i

pi
∑
j

pjwi+j =
∑
i,j

pipjwi+j

is the mean fitness of the diploid population. Selection may be included in the master equations for

TE load (Eqs. 20–22) as follows,

dpn
dt

= α(p′n − pn) + · · · = α
(pnw̄n

w̄
− pn

)
+ · · · = α

pn(w̄n − w̄)

w̄
+ · · ·

where for typographical convenience we do not write the reaction terms involving un and vn (these

are indicated by · · · ). In the weak selection limit, wn = (1 − s)n ≈ 1 − sn and the mean fitness w̄

becomes

w̄ =
∑
n

pnw̄n ≈
∑
n

pn[1− sn− sµ1] = 1− sµ1 − s
∑
n

npn = 1− 2sµ1 .

Thus, weak selection can be included in the moment equations as follows

dpn
dt

= αpn
1− sn− sµ1 − (1− 2sµ1)

1− 2sµ1
+ · · · = αs

1− 2sµ1
pn(µ1 − n) + · · · .

This expression leads to the following differential equation for the first moment in the weak selection

limit,

dµ1

dt
=

∑
n

n
dpn
dt

=
αs

1− 2sµ1

(
µ1

∑
n

npn −
∑
n

n2pn

)
+ V1 + U1 (S23)

= − αs

1− 2sµ1

[
µ2 − µ2

1

]
+ V1 + U1 , (S24)
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where the quantity in brackets is the variance in haploid load (µ̂2 = µ2−µ2
1) and V1 and U1 are given

by Eqs. S6 and S7. A similar calculation gives the dynamics of the second moment of the haploid

load, moment

dµ2

dt
=

∑
n

n2 dpn
dt

=
αs

1− 2sµ1

(
µ1

∑
n

n2pn −
∑
n

n3pn

)
+ V2 + U2

= − αs

1− 2sµ1
[µ3 − µ1µ2] + V2 + U2 .

where V2 and U2 are given by Eqs. S9 and S10. Using Eq. S18, an ODE for the variance in haploid

load is found,

dµ̂2

dt
=

dµ2

dt
− 2µ1

dµ1

dt

= − αs

1− 2sµ1

[
(µ3 − µ1µ2)− 2µ1(µ2 − µ2

1)
]

+ · · ·

= − αs

1− 2sµ1

[
µ3 − 3µ1µ2 + 2µ3

1

]
+ · · ·

= − αs

1− 2sµ1
µ̂3 + · · · .

Using n̄ = 2µ1 and dn̄/dt = 2dµ1/dt, and σ2
n/2 = µ2 − µ2

1, we see that Eq. S24 is equivalent to

dn̄

dt
= − αs

1− sn̄σ
2
n + · · · .

Using E[(n− n̄)3] = 2µ̂3 and σ2
n/2 = µ̂2, we obtain

dσ2
n

dt
= − αs

1− sn̄E[(n− n̄)3] + · · · .

Combining these results for the effect of selection with the reaction terms of the neutral model

(Eqs. S21 and S22), we obtain the following equations for the mean and variance of diploid load

under the influence of selection:

dn̄

dt
= − αs

1− sn̄ · σ
2
n + 2η0 −

(
ν − η +

η0

m

)
n̄− η

m

(
σ2
n +

n̄2

2

)
(S25)

dσ2
n

dt
= − αs

1− sn̄ · E[(n− n̄)3] + 2η0 +
(
ν + η − η0

m

)
n̄− 2

(
ν − η +

η0 + η/2

m

)
σ2
n

− 2η

m

(
n̄σ2

n +
n̄2

4
+ E[(n− n̄)3]

)
. (S26)

Taking the limit of Eqs. S25–S26 as m→∞ gives Eqs. 35–36.

S4 Moment closure

To analyze solutions of Eqs. S25–S26 without assuming that m is large or η is zero, the dependence

of dσ2
n/dt on E[(n− n̄)3] (equivalently, the dependence of dµ̂2/dt on µ̂3) must be accounted for. This
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is accomplished using the technique of moment closure, whereby we assume an algebraic relationship

of the form µ3 = ψ(µ2, µ1) or

µ̂3 = ψ(µ̂2, µ1) . (S27)

One way to motivate a particular choice of algebraic relationship ψ is to select a distribution with

properties similar to those exhibited by the master equation simulations. Next, one derives the relation

Eq. S27 that would be exact if the model truly exhibited the selected distribution.

S4.1 Negative binomial closure

One possibility we have investigated is the negative binomial distribution. This choice is motivated

by a few key properties. First, the negative binomial distribution is supported on the non-negative

integers. The probability mass function for a negative binomial random variable, X ∼ NB(r, p) for

r > 0 and p ∈ [0, 1], is

P[X = k] =

(
k + r − 1

k

)
pr(1− p)k , k ∈ {0, 1, 2, 3, . . .} .

Second, overdispersion is a propery of the the negative binomial distribution. The mean µ1 = E[X],

variance µ̂2 = µ2 − µ2
1, and index of dispersion Fano[X] = µ̂2/µ1 are given by

µ1 =
r(1− p)

p
, µ̂2 =

r(1− p)
p2

,
µ̂2

µ1
=

1

p
≥ 1 .

The third central moment is

µ̂3 =
r(2− 3p+ p2)

p3
=
r(p− 1)(p− 2)

p3
. (S28)

Inverting the above expressions to give

p =
µ1

µ̂2
r =

µ2
1

µ̂2 − µ1
.

Substituting into Eq. S28 gives

µ̂3 =
2(µ̂2)2

µ1
− µ̂2 = µ̂2

(
2µ̂2 − µ1

µ1

)
=: ψNB(µ̂2, µ1) . (S29)

The corresponding expression for the third central moment of the diploid load is

E[(n− n̄)3] = σ2
n

(
2σ2

n − n̄
n̄

)
. (S30)

S4.2 Negative binomial closure: analysis of the weak selection limit

When Eqs. 35 and 36 are modified consistent with the negative binomial moment closure (Sec-

tion S4.1), we obtain the closed system,

dn̄

dt
= − αs

1− sn̄ · σ
2
n + 2η0 − (ν − η)n̄

dσ2
n

dt
= − αs

1− sn̄ · σ
2
n

(
2σ2

n − n̄
n̄

)
+ 2η0 + (ν + η)n̄− 2(ν − η)σ2

n .
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Setting the left sides to zero and clearing the denominators gives

0 = −αsσ2
n + [2η0 − (ν − η)n̄] [1− sn̄]

0 = −αsσ2
n

(
2σ2

n − n̄
)

+
[
2η0 + (ν + η)n̄− 2(ν − η)σ2

n

]
n̄ [1− sn̄] .

Assuming asymptotic expansions of the form n̄ = n̄0 + sn̄1 + · · · and σ2
n = σ2

0 + sσ2
1 + · · · , we obtain

0 = −αs(σ2
0 + sσ2

1 + · · · ) + [2η0 − (ν − η)(n̄0 + sn̄1 + · · · )][1− s(n̄0 + sn̄1 + · · · )]

0 = −αs(σ2
0 + sσ2

1 + · · · )[2(σ2
0 + sσ2

1 + · · · )− (n̄0 + sn̄1 + · · · )]

+ [2η0 + (ν + η)(n̄0 + sn̄1 + · · · )− 2(ν − η)(σ2
0 + sσ2

1 + · · · )][n̄0 + sn̄1 + · · · ][1− s(n̄0 + sn̄1 + · · · )] .

The zeroth order equations are

0 = − [2η0 − (ν − η)n̄0]

0 =
[
2η0 + (ν + η)n̄0 − 2(ν − η)σ2

0

]
n̄0 .

Assuming n̄0 > 0, we find

n̄0 = 2η0/(ν − η)

σ2
0 = [2η0 + (ν + η)n̄0] / [2(ν − η)] = 2η0ν/(ν − η)2 ,

consistent with the neutral model (Eqs. 27 and 28). The first-order equations are

0 = −ασ2
0 − (ν − η)n̄1 − [2η0 − (ν − η)n̄0]n̄0

0 = −ασ2
0 [2σ2

0 − n̄0] + [(ν + η)n̄1 − 2(ν − η)σ2
1 ]n̄0 + [2η0 + (ν + η)n̄0 − 2(ν − η)σ2

0 ][n̄1 − n̄2
0] .

In the first equation, the expression in brackets evaluates to zero, so

n̄1 = −ασ2
0/(ν − η) = −2αη0ν/(ν − η)3

After some algebra, we find that the second equation yields,

σ2
1 = −2ανη0 (ν + η)

(ν − η)4
.

The above expressions may be combined to form the following two-term approximation for the mean

and variance of TE load,

n̄ ≈ 2η0

ν − η −
2αsνη0

(ν − η)3
=

2η0

ν − η

[
1− αs ν

(ν − η)2

]
.

σ2
n ≈

2νη0

(ν − η)2
− 2αsνη0 (ν + η)

(ν − η)4
=

2νη0

(ν − η)2

[
1− αs (ν + η)

(ν − η)2

]
.
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Because v/(ν− η)2 > 0, the equation for n̄ indicates that weak selection decreases the mean TE load,

consistent with our intuition. In the equation for σ2
n, the factor (ν + η)/(ν − η)2 is positive, so we

conclude that weak selection also decreases the population variance. As for the index of dispersion,

this analysis indicates that under weak selection the Fano factor is well-approximated by

σ2
n

n̄
≈ ν

ν − η ·
1− αs(ν + η)/(ν − η)2

1− αsν/(ν − η)2
=

ν

ν − η

[
1− αs η

(ν − η)2

]
.

That is, under weak selection, the Fano factor is expected to decrease, because weak selection causes

variance to decrease more than the mean.

S4.3 Beta-binomial closure

For comparison to the negative binomial closure, we have worked through the possibility of choosing

ψ to be the function that would be correct if the actual distribution of TE loads were beta-binomial

distributed. The probability mass function for a beta-binomial random variable, X ∼ BB(α, β) for

α > 0 and β > 0 on the interval 0 to m is

P[X = k] =

(
m

k

)
B(k + α,m− k + β)

B(α, β)
, k ∈ {0, 1, . . . ,m} . (S31)

where B(a, b) =
∫ 1

0
ta−1(1 − t)b−1 dt is the beta function. The first three raw moments of a beta-

binomial random variable are

µ1 =
mα

α+ β

µ2 =
mα[m(1 + α) + β]

(α+ β)(1 + α+ β)

µ3 =
mα[m2(1 + α)(2 + α) + 3m(1 + α)β + β(β − α)]

(α+ β)(1 + α+ β)(2 + α+ β)
,

while the variance is

µ̂2 = µ2 − µ2
1 =

mαβ(α+ β +m)

(α+ β)2(α+ β + 1)
.

Using Eq. S17, it can be shown that the third central moment of a beta-binomial random variable is

µ̂3 = µ̂2
(α+ β + 2m)(β − α)

(α+ β)(α+ β + 2)
.

Inverting Eqs. S32 and S32 gives

α =
mµ1 − µ2

m(µ2/µ1 − µ1 − 1) + µ1

β =
(m− µ1)(m− µ2/µ1)

m(µ2/µ1 − µ1 − 1) + µ1
.
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From these values we calculate the following algebraic relationship for the third central moment in

terms of the mean and variance of the haploid TE load,

µ̂3 = µ̂2
(m− 2µ1)(µ2

1 −mµ1 − µ̂2 + 2mµ̂2)

mµ1(m− µ1 − 2) + µ̂2m+ 2µ2
1

=: ψBB(µ̂2, µ1) . (S32)

For the mean and variance of the diploid TE load, the corresponding expression is

E[(n− n̄)3] = 2µ̂3 = σ2 (m− n̄)(n̄2 − 2mn̄− 2σ2 + 4mσ2)

mn̄(2m− n̄− 4) + 2mσ2 + 2n̄2
. (S33)

This beta-binomial closure represented by this expression for the third central moment of diploid TE

load is arguably preferable to the negative binomial closure discussed in Section S4.1, because a beta-

binomial random variable has finite support (values between 0 and m as in Eq. S31). On the other

hand, the negative binomial closure results in a simpler expression that often gives approximately

the same nullclines and solution trajectories (Fig. 5). It is notable that the expression for E[(n− n̄)3]

obtained using the beta-binomial distribution (Eq. S33) is well-approximated by the negative binomial

result (Eq. S30) when the number of loci are not limiting (n̄ << m). To see this, one may compare

Eqs. S29 and S32 and show that ψBB(µ̂2, µ1)→ ψNB(µ̂2, µ1) as m→∞.

S5 Numerical methods

The master equation model given by Eq. 31 is a system of m + 1 ordinary differential equations.

When m is sufficiently small, it is straightforward to use a relaxation method to calculate the limiting

probability distributions for the master equation. Because the number of ODEs in the master equation

grows with the number of occupiable loci, it can be more efficient, especially when m is large, to

numerically solve for the limiting probability distribution of the associated Fokker-Planck equation.

Writing ρ(n, t) dn = Pr[n ≤ n ≤ n + dn] for the time-dependent probability density function for TE

load, ρ(n, t) solves the following Fokker-Planck equation (Gardiner, 2009; Van Kampen, 2007),

∂ρ

∂t
= − ∂

∂n
[a(n)ρ] +

1

2

∂2

∂n2
[b(n)ρ] . (S34)

In these expressions, n is the random variable (TE load of a randomly sampled haploid genome) and

n is the independent variable of the probability density ρ(n, t). The drift and diffusion terms of the

Fokker-Planck equation are

a(n) = −v(n) + u(n) = η0 −
(
ν − η +

η0

m

)
n− η

m
n2 (S35)

b(n) = v(n) + u(n) = η0 +
(
ν + η − η0

m

)
n− η

m
n2 (S36)

where we have used the gain and loss terms given by u(n) = (η0+ηn)(1−n/m) and v(n) = νn (Eqs. 17

and 19). Writing Eq. S34 in conservative form as ∂ρ/∂t = −∂φ/∂n, where φ(n) is the probability

S12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.382945doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.16.382945
http://creativecommons.org/licenses/by-nc-nd/4.0/


flux, we find

φ(n) = a(n)ρ− 1

2

∂

∂n
[b(n)ρ] . (S37)

For a steady-state solution ρ̂(n) with no flux boundary conditions, setting φ(n) = 0 leads to the

analytical solution

ρ̂(n) =
θ

b
exp (2U) , (S38)

where b(n) is given by Eq. S36, and θ is a normalization constant such that
∫
ρ̂(n) dn = 1 and

U(n) =

∫ n

0

a(n′)
b(n′)

dn′ .

In fact, U(n) may be any antiderivative satisfying U ′ = a/b, because the normalization constant θ

absorbs the arbitrary constant of integration.

Several numerical methods were used to simulate the models of TE population dynamics defined

by the master equation for the neutral model (Eqs. 20–22) and the master equation that accounts for

selection (Eq. 31). Fig. 2 used a flux-limiting numerical scheme and the method of lines to integrate

the Fokker-Planck equation (Eq. S34) until a limiting value was reached. Fig. 3 was obtained using the

analytical steady state of the Fokker-Planck equation (Eq. S38). Fig. 4 used Monte Carlo simulation

of drift-diffusion process associated to the Fokker-Planck equation (Eq. S34). Comparing these results

to the flux-limiting numerical scheme revealed that, for some parameter sets that included strong

selection, the infinite population model exhibits periodic solutions that are rarely observed in large

finite populations. Fig. 5 was calculated using the moment equations with selection and negative

binomial moment closure (Eqs. 42 and 43). Beta-binomial moment closure leads to very similar

results unless m is quite small (on the order of 100). Fig. 6 used moment equations with selection and

Beta-binomial closure (Eqs. 33 and 34 with Eq. 40).
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