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ABSTRACT 

Network analytic methods that are ubiquitous in other areas, such as systems neuroscience, 

have recently been used to test network theories in psychology, including intelligence research. 

The network or mutualism theory of intelligence proposes that the statistical associations 

among cognitive abilities (e.g., specific abilities such as vocabulary or memory) stem from 

causal relations among them throughout development. In this study, we used network models 

(specifically LASSO) of cognitive abilities and brain structural covariance (grey and white 

matter) to simultaneously model brain-behavior relationships essential for general intelligence 

in a large (behavioral, N=805; cortical volume, N=246; fractional anisotropy, N=165), 

developmental (ages 5-18) cohort of struggling learners (CALM). We found that mostly 

positive, small partial correlations pervade our cognitive, neural, and multilayer networks. 

Moreover, using community detection (Walktrap algorithm) and calculating node centrality 

(absolute strength and bridge strength), we found convergent evidence that subsets of both 

cognitive and neural nodes play an intermediary role ‘between’ brain and behavior. We discuss 

implications and possible avenues for future studies.  
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INTRODUCTION  

General intelligence or g (Spearman 1904) captures cognitive ability across a variety of 

domains and predicts a wide range of important life outcomes such as educational and 

occupational achievement (Hegelund et al. 2018), and mortality (Calvin et al. 2011). As 

individual differences in intelligence found in childhood remain surprisingly stable across the 

lifespan (Deary et al. 2004), a deeper understanding of the mechanisms of cognitive ability is 

crucial to supporting individuals, especially those considered ‘low-performing’ (e.g., students 

struggling to learn in school). Recent work in network analysis has shed new light on both the 

cognitive abilities that make up general intelligence (Kievit, Hofman, and Nation 2019; van 

der Maas et al. 2017), as well as the brain systems purported to support them (Girn, Mills, and 

Christoff 2019; Seidlitz et al. 2018). 

In psychological sciences, factor models have traditionally been used to study 

intelligence (e.g., Carroll 1993). However, in the last two decades there has been a rise in use 

of the statistical tools of network science (Barabási 2016) to show that examining relationships 

between cognitive abilities can help us better understand the development of general 

intelligence. For instance, the mutualism model (van der Maas et al. 2006) was inspired by an 

ecosystem model of prey-predator relations, and states that the positive manifold (Spearman 

1904) emerges gradually from the positive interactions among different cognitive abilities (i.e., 

reasoning and vocabulary) over time (see Kievit et al. 2017; Kievit, Hofman, and Nation 2019). 

Hence, g can arise even from originally weakly correlated cognitive faculties. This highlights 

the need to both conceptualize traits, abilities, or psychological constructs such as general 

intelligence as complex dynamical systems, as well as use appropriate statistical models (i.e., 

network analysis) to estimate relationships among elements of the systems under investigation 

(Fried 2020a; Fried and Robinaugh 2020). 
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Although longitudinal data are preferable to study developmental questions (e.g., Kievit 

et al. 2013; Rhemtulla, Bork, and Cramer 2020), cross-sectional network analysis can provide 

important insights. Recent innovations in network psychometrics (Epskamp et al. 2018) have 

led to a rapid increase in popularity of behavioral network analysis, especially in 

psychopathology (Borsboom 2017; Robinaugh et al. 2019). In this framework, psychological 

constructs are theorized as complex systems and relationships (edges) between nodes (e.g., 

item responses on a questionnaire) are estimated using weighted partial correlation networks, 

which enable determination of conditional dependencies among variables after controlling for 

the associations among every other node in the network (Epskamp et al. 2018).  

Recently, this approach has also been used to analyze cross-sectional data on general 

intelligence. For instance, both Kan, van der Maas, and Levine 2019 (N=1,800; age range: 16-

89 years) as well as Schmank et al. 2019 (N=1,112; age range: 12-90 years) found support for 

mutualism in the WAIS-IV cognitive battery (Wechsler 2008), such that a network model 

showed better fit to the pattern of intelligence scores compared to a latent variable approach (g 

factor). Lastly, Mareva and Holmes 2020, in two separate samples, one the same group of 

struggling learners as studied here (see Holmes et al. 2019 for detailed overview of the cohort) 

but with less participants (N=350), no neuroimaging data, and including tasks not analyzed in 

this study (e.g., motor speed and tower achievement), observed links between cognitive 

abilities and learning, especially between mathematics skills and more “domain-general” 

faculties such as backward digit span and matrix reasoning.  

In neuroscience, network analysis methods have been widely used to describe the 

relations among brain regions, ushering in the field of network neuroscience (Bassett and 

Sporns 2017; Fornito, Zalesky, and Bullmore 2016). Rather than focusing on individual brain 

regions in isolation, the brain is conceived as a complex system of interconnected networks 

that facilitate behavioral functions ranging from sensorimotor control to learning. In this light, 
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several influential studies have revealed pervasive properties of brain networks such as small-

world topology (Bassett and Bullmore 2006; Bassett and Bullmore 2017), modularity 

(Meunier, Lambiotte, and Bullmore 2010; Sporns and Betzel 2016) and ‘rich-club’ connector 

hubs (Heuvel and Sporns 2011), consistent with an economical trade-off between minimizing 

wiring cost and maximizing efficiency (e.g., information transfer) that enable adaptive 

behavior (Bullmore and Sporns 2012).  

One proposal attempting to explain general intelligence using network neuroscience is 

The Network Neuroscience Theory of Human Intelligence (NNTHI, Barbey 2018). Barbey 

argues that general intelligence arises from the dynamic small-world typology of the brain, 

which permits transitions between “regular” or “easy-to-reach” network states (needed to 

access prior knowledge for specific abilities) and “random” or “difficult-to-reach” (required to 

integrate information for broad abilities) network states (i.e., as in network control theory, see 

Gu et al. 2015). Together, this constrained flexibility allows the brain to adapt to novel 

cognitive domains (e.g., in abstract reasoning) while still preserving access to previously 

learned skills (e.g., from schooling).  

Evidence supporting the NNTHI has been inconclusive so far (Girn, Mills, and 

Christoff 2019). However, two recent studies, although not directly testing the NNTHI, have 

shed light  on the network neuroscience of cognition. Bertolero et al. 2018 found that a 

mechanistic model assuming that “connector hubs” (diverse club nodes, see Bertolero, Yeo, 

and D’Esposito 2017), which regulate the activity of their neighboring communities to be more 

modular but maintain the capability of “task appropriate information integration across 

communities”, significantly predicted higher cognitive performance on various tasks including 

language and working memory. Furthermore, in the same sample studied here, Akarca et al. 

2020 applied a generative network modelling approach to simulate the growth of brain network 

connectomes, finding that it is possible to simulate structural networks with statistical 
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properties mirroring the spatially embedding of those observed. The parameters of these 

generative models were shown to correlate with neuroimaging measures not used to train the 

models (including grey matter measures), cognitive performance (including vocabulary and 

mathematics) and relate to gene expression in the cortex. Together these studies point the field 

toward a better mechanistic understanding of the development of human brain structure, 

function, and their relationship with cognitive ability.  

 Although network approaches have provided unique insights within cognitive 

neuroscience as well as cognitive psychology, few studies have integrated them into a so-called 

multilayer network paradigm (Bianconi 2018), which models the relationships among variables 

simultaneously across time (e.g., days, weeks, months, and years) and/or levels of organization 

(e.g., behavior and brain  variables). Two studies have recently pushed this boundary. Hilland 

et al. 2020 examined the relations between brain structure (cortical thickness and volume) and 

depression symptoms. They found (via a partial correlation network model) that certain clusters 

of brain regions (cingulate, fusiform gyrus, hippocampus, and insula) were conditionally 

dependent with a subset of depression symptoms (crying, irritability and sadness). Secondly, 

in 172 male autistic participants (ages 10-21 years), Bathelt, Geurts, and Borsboom 2020 used 

“network-based regression” to estimate the relationship between the unique variance of both 

the autism symptom network and functional brain connectivity (resting-state fMRI). Moreover, 

they applied Bayesian network analysis to create a directed acyclic graph between autism 

symptoms subscores and their neural correlates. They found that communication and social 

behavior were predicted by their respective resting-state MRI neural correlates (termed Comm 

Brain and Social Brain). 

This study builds on these findings and the recent studies mentioned above, by 

combining a network psychometrics approach to understand individual differences in cognitive 

ability (general intelligence) with structural covariance networks derived from structural brain 
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properties (grey matter cortical volume and white matter fractional anisotropy). Doing so, we 

created a network of networks, which differs from multiplex (same nodes, different edge types 

across layers) and multi-slice (same nodes and edge types over time such as in fMRI time-

series data) networks (see figure 4.1 of Bianconi 2018). The advantages of applying this 

approach are threefold and complementary. First, it places the brain and behavior, which often 

do not map onto each other in a simple and reductionistic one-to-one fashion, into the same 

analytical paradigm (network analysis). This allows for simultaneous estimations and easier 

visualizations of potential causal links between cognition and structural brain properties, which 

to our knowledge, has only been done in a similar way in two other studies, one involving 

depression (Hilland et al. 2020), the other in autism (Bathelt, Geurts, and Borsboom 2020). 

Second, it enables the use of community detection algorithms to tease apart major clusters of 

cognitive abilities, which could help pinpoint potential intervention targets (e.g., using 

cognitive training and/or transcranial magnetic stimulation). Lastly, it aids in establishing a 

coherent framework for theory building, which has been lacking in both the neuroscience 

(Levenstein et al. 2020) and psychological (Fried 2020a) literature, by treating both the brain 

(algorithmic) and behavior (computational) as equally important levels of analysis to study 

(Marr and Poggio 1976), and attempting to more directly translate findings from one level to 

the other. Ultimately, the hope is that relations between brain-behavior nodes can help identify 

candidate targets (e.g., nodes that bridge the brain and cognition) for future interventions in 

developmental samples of struggling learners.   

In this study, we used network models (specifically LASSO) of cognitive abilities and 

brain structural covariance (grey and white matter) to simultaneously model brain-behavior 

relationships essential for general intelligence in a large (behavioral, N=805; cortical volume, 

N=246; fractional anisotropy, N=165), developmental (ages 5-18) cohort of struggling learners 

(CALM). We found that mostly positive, small partial correlations pervade our cognitive, 
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neural, and multilayer networks. Moreover, using community detection (Walktrap algorithm) 

and calculating node centrality (absolute strength and bridge strength), we found convergent 

evidence that subsets of both cognitive and neural nodes play an intermediary role ‘between’ 

brain and behavior. We discuss implications and possible avenues for future studies.  

 

METHODS  

Participants  

The present cross-sectional sample (behavioral, N=805; cortical volume, N=246; 

fractional anisotropy, N=165; age range: 5 to 18 years) was obtained from the Centre for 

Attention, Learning and Memory (CALM) located in Cambridge, UK (Holmes et al. 2019). 

This developmental cohort consists of children and adolescents recruited by referrals for 

perceived difficulties in attention, memory, language, reading and/or mathematics problems. 

A formal diagnosis was neither required nor an exclusion criterion. Exclusion criteria included 

any known significant and uncorrected problems in vision or hearing, and/or being a non-native 

English speaker. 

Cognitive data were obtained on a one-to-one basis by an examiner in a designated 

child-friendly testing room. The tasks analyzed in this study comprised a comprehensive array 

of standardized assessments of cognitive ability including crystallized intelligence (peabody 

picture vocabulary test, spelling, single word reading, and numerical operations), fluid 

intelligence (matrix reasoning), and working memory (forward and backward digit recall, Mr. 

X, dot matrix, and following instructions). See Table 1 for tasks descriptions, relevant citations, 

and summary statistics.  

Cognitive 

Domain 
Task Descriptions 

Mean (sd)               

[range] 

Missing 

Data 
Reference 

Crystallized 

Ability (gc) 

 

Numerical Operations (NO): 

Participants answered written 

16.1 (8.4) 

[0, 64] 

 

9.94% 

 

 

Wechsler 

2005 
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mathematical problems that 

increased in difficulty. 

Single Word Reading (Read): 

Participants read aloud first a list 

of letters and then words that 

gradually increased in 

complexity. Correct responses 

required correctness and fluency. 

83.2 (24.8) 

[1, 130] 

 

 

2.48% 

Spelling (Spell): Participants 

spelled words with increasing 

difficulty one at a time that were 

spoken by an examiner. 

22 (9.2) 

[0, 49] 

 

3.35% 

 

Peabody Picture Vocabulary 

Test (Pea): Participants were 

asked to choose the picture (out 

of four multiple-choice options) 

showing the meaning of a word 

spoken by an examiner. 

136.8 (31.6) 

[8, 215] 

  

1.12%  
Dunn and 

Dunn 2007 

Fluid Ability 

(gf) 

Matrix Reasoning (MR): 

Participants saw sequences of 

partial matrices and selected the 

response option that best 

completed each matrix. 

11.2 (5.6) 

[0, 28] 

  

0.12% 

  

 

Wechsler 

2011 

Working 

Memory 

(WM) 

 

 

  

Digit Recall (DR): Participants 

recalled sequences of single digit 

numbers given in audio format. 
24.6 (5.4) 

[7, 47] 

  

0.5% 

  

Alloway 

2007  

Backward Digit Recall (BDR): 

Same as regular digit recall but in 

reversed order. 
9.7 (4.4) 

[0, 25] 

  

3.11% 

  

Dot Matrix (Dot): Participants 

were shown the location of a red 

dot in a sequence of 4x4 matrices 

and had to recollect the location 

and order of these sequences. 

 

18 (5.7) 

[2, 43] 

  

0.75% 

  

Mr. X (MrX): Participants 

remembered spatial sequences of 

locations of a ball held by a 

cartoon man rotated in one of 

seven positions. 

9.3 (5.1) 

[0, 32] 

  

1.24% 

  

Following Instructions (FI): 

Participants carried out various 

sequences of actions (touch 

and/or pick up) based on props (a 

box, an eraser, a folder, a pencil 

11.2 (4) 

[1, 33] 

 

6.83% 

 

Gathercole et 

al. 2008 
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or a ruler) presented in front of 

them. By having participants 

undertake actions sequentially 

(do X “then” do Y), increasingly 

longer sequences were made 

which increased the difficulty.  

Scores denote total number of 

correct responses. 

 

Participants were allotted regular breaks throughout each session. When necessary, 

testing was split into two separate sessions for participants who did not complete the 

assessments in a single sitting. A subset of participants also underwent MRI scanning (see 

below for details).  

 

Structural Neuroimaging: Cortical Volume (CV) and Fractional Anisotropy (FA) 

CALM neuroimaging data were obtained at the MRC Cognition and Brain Sciences 

Unit, Cambridge, UK. Scans were acquired on the Siemens 3 T Tim Trio system (Siemens 

Healthcare, Erlangen, Germany) via 32-channel quadrature head coil. T1-weighted volume 

scans were acquired using a whole brain coverage 3D magnetization-prepared rapid acquisition 

gradient echo (MPRAGE) sequence, with 1 mm isotropic image resolution. The following 

parameters were used: Repetition time (TR) = 2250 ms; Echo time (TE) = 3.02 ms; Inversion 

time (TI) = 900 ms; Flip angle = 9 degrees; Voxel dimensions = 1 mm isotropic; GRAPPA 

acceleration factor = 2. Diffusion-Weighted Images (DWI) were acquired using a Diffusion 

Tensor Imaging (DTI) sequence with 64 diffusion gradient directions, with a b-value of 1000 

s/mm2, plus one image acquired with a b-value of 0. Relevant parameters include: TR = 8500 

ms, TE = 90 ms, voxel dimensions = 2 mm isotropic. 

Table 1. List, descriptions, and summary statistics (mean, standard deviation, range, and 

percentage of missing data) of cognitive assessments used in the study from the CALM 

sample. Note, tasks descriptions (except following instructions) are taken directly or 

paraphrased from Simpson-Kent et al. 2020. 
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We undertook several procedures to ensure adequate MRI data quality and minimize 

potential biases due to subject movement. For all participants in CALM, children were trained 

to lie still inside a realistic mock scanner prior to their scan. All T1-weighted images and FA 

maps were examined by an expert to remove low quality scans. Moreover, only data with a 

maximum between-volume displacement below 3 mm were included in the analyses. 

As our grey matter metric, we use region-based cortical volume (CV in mm3, N=246, 

averaged across contralateral homologues), based on the Desikan-Killiany atlas (Desikan et al. 

2006) and defined as the distance between the outer edge of cortical grey matter and subcortical 

white matter (Bruce Fischl and Dale 2000). Tissue classification and anatomical labelling was 

performed on the basis of the T1-weighted scan using FreeSurfer v5.3.0 software which is 

documented and freely available for download online (http://surfer.nmr.mgh.harvard.edu/). 

The technical details of these procedures are described in prior publications (Dale, Fischl, and 

Sereno 1999; Fischl, Sereno, and Dale 1999; Fischl et al. 2002). FreeSurfer morphology output 

statistics were computed for each ROI, and also included cortical thickness and surface area 

(see Supplementary Material for analyses involving these two metrics). Based on a recent meta-

analyses on functional and structural correlates of intelligence (Basten, Hilger, and Fiebach 

2015), we included a subset of 10 cortical volume regions in this study: caudal anterior 

cingulate (CAC), caudal middle frontal gyrus (CMF), frontal pole (FP), medial orbitofrontal 

cortex (MOF), rostral anterior cingulate gyrus (RAC), rostral middle frontal gyrus (RMF), 

superior frontal gyrus (SFG), superior temporal gyrus (STG), supramarginal gyrus (SMG), and 

transverse temporal gyrus (TTG). 

From a subset our neuroimaging data (see Simpson-Kent et al. 2020), we also calculated 

fractional anisotropy (FA, N=165), a proxy for white matter integrity (Wandell 2016). We 

included 10 regions using the Johns Hopkins University DTI-based white matter tractography 

atlas (see Hua et al. 2008): anterior thalamic radiations (ATR), corticospinal tract (CST), 
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cingulate gyrus (CING), cingulum [hippocampus] (CINGh), forceps major (FMaj), forceps 

minor (FMin), inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus 

(ILF), superior longitudinal fasciculus (SLF), and uncinate fasciculus (UNC). 

All steps to compute regional CV estimation and FA maps were implemented using 

NiPyPe v0.13.0 (see https://nipype.readthedocs.io/en/latest/). To create a brain mask based on 

the b0-weighted image (FSL BET; Smith 2002) and correct for movement and eddy current-

induced distortions (eddy; Graham, Drobnjak, and Zhang 2016), diffusion-weighted images 

were pre-processed. The diffusion tensor model was then fitted and fractional anisotropy (FA) 

maps were calculated using dtifit. Images with a between-image displacement >3 mm were 

then excluded from subsequent analysis steps. This was completed using FSL v5.0.9. To extract 

FA values for major white matter tracts. FA images were registered to the FMRIB58 FA 

template in MNI space using a sequence of rigid, affine, and symmetric diffeomorphic image 

registration (SyN). This was implemented in ANTS v1.9 (Avants et al. 2008). For all 

participants, visual inspection indicated good image registration. Binary masks from a 

probabilistic white matter atlas (thresholded at >50 % probability) in the same space were 

applied to extract FA values. 

We used these region based measures to study brain structural covariance (Alexander-

Bloch, Giedd, and Bullmore 2013), which have been used in cross-sectional and longitudinal 

designs of cognitive ability in childhood and adolescence (e.g., Solé-Casals et al. 2019; see 

Kievit and Simpson-Kent 2021 for a recent review of longitudinal studies). Emerging 

theoretical proposals emphasize the role of networks of brain areas in producing intelligent 

behavior (e.g., Parieto-Frontal Integration Theory (P-FIT),  Jung and Haier 2007 and The 

Network Neuroscience Theory of Human Intelligence, Barbey 2018) rather than individual 

regions-of-interest (ROIs) in isolation (e.g., primarily the prefrontal cortex). As stated above, 

we selected 10 grey matter and 10 white matter ROIs based upon combined evidence from a 
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recent meta-analysis (Basten, Hilger, and Fiebach 2015) on associations between functional 

and structural ROIs and cognitive ability that further extended the P-FIT theory, but also more 

recent work done in two large cohorts, one in longitudinal analysis of the UK Biobank sample 

(grey matter, Kievit et al. 2018) and another in a the same (cross-sectional) developmental 

cohort, although with a smaller sample size (cognitive data, N=551; neural data, N=165), 

studied here (white matter, Simpson-Kent et al. 2020).  

For a correlation plot of cognitive tasks and neuroimaging measures, see Figure 1. To 

view age trends of cognitive tasks and structural neuroimaging measures, see Figure 2. Lastly, 

see Figure 3 for illustrations of ROIs analyzed in this study. 
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Figure 1. Top: Correlation plot for cognitive raw scores and bilateral cortical volume 

ROIs. Bottom: Correlation plot for cognitive raw scores and bilateral fractional 

anisotropy ROIs. All coefficients shown are Pearson correlations. Blue represents 

positive correlations while red signifies negative correlations among variables. Size of 

circles indicates the magnitude of the association (e.g., larger circle=higher correlation). 

Correlations calculated using pairwise complete observations. Abbreviations: matrix 

reasoning (MR), peabody picture vocabulary test (Pea), Spelling (Spell), single word 

reading (Read), numerical operations (NO), digit recall (DR), backward digit recall 

(BDR), Mr. X (MrX), dot matrix (Dot), following instructions (Ins), caudal anterior 

cingulate (CAC), caudal middle frontal gyrus (CMF), medial orbitofrontal cortex 

(MOF), rostral anterior cingulate gyrus (RAC), rostral middle frontal gyrus (RMF), 

superior frontal gyrus (SFG), superior temporal gyrus (STG), supramarginal gyrus 

(SMG), frontal pole (FP), transverse temporal gyrus (TTG), anterior thalamic radiations 

(ATR), corticospinal tract (CST), cingulate gyrus (CING), cingulum [hippocampus] 

(CINGh), inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus 

(ILF), superior longitudinal fasciculus (SLF), uncinate fasciculus (UNC), forceps major 

(FMaj), and forceps minor (FMin). 

. 
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Figure 2. Cross-sectional scatterplots for cognitive raw scores (top), bilateral cortical 

volume (middle) and bilateral fractional anisotropy (bottom). Solid lines represent linear 

and polynomial fit while shades indicate 95% confidence intervals. Abbreviations: 

matrix reasoning (MR), peabody picture vocabulary test (Pea), Spelling (Spell), single 

word reading (Read), numerical operations (NO), digit recall (DR), backward digit recall 

(BDR), Mr. X (MrX), dot matrix (Dot), following instructions (Ins), caudal anterior 

cingulate (CAC), caudal middle frontal gyrus (CMF), medial orbitofrontal cortex 

(MOF), rostral anterior cingulate gyrus (RAC), rostral middle frontal gyrus (RMF), 

superior frontal gyrus (SFG), superior temporal gyrus (STG), supramarginal gyrus 

(SMG), frontal pole (FP), transverse temporal gyrus (TTG), anterior thalamic radiations 

(ATR), corticospinal tract (CST), cingulate gyrus (CING), cingulum [hippocampus] 

(CINGh), inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus 

(ILF), superior longitudinal fasciculus (SLF), uncinate fasciculus (UNC), forceps major 

(FMaj), and forceps minor (FMin). 
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Network Estimation Methods 

All statistical analyses and plots were completed using R (R Core Team 2020) version 

3.6.3 (“Holding the Windsock”). Network estimation was performed using the packages 

bootnet (version 1.4.3, Epskamp and Fried 2020) , igraph (version 1.2.6, Amestoy et al. 2020), 

qgraph (version 1.6.5, Epskamp et al. 2020), and networktools (version 1.2.3, Jones 2020). We 

used these tools to estimate weighted partial correlation networks, which allowed 

determination of conditional dependencies among our cognitive and neural variables. For 

example, in a multilayer network, any partial correlation between node A (e.g., matrix 

reasoning) and node B (e.g., the caudal anterior cingulate) is one that remains after controlling 

for the associations among A and B with every other node in the network (e.g., other cognitive 

abilities and cortical volume ROIs). To estimate these networks, we applied Gaussian 

Graphical Models (Pearson correlations) using regularization (graphical lasso, see Friedman, 

Figure 3. Top: A) Grey matter ROIs based on the DK atlas (cortical volume, N=246) in the 

left and right hemisphere. Bottom: White matter ROIs based on the John’s Hopkin’s 

University atlas (fractional anisotropy, N=165) in B) Transverse plane (superior), C) Coronal 

plane and D) Transverse plane (inferior). 
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Hastie, and Tibshirani 2008) with a threshold tuning parameter of 0.5 and pairwise deletion to 

account for missingness. These methods have been widely used to generate sparser networks 

by penalizing for more complex models—thus, decreasing the risk of potentially spurious (e.g., 

false positive) connections and enabling simpler visualization and interpretation of conditional 

dependencies between nodes (Epskamp and Fried 2018). We hypothesized that our results 

would show positive partial correlations (in line with mutualism theory) both within cognitive 

(e.g., as observed in Mareva and Holmes 2020 and Schmank et al. 2019) and within neural 

measures (single-layer networks) as well as between brain-behavior variables in the multilayer 

networks.  

Note that age was included as a node in the estimation procedures of all partial 

correlation networks (i.e., edge weights, centrality, network stability, and community 

detection) but was not included in the visualizations of our networks and centrality plots, or in 

network descriptive statistics (i.e., mean, median, and range of edge weights). For a comparison 

of the use of age (i.e., included in estimation or regressed out beforehand), see the 

Supplementary Material. 

  

Node Strength Centrality (Single-layer Networks) 

To assess the statistical interconnectedness or connectivity of cognitive and neural 

nodes relative to their neighbors within our single-layer networks, we estimated node strength, 

a weighted degree centrality measure calculated by summing the absolute partial correlation 

coefficients (edge weights) between a node and all other nodes it connects to within the 

network. Note that our brain structural covariance networks involve ROIs that are not 

necessarily anatomically connected, preventing certain inferences such as information flow. 

Nodes were classified as central if the magnitude of their strength z-score was positive and 
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equal to or greater than one standard deviation above the mean. We do not discuss or interpret 

negative centrality z-score values for our single-layer networks. 

 

Community Detection and Bridge Strength Centrality (Multilayer Networks)  

In our multilayer networks, we applied the Walktrap community detection algorithm (Pons 

and Latapy 2005) to determine in a data-driven manner whether clustering, or grouping, of 

nodes (e.g., cognitive and/or neural) occurred. The Walktrap algorithm assesses how strongly 

related nodes are to each other (that can be due to similarity, e.g., because nodes A and B are 

similar, or it can be because nodes A and B are different but node A has a strong impact on 

node B; see “Topological overlap and missing nodes” of Fried and Cramer 2017). The 

Walktrap algorithm works by taking recursive random walks between node pairs and classifies 

communities according to how densely connected these parts are within the network (wherever 

the random walks become ‘trapped’). Walktrap is widely used in the network psychometrics 

literature and, in a Monte Carlo simulation study, was shown to outperform other algorithms 

(e.g., InfoMap) for sparse count networks (e.g., those used in diffusion tensor imaging), 

although it must be noted that this result was for networks made up of 500 nodes or higher 

(Gates et al. 2016). We also calculated the maximum modularity index value (Q), which 

estimates the robustness of the community partition (Newman 2006). We interpreted values of 

0.5 or above as evidence for reliable grouping.  

Instead of traditional absolute strength, we calculated bridge strength, a novel weighted 

degree centrality measure originality developed to study comorbidity between mental disorders 

(see Jones, Ma, and McNally 2019 for overview). Bridge strength centrality sums the absolute 

value of every edge that connects one node (e.g., matrix reasoning) in one pre-assigned 

community (e.g., cognition) to another node (e.g., caudal anterior cingulate) in another pre-

assigned community (e.g., brain). Recent simulation work has shown that the method can 
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reliably recover true structures of bridge nodes in both directed and undirected networks (Jones, 

Ma, and McNally 2019). Rather than relying on straightforward ‘brain’ or ‘behavior’ 

assignments to classify nodes, we pre-assigned communities for bridge strength calculation 

based on results from the Walktrap algorithm.  

The presence of bridges between communities (e.g., if nodes from topological distinct 

clusters such as cognition vs. brain feature relations) might suggests the existence of 

intermediate endophenotypes (Fornito and Bullmore 2012; Kievit et al. 2016), and potentially 

identify potential nodes (both cognitive and neural) that might one day guide intervention 

studies. Nodes were classified as central if the magnitude of their strength z-score was positive 

and equal to or greater than one standard deviation above the mean. We do not discuss or 

interpret negative centrality z-score values for our multilayer networks. 

 

Node Centrality Stability (Single and Multilayer Networks)  

Lastly, we quantified the reliability of our centrality estimates for all single-layer 

(absolute strength of cognitive and brain structural covariance nodes) and multilayer networks 

(bridge strength). We estimated the correlation stability (CS) coefficient, calculated as the 

maximum proportion (out of N=2,000 bootstraps) of the sample that can be dropped out and, 

with 95% probability, still retain a correlation of 0.7 (correlation between rank order of 

centrality in network estimated on full sample with order of subsampled network in smaller N), 

with a CS value of 0.5 considered to be stable (Epskamp, Borsboom, and Fried 2018). Lastly, 

also using bootstrapping, we determined the stability of the edge-weight coefficients but 

present these results in the Supplementary Material.  
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RESULTS 

Single-layer Network Models (Cognitive, Cortical Volume and Fractional Anisotropy) 

 The regularized partial correlation (PC) network for the CALM cognitive data is shown 

in Figure 4 (top left). This network shows that all partial correlations are positive, and most 

have small magnitude (mean PC=0.08, median PC=0.07, PC range=0—0.63). One edge 

(between reading and spelling) was an outlier (PC=0.63, all others are between 0 and 0.27), 

likely due to close content overlap (verbal ability). Regarding centrality, three nodes emerged 

as strong (positive z-score at or greater than one standard deviation above the mean): (in 

descending order of centrality strength) reading, numerical operations, and peabody picture 

vocabulary test (Figure 4 top right). Overall, centrality estimates were stable, indicated by a 

high correlation stability (CS)-coefficient of 0.75, revealing that at least 75% of the sample 

could be dropped while maintaining a correlation of 0.7 with the original sample at 95% 

probability.  

Next, we estimated the partial correlation network among 10 grey matter regions as 

shown in Figure 3 (top) above. All edges weights (mean PC=0.09, median PC=0, PC range= -

0.15—0.52) of the cortical volume network (Figure 4, middle left) were positive apart from 

one negative path (caudal middle frontal gyrus and frontal pole PC= -0.15). Note, the negative 

path between the caudal middle frontal gyrus and frontal pole might be due to the frontal pole 

correlating surprisingly weakly with other grey matter nodes and displaying a steeper decrease 

pattern across age (Figures 1 and 2). Two ROIs emerged as central (in descending order of 

centrality strength): superior temporal gyrus and rostral middle frontal gyrus (Figure 4, middle 

right). Similar to the cognitive network, cortical volume centrality was stable (CS-

coefficient=0.52), indicating that about 52% of the sample could be subtracted to maintain a 

correlation of centrality estimates above 0.7 compared to the full sample. This finding is despite 
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the lower sample size compared to the behavioral data (N=805 for behavior vs. N=246 for 

cortical volume).  

Finally, similar to the cognitive and the grey matter covariance network, the fractional 

anisotropy network (Figure 4, bottom left) has positive partial correlations with all edge 

weights varying between small and moderate values: mean PC=0.08, median PC=0, and PC 

range=0—0.44. Two white matter ROIs displayed centrality (Figure 4, bottom right). These 

included (in descending order) the forceps minor and inferior longitudinal fasciculus. Finally, 

fractional anisotropy centrality was moderately stable (CS-coefficient=0.44) indicating that 

about 44% of the sample could be removed while maintaining a 0.7 association with 95% 

probability. This is possibly due to the much lower sample size (N=165) compared to the 

cognitive (N=805) and grey matter (N=246) networks.  
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Bridging the Gap: Multilayer Networks 

 The regularized partial correlation network analyses for the CALM multilayer networks 

data are shown in Figure 5. Consistent with the pattern found in the single-layer networks, the 

cognitive and grey matter multilayer network (top left of Figure 5) edges are mostly positive 

and small to moderate weights (mean PC= 0.04, median PC=0, PC range= -0.12—0.64). 

Comparably, the cognitive and white matter multilayer network (Figure 5, top right) had similar 

edge weight estimates (mean PC=0.04, median=0, range= -0.2—0.65). Finally, combining all 

measures together (tri–layer network consisting of cognition, grey and white matter, bottom 

center of Figure 5) produced a network with similar characteristics to the bi-layer networks 

(mean PC=0.02, median PC=0, PC range= -0.2—0.66). For the bi-layer networks, the Walktrap 

algorithm produced either three (cognition-white matter) or four (cog-grey matter) clusters that 

consisted entirely of cognitive or neural nodes except for following instructions (Ins), which 

was either kicked out (cognition-grey matter, Q=0.56, indicating strong modularity) or grouped 

with a neural node (forceps minor of the cognition-white matter, Q=0.39, indicating moderate 

modularity). The result for the tri-layer network (Q=0.25, indicating weak modularity) was 

more complex with a total of 15 communities (Figure 5, bottom center; note age was found to 

be in a community by itself but is not shown in the figure).    

 Regarding centrality, we report bridge strength (Figure 6). In the cognitive-grey matter 

network, three bridge nodes surfaced (in descending order: superior temporal gyrus, superior 

frontal gyrus, and rostral middle frontal gyrus, Figure 6 top left). In terms of stability, the CS-

coefficient was 0.20, indicating that the bridge strength estimates were unstable under 

Figure 4. Single-layer partial correlation networks. Top: Network visualization (spring layout, 

left side) of CALM cognitive data (N=805). Centrality estimates (z-scores) of all cognitive 

tasks (right). Middle: Network visualization (spring layout, left side) of CALM cortical 

volume data (N=246). Centrality estimates (z-scores) of all cortical volume nodes (right). 

Bottom: Network visualization (spring layout, left side) of CALM fractional anisotropy data 

(N=165). Centrality estimates (z-scores) of all fractional anisotropy nodes (right). 
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bootstrapping conditions. In the cognitive-white matter bi-layer network, three nodes (in 

descending order: uncinate fasciculus, inferior frontal-occipital fasciculus, and hippocampal 

cingulum) emerged as possible bridge nodes (Figure 6, top right). Moreover, the centrality 

estimates had a CS-coefficient of 0.13, once again suggesting that the bridge strength estimates 

were unstable. Lastly, for the tri-layer network, five nodes displayed positive bridge strength 

equal to or greater than one standard deviation above the mean (Figure 6, bottom center). These 

included (in descending order): reading, peabody picture vocabulary test, superior frontal 

gyrus, spelling, and numerical operations. Much better than the bi-layer networks, the tri-layer 

network bridge strength estimates were moderately stable (CS-coefficient=0.44).  
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Figure 5. Network visualizations (spring layout) of partial correlation multilayer networks for 

CALM data. Colors indicate groups determined by the Walktrap algorithm (see above). Top: 

Bi-layer networks consisting of cognition and grey matter (top left), and cognition and white 

matter (top right). Bottom: Tri-layer network consisting of cognition, grey matter and white 

matter (center).  
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DISCUSSION  

Summary of Main Findings 

In this study, we used network analysis (partial correlations) to examine the 

neurocognitive structure of general intelligence in a childhood and adolescent cohort of 

struggling learners (CALM). For our single-layer networks (Figure 4), we found that cognitive, 

grey matter and white matter networks contained mostly (if not all) positive partial correlations. 

Moreover, in all single-layer networks, at least two nodes emerged as more central than others 

(as indexed by node strength equal to or greater than one standard deviation above the mean), 

which varied in stability from moderately to highly reliable. In the cognitive network, this 

included a verbal ability (specifically reading and peabody picture vocabulary test) and 

crystallized intelligence (i.e., numerical operations). In the structural brain networks (grey 

matter cortical volume and white matter fractional anisotropy), two nodes emerged as central 

for the grey matter network (superior temporal gyrus and rostral middle frontal gyrus) and 

white matter network (forceps minor and inferior longitudinal fasciculus) passed the centrality 

threshold. Furthermore, we extended previous approaches by integrating networks of structural 

brain data with a cognitive network, forming bi- and tri-layer networks (Figure 5). Doing so, 

we observed multiple (both positive and negative) partial correlations between brain and 

behavior variables. Using bridge strength as a metric, we found that, in our bi-layer networks, 

only neural nodes harbor significant connections across communities (defined by the Walktrap 

algorithm) and levels of organization (Figure 6, top). In contrast, in the tri-layer network, we 

found support that mostly cognitive nodes connect across different communities (Figure 6, 

bottom). Overall, our results suggest which behavioral and neural variables have greater 

Figure 6. Bridge centrality estimates (z-scores) for multilayer networks. Top: Bi-layer 

networks consisting of cognition and grey matter (top left), and cognition and white matter 

(top right). Bottom: Tri-layer network consisting of cognition, grey matter and white matter 

(center). Dashed lines indicate mean strength and one standard deviation above the mean. 
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(possible) influence among or might be more influenced by other nodes and potentially serve 

as bridges between the brain and cognition within general intelligence. However, the literature 

on drawing inferences from networks to the most likely consequences of intervening on the 

network is complex and rapidly changing, (e.g., Dablander and Hinne 2019; Henry, Robinaugh, 

and Fried 2020; Levine and Leucht 2016). 

 

Interpretation of Network Models and Community Detection Analyses 

For the cognitive network, each node corresponded to a single cognitive task (e.g., 

matrix reasoning) while partial correlations (weighted edges) between nodes were interpreted 

as compatible with (possible) causal consequences of interactions among cognitive abilities 

during development. This interpretation is compatible with the mutualism theory of cognitive 

development (van der Maas et al. 2006), whereby cognitive abilities positively reinforce each 

other (e.g., positive partial correlations) over time to produce the positive manifold (Spearman 

1904). Mutualism hypothesizes that general intelligence emerges from causal interactions 

among abilities rather than a general latent factor  (Fried 2020b; Kan, van der Maas, and Levine 

2019). Hence, cognition is viewed as a complex system derived from the dynamic relations of 

specific abilities that become more intertwined over development.  

The existence of only positive edges in our cognitive network would be expected under 

a mutualistic perspective (interactions among cognitive variables), which at its essence is a 

network theory of general intelligence, although longitudinal analyses are needed to further 

substantiate this claim. Initially, it was surprising that two of the three most central nodes (i.e., 

reading and peabody picture vocabulary test) relate to verbal ability rather than abilities such 

as fluid intelligence and working memory (matrix reasoning and (forward and backward) digit 

recall), which are traditionally viewed as causal influences on cognitive development (Cattell 

1971). However, an emerging body of literature suggests that verbal ability plays a crucial role 
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in cognitive development (e.g., between reading and working memory before 4th grade, Peng 

et al. 2018 and Zhang and Malatesha Joshi 2020, as well as driving the emergence of reasoning 

(Kievit, Hofman, and Nation 2019; also see Gathercole et al. 1999)). 

As for our neural networks (here, grey matter cortical volume and white matter 

fractional anisotropy), individual nodes were comprised of a single ROI. Importantly, we did 

not interpret weighted edges as an index of direct connectivity. Instead, the presence of strong 

associations between these ROIs would be compatible with the hypothesis of coordinated 

development (see Alexander-Bloch, Giedd, and Bullmore 2013) whereby certain brain regions 

show preferential correlations to each other than more peripheral regions over time (e.g., 

childhood to late adolescence) as well as the notion of “rich” (Heuvel and Sporns 2011) and 

“diverse” (Bertolero, Yeo, and D’Esposito 2017) clubs that enable local and global integration, 

respectively. The most central node, the superior temporal gyrus which has been implicated in 

verbal reasoning (e.g., Khundrakpam et al. 2017). Regarding white matter, the two strongest 

nodes (forceps minor and inferior longitudinal fasciculus) while not anatomically close, instead 

represent long-range connections (see de Mooij et al. 2018) that have been linked to 

mathematical ability (Navas-Sánchez et al. 2014) and visuospatial working memory (Krogsrud 

et al. 2018).  

Finally, we integrated both domains (cognitive abilities and brain metrics) into 

combined multilayer networks (cognition-grey matter, cognition-white matter and cognition-

grey and- white matter). Doing so allowed us to attempt comparison and integration 

simultaneously across explanatory levels within the same analytical paradigm (network 

analysis) and statistical metrics (partial correlations, centrality, and community detection). 

From this analysis, three observations immediately stood out. First, there were multiple partial 

correlations between cognitive and neural nodes (especially in the cognitive-white matter and 

cognitive-grey matter and- white matter networks). Second, compared to the single-layer 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2021. ; https://doi.org/10.1101/2020.11.15.383869doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.15.383869
http://creativecommons.org/licenses/by-nc/4.0/


networks, the multilayer networks have more negative partial correlations. Together, these two 

findings further suggest that associations between the brain and cognition are complex as they 

defy straightforward (e.g., only positive and/or one-to-one) relationships and interpretations. 

However, it should be noted that causality (e.g., conditioning on colliders, see Rohrer 2018 for 

overview of interpretations of correlations in graphical causal models in observational data) 

becomes even more difficult to determine with networks incorporating multiple levels of 

organization (e.g., cognition and structural brain covariance). Finally, we found a peculiar role 

of the cognitive task following instructions (Ins) within all multilayer networks. For example, 

in the cognitive-grey matter network, Ins had no partial correlations with any other nodes 

within the network while in both the cognitive-white matter and tri-layer network (cognition, 

grey and white matter) Ins only correlated with the forceps minor (FMin), a neural node, and 

not any of the cognitive variables. This might suggest that following instructions, traditionally 

a working memory task and often analyzed using structural equation modeling, may have 

distinct psychometric properties (e.g., one-to-one mapping) when compared to other cognitive 

tasks when modeled through network science approaches, and/or when adjusted for all shared 

correlations.   

Further inspection of bridge strength centrality showed an interesting pattern: 

(discounting the one standard deviation cutoff) the neural nodes are stronger than the cognitive 

variables within the multilayer networks, despite there being an equal number of cognitive 

nodes for each brain metric. This is possibly due to the large number of edges between them 

(grey and white matter regions) and both cognitive and other neural nodes. In other words, 

since the neural nodes contain a larger number of connections (partial correlations) across 

explanatory levels, they display greater bridge strength (bridge strength sums inter-network 

correlations).  
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In other ways, the multilayer networks differed. First, in the tri-layer network, the four 

of the five central nodes were cognitive variables while, in the bi-layer networks, the central 

nodes were neural ROIs. Three of these central cognitive nodes in the tri-layer network 

(reading, peabody picture vocabulary test, and numerical operations) were also found to be 

central in the single-layer cognitive network. This further suggests the importance of 

mathematical and verbal ability in understanding the cognitive neuroscience of general 

intelligence. Secondly, the fact that cognitive nodes were found to be central only in the tri-

layer network suggests that grey and white matter, while related, possibly reveal unique 

information about cognition when combined and analyzed together simultaneously.  

 

Limitations of the Current Study 

This study contains several limitations that require caution when interpreting the 

results. First and foremost, these findings are based on cross-sectional data. While adequate to 

help tease apart individual differences in cognition between people, cross-sectional data cannot 

be used to elucidate differences in changes within individuals over time, such as during 

development. Therefore, longitudinal analyses are needed before attempting to make strong 

inferences about the dynamics of these networks. Reiterating this point, a recent study using 

intelligence data (Schmiedek et al. 2020) found that a cross-sectional analysis of the g factor 

of cognitive ability was unable to capture within-person changes in cognitive abilities over 

time. This finding further stresses the necessity to integrate cross-sectional (between-person) 

differences and longitudinal (within-person) changes when studying cognition.  

Moreover, the CALM sample represents an atypical sample (Holmes et al. 2019), with 

participants who consistently score lower on measures of attention, learning and/or memory 

than age-matched controls (see Figure 2 (Level I) of Simpson-Kent et al. 2020 for comparison 

to a typically developing sample). As a result, these analyses would need to be replicated in 
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additional (ideally larger) samples with different cognitive profiles before our results can be 

generalized. This shortcoming of the present study is echoed by the low stability estimates 

found for the centrality values in the bi-layer networks, which might be due to the differences 

between the sample sizes of the neural data (grey matter, N=246; white matter, N=165) 

compared to cognition (N=805). Interestingly, the tri-layer network showed moderate bridge 

strength stability, but also displayed weak modularity. Moreover, given that the Walktrap 

algorithm produced 15 communities in the network, which contained only 31 nodes (including 

age), we further state that this result should be interpreted with caution and must be 

corroborated in larger cohorts (e.g., ABCD study, Casey et al. 2018).  

Lastly, we re-ran our analyses to test the sensitivity of our main findings (e.g., positive 

partial correlations and central nodes) to potential outliers (defined as ± 4 standard deviations). 

Doing so did not severely alter the partial correlation weights between nodes in our networks 

(see Supplementary Material for detailed comparisons). It must be restated that our data comes 

from an atypical sample, which might influence brain metrics even with rigorous quality 

control procedures. Therefore, despite this discrepancy, our data supports brain-behavior 

‘bridges’ in general intelligence.  

 

Future Directions Toward Theory Building in Cognitive Neuroscience 

Our results that suggest verbal abilities rather than fluid intelligence or working 

memory might play a more pivotal role in the development of cognitive ability fits with the 

gradual progression in schooling. For example, before children can successfully be taught more 

advanced subjects (e.g., history, reading comprehension, etc.), they must first become 

competent in basic language faculties. In other words, it may be that verbal skills (e.g., reading 

and spelling) facilitate performance on abstract tests, even in the absence of direct knowledge-

based task demands. Recent evidence has been found supporting this notion and suggest that 
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verbal ability, particularly reading and vocabulary in relation to working memory and 

reasoning, might drive early cognitive development (Kievit, Hofman, and Nation 2019; Peng 

et al. 2018; Zhang and Malatesha Joshi 2020). Therefore, future studies could further examine 

whether greater verbal ability in early development facilitates greater acquisition of higher-

level cognitive skills by lowering computational demands in working memory.   

Moreover, in this context, the fact that the numerical operations task was also found to 

be central (tri-layer network only) should be expected since mathematics (e.g., arithmetic) also 

involves symbol manipulation. In terms of mutualism (van der Maas et al. 2006), future models 

(ideally in longitudinal samples) could test whether language and other symbolic abilities show 

progressively higher reciprocal associations during early development compared to other 

abilities until more complex cognition (i.e., fluid reasoning and working memory) develops in 

later childhood (also see Kievit, Hofman, and Nation 2019 and Peng et al. 2018).  

We argue that future studies should aim to incorporate data from different scales, not 

only temporal (e.g., development) but also levels of organization (e.g., brain and behavior). 

Furthermore, results from different levels can more easily be interpreted if these datasets are 

analyzed using a unified quantitative framework that combines strengths from various 

statistical techniques (such as pairwise and partial correlations to reveal causality in brain 

functional connectivity networks, see Reid et al. 2019). Last, and perhaps most important, 

cognitive neuroscientists must formulate mechanistic (e.g., Bertolero et al. 2018) and 

generative models (for instance, Akarca et al. 2020) to gain further insights from past and help 

guide future controlled experiments. Researchers must not shy away from but rather embrace 

the complexity of the brain and cognition (see Fried and Robinaugh 2020 for similar argument 

for mental health research). Intelligence is a complex system—to understand it, we must treat 

it as such.  
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Citation Diversity Statement 

Recent work has demonstrated that gender1,2 (as well as racial/ethnic3) minorities are 

systemically under-cited in neuroscience. We estimated the gender citation practices of this 

manuscript using the Journal of Cognitive Neuroscience’s Gender Citation Balance Index tool 

(GCBI-alyzer, https://postlab.psych.wisc.edu/gcbialyzer/). Overall, 56 DOIs were successfully 

categorized and metrics for man (first author)/man (last author), woman (first author)/man (last 

author), man (first author)/woman (last author), and woman (first author)/woman (last author) 

were calculated. Percentages for the 56 DOIs were as follows: MM=58.9%, WM=17.9%, 

MW=12.5%, and WW=10.7%. The GCBIs were as follows: MM=0.444, WM= -0.467, 

MW=0.157, and WW= -0.281. This indicates that we over-cited MM and MW (>0 indicates 

over-citation) and under-cited WM and WW (<0 denotes under-citation). Note that these 

estimates assume a binary paradigm of gender (man or woman) and, therefore, do not account 

for non-binary identifications of gender. Furthermore, these estimates are based on the 

authorship practices of one journal, Journal of Cognitive Neuroscience. Even though this 

manuscript can be classified as (developmental) cognitive neuroscience, citations also include 

purely behavioral (e.g., cognitive psychology) and neuroscience (e.g., physical properties of 

the brain such as small-worldness) literature.  

 Nevertheless, the estimated metrics indicate that we have under-cited literature 

involving women and disproportionately over-cited research involving men. Lastly, although 

we will not add references merely to ensure a desirable proportion, we will thoroughly examine 

any overlooked yet pertinent literature during the resubmission/revision phase, including 

expanding our literature search to a wider net of journals, to seek out relevant literature.  

 
1 Dworkin, Jordan D., et al. "The extent and drivers of gender imbalance in neuroscience reference 
lists." Nature neuroscience 23.8 (2020): 918-926. 
2 Fulvio, Jacqueline M., Ileri Akinnola, and Bradley R. Postle. "Gender (im) balance in citation practices in 
cognitive neuroscience." Journal of Cognitive Neuroscience 33.1 (2021): 3-7. 
3 Bertolero, Maxwell A., et al. "Racial and ethnic imbalance in neuroscience reference lists and intersections 
with gender." BioRxiv (2020). 
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SUPPLEMENTARY MATERIAL 

Edge-weight Stability Analyses 

 To further quantify the reliability of our partial correlation network edge-weights, we 

performed bootstraps (N=2,000) and compared the bootstrapped mean values to the original 

sample estimates (Supplementary Figures 1-3). We do not show the bootstraps for the 

multilayer networks due to the size of the plots but they (and all code for this project) can be 

found online (https://osf.io/36d2n/). Bootstrapped edge-weight means were consistently near 

the original sample value with the most variable being the white matter network 

(Supplementary Figure 3) and the multilayer networks (not shown). The low edge-weight 

stability in these networks could possibly due to lower sample sizes of neural data (especially 

in the white matter network, N=165, although centrality strength was moderately stable, CS-

coefficient=0.44), including when structural brain and cognitive data were combined. This, in 

turn, could have influenced the low stability estimates of the bridge centrality values in the 

multilayer networks.    
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Supplementary Figure 1. Comparisons between bootstrapped means and original sample 

edge-weight estimates for the CALM cognitive partial correlation network.   
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Supplementary Figure 2. Comparisons between bootstrapped means and original sample 

edge-weight estimates for the CALM grey matter partial correlation network.   
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Supplementary Figure 3. Comparisons between bootstrapped means and original sample 

edge-weight estimates for the CALM white matter partial correlation network.   
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The Possible Effect of Outliers on Major Findings 

In a previous version of this manuscript, we observed that two FA values (1 for the 

uncinate fasciculus, 1 for the forceps major), which represent potential outliers with undue 

influence on the partitioning of the Walktrap algorithm in the single-layer white matter 

network. Removing this data yielded a distinct, and more parsimonious clustering solution (2 

communities vs. 5). Moreover, removing this outlier did not affect any summary statistics for 

the white matter partial correlation (single-layer) network except for range. Nevertheless, 

below we present the Pearson correlations between the weights obtained from the original data 

presented in the main manuscript and those from the data after all outliers (defined as ± 4 

standard deviations) are removed (Supplementary Table 1). Due to the vast similarity in 

descriptive statistics and high correlations between partial correlation weights, we conclude 

that outliers did not confound the results of this study. However, it must be noted that outliers 

might slightly affect community detection, but we chose to keep the original data due to the 

nature of our sample (struggling learners, therefore behavioral and neural data might be 

atypical to begin with) and given the fact that the neural data was already quality controlled. 

Furthermore, the two outlier white matter ROIs occurred in two separate particpants (1 outlier 

each) while the rest of their ROIs were consistent with the rest of the sample. In close, we argue 

that outliers (both cognitive and neural) are likely not due to measurement error but instead 

represent realistic values of an atypically developing sample.    
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Network Type Original Data Outliers Removed Pearson Correlation 

Cognitive 

0.08 (0.11) 

[0, 0.63] 

0.08 (0.11) 

[0, 0.61] 

0.99 

Grey Matter 

0.09 (0.14) 

[-0.15, 0.52] 

0.09 (0.14) 

[-0.15, 0.52] 

1 

White Matter 

0.08 (0.11) 

[0, 0.44] 

0.08 (0.13) 

[-0.14, 0.47] 

0.93 

Cognitive-grey matter 

0.04 (0.1) 

[-0.12, 0.64] 

0.03 (0.09) 

[-0.11, 0.62] 

0.97 

Cognitive-white matter 

0.04 (0.1) 

[-0.2, 0.65] 

0.04 (0.1) 

[-0.22, 0.65] 

0.97 

Tri-layer 

0.02 (0.08) 

[-0.2, 0.66] 

0.02 (0.08) 

[-0.19, 0.65] 

0.98 

  

 

 

 

 

 

 

 

 

Supplementary Table 1. Comparisons between partial correlation (PC) networks 

(original data vs. outliers removed). These include summary statistics such as mean, 

(standard deviation), [range] and Pearson correlations between PC graph weights using 

pairwise complete observations to account for missingness.   
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How to Deal with Age? 

As in previous literature, in our sample age shows a clear positive association with 

intelligence measures and brain structure (Figure 2). This fact, however, may further 

complicate any interpretations of (possible) causal interactions between cognitive and/or neural 

nodes. This leaves us with at least two options of how to deal with the relationship of age to 

cognitive ability, and grey and white matter structural covariance: 1) We could estimate the 

partial correlation network and include age as a node, therefore, choosing to estimate it 

simultaneously with the cognitive and neural variables (this is the option we chose for the main 

manuscript analyses), or 2). We could regress out the association of age for each variable (age 

would show no correlation for cognitive and/or neural measures) before network estimation. 

Both approaches have corresponding pros and cons. For instance, choosing to include age has 

the benefit of revealing the actual correlations among cognitive abilities and brain structure in 

the population. However, a drawback to this approach is that doing so could also amplify these 

associations, confounding our findings. On the other hand, regressing out age might enable us 

to detect correlations beyond age, possibility revealing core relations among variables 

independent of stereotypical neurocognitive development (e.g., older participants normally 

score higher on cognitive tasks and have larger brains as they mature). However, this might 

also remove developmental associations of interest (e.g., age may function as a moderator of 

cognitive and neural growth). 

Here we compare the partial correlations matrices for the two analysis paths (age node 

used in network estimation vs. age node regressed out before estimation) for both single and 

multilayer networks (Supplementary Table 2). This analysis demonstrates that, regardless of 

how age is accounted for in estimation, the partial correlation networks are very similar to each 

other. 
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Network Type 

Age Included 

in Estimation 

Age Regressed Out 

before Estimation 

Pearson Correlation 

Cognitive  0.08 (0.11) 

[0, 0.63] 

0.08 (0.12) 

[0, 0.65] 

0.98 

Grey Matter 0.09 (0.14) 

[-0.15, 0.52] 

0.09 (0.14) 

[-0.15, 0.52] 

1(rounded from 0.999) 

White Matter 0.08 (0.11) 

[0, 0.44] 

0.08 (0.13) 

[-0.2, 0.49] 

0.93 

Cognitive-grey matter 0.04 (0.1) 

[-0.12, 0.64] 

0.03 (0.1) 

[-0.14, 0.65] 

0.94 

Cognitive-white matter 0.04 (0.1) 

[-0.2, 0.65] 

0.03 (0.1) 

[-0.24, 0.66] 

0.94 

Tri-layer 0.02 (0.08) 

[-0.2, 0.66] 

0.02 (0.07) 

[0, 0.64] 

0.88 

 

 

 

 

 

 

 

 

Supplementary Table 2. Comparisons between partial correlation networks (age 

included in estimation vs age regressed out before estimation). These include summary 

statistics such as mean, (standard deviation), [range] and Pearson correlations between 

PC graph weights using pairwise complete observations to account for missingness.   
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Teasing Apart the Relations of Cortical Volume to General Intelligence: Multilayer 

Analysis Using Cortical Surface Area and Thickness 

 Lastly, we partitioned cortical volume into its constituent parts, cortical surface area 

and thickness, to compare their partial correlations and community structures when combined 

with white matter and general intelligence (Supplementary Figures 4 and 5). Although not 

conclusive, the effect seen for cortical volume in the main manuscript appears to be driven by 

cortical surface area, but not thickness, as exhibited by greater inter-connectivity among 

domains (brain vs behavior). Finally, bridge strength showed the same pattern as in the main 

manuscript, except for the cortical thickness tri-layer network, where white matter appears to 

dominate the bridge strength centrality (Supplementary Figure 5). 
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Supplementary Figure 4. Top: Network visualizations (spring layout) of partial correlation 

CALM bi-layer grey matter (surface area (left) and cortical thickness (right)) networks. Nodes 

are grouped according to Walktrap algorithm results (see above). Bottom: Bridge centrality 

estimates (z-scores) for CALM bi-layer grey matter (surface area (left) and cortical thickness 

(right)) networks. Dashed lines indicate mean strength and one standard deviation above the 

mean. 
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Supplementary Figure 5. Top: Network visualizations (spring layout) of partial correlation 

CALM tri-layer grey matter (surface area (left) and cortical thickness (right)) networks. Nodes 

are grouped according to Walktrap algorithm results (see above). Bottom: Bridge centrality 

estimates (z-scores) for CALM tri-layer grey matter (surface area (left) and cortical thickness 

(right)) networks. Dashed lines indicate mean strength and one standard deviation above the 

mean. 
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