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Abstract. Recent advances in single cell transcriptomics have allowed us to examine the identify of
each single cell, thus have led to discovery of new cell types and provide a high resolution map of cell
type composition in tissues. Technologies which can measure another type of data of a single cell in
addition to the gene-expression data provide a more comprehensive picture of a cell, and meanwhile pose
challenges for data integration tasks. We consider the spatial location of cells, which is an important
feature of cells, combined with the cells’ gene-expression profiles, to determine the cell type identity.
We aim to jointly classify cells based on their locations relative to other cells in the system as well as
their gene expression profiles. We have developed scHybridNMF (single-cell Hybrid Nonnegative Matrix
Factorization), which performs cell type identification by incorporating single cell gene expression data
with cell location data. We combined two classical methods, nonnegative matrix factorization with a
k-means clustering scheme, to respectively represent high-dimensional gene expression data and low-
dimensional location data together. Our method incorporates a novel cell location term to the gene
expression clustering. We show that scHybridNMF can make use of the location data to improve cell
type clustering. In particular, we show that under multiple scenarios, including that when the number
of genes profiled is low, and when the location data is noisy, scHybridNMF outperforms the standalone
algorithms NMF and k-means, and an existing method HMRF which also uses cell location and gene-
expression data for cell type identification.

Keywords: Single-cell analysis · Multimodal clustering · Matrix low-rank approximations.
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1 Introduction

Advances in single cell RNA-Sequencing (scRNA-Seq) technology have provided an unprece-
dented opportunity for researchers to study the identity and underlying mechanisms of single
cells [16]. While scRNA-Seq data is a major type of data used to study single cells, it cannot
fully determine the identity of a cell, which informs its cell type [15]. As such, it is important
to consider other modalities such as chromatin accessibility [2], protein abundance [17], and
spatial locations [19, 21] of single cells.

With the availability of these types of data, we have entered the era of multi-modality
single-cell omics, and effective computational methods are crucial in integrating multi-modal
data to learn a comprehensive picture of inter- and intra-cell processes [6, 20]. Spatial location
data can provide important information on the cells’ micro-environment and allow researchers
to study cell-cell interactions [14]. This is because cells at nearby locations tend to form the
same cell type – daughter cells tend to keep the same cell type and similar location as their
mother cell.

Considering both the gene-expression and location data can therefore lead to more accu-
rate cell type identification. Technologies that measure the location and gene-expression of
the same set of cells often have to comprise on the number of genes measured [24]. Clustering
cells using smaller gene-expression profiles can be inaccurate, so the cell location data can be
used to improve the accuracy. However, reconciling single cell gene-expression and location
data for cell type identification is challenging because different data types can have differing
scale and distributions and exhibit different types and levels of noise [6].

We introduce a matrix low-rank approximation scheme, scHybridNMF (single-cell Hy-
brid NMF), to perform cell clustering by jointly processing 2-dimensional cell location and
gene expression data. Previously, Zhu et al developed a HMRF (Hidden Markov Random
Field) model and showed that the spatial location of cells can contribute to cell type identi-
fication [24]. We, however, use a matrix low-rank approximation scheme because of the ease
of preserving data characteristics through constraints and optimization terms. Crafting a
loss-based minimization objective that bakes in these data characteristics maximally utilizes
this information to jointly-cluster cells. We combined nonnegative matrix factorization with
a k-means clustering scheme to respectively represent high-dimensional gene expression data
and low-dimensional location data together.

Such joint-clustering methods have been used in other contexts such as document cluster-
ing [4]. Additionally, promising NMF models have been developed for cell type identification
for data ranging from just scRNA-Seq data to encompassing multiple modalities [5, 9, 12,
18, 22]. However, none of these methods incorporate cell locations. We compare our scHy-
bridNMF model with both the standalone NMF and the k-means methods, as well as the
HMRF method which uses spatial location information. We show that scHybridNMF are
particularly advantageous in two application scenarios: to use when the number of genes
with gene-expression data is small, or and when the location data is noisy.

2 Methods
Matrix low-rank approximations assume that a matrix can be well-approximated as a prod-
uct of more concise matrices. Many clustering frameworks are designed as matrix low-rank
approximation schemes because they can easily incorporate prior biological knowledge and
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data constraints. We formulate our multimodal clustering algorithm as a combined matrix
optimization scheme. This formulation is designed to guide the gene expression-based cluster-
ing of cells using cell location clusterings. As part of our design, we incorporate nonnegative
matrix factorizations (NMF) and k-means clustering.

2.1 Review of NMF and K-Means Clustering

We incorporate cell location data and gene expression data using the intuition behind NMF
and k-means clustering, respectively. We chose these methods because they can easily be
formulated as matrix low-rank approximations, and creating an objective that incorporates
both of these methods is intuitive. Additionally, the individual characteristics of each method
strongly match the characteristics of the data.

K-means clustering is an unsupervised learning algorithm that clusters data points by
comparing pairwise distances usually determined by the Euclidean distance metric. This
metric naturally pairs with location-based data, as it quantifies the similarity between points
by how physically close they are. The matrix formulation for a Euclidean distance-based k-
means objective is below:

min
HL∈{0,1}k×n

HT
L1k=1n

‖L−WLHL‖2F , (1)

where 1k and 1n are k-length and n-length vectors of all ones, respectively. The columns
of WL contain the cluster centroids, and the columns of HL contain membership information
for each data point. Since each data point must belong to one cluster, each column is all zero
except for a one on the row corresponding to the cluster the point belongs to. Additionally,
k-means clustering does not require any pre-processing on location data. Pre-processing
input data may remove much of the underlying characteristics of the location data. As such,
k-means clustering is a good fit for our two-dimensional location data because using the
Euclidean metric to build clusters naturally follows from the underlying data representation.

NMF is a dimension reduction algorithm that computes two nonnegative factors of a
specified low rank, whose product is designed to best approximate the nonnegative input
matrix. Below is a typical formulation for NMF. The columns of WA contain the cluster
representatives, and the columns of HA contain the cluster membership information for each
data point.

min
{WA,HA}≥0

‖A−WAHA‖2F . (2)

Per its design, NMF is superior for clustering high dimensional data. Unlike k-means
clustering, NMF produces soft clusters, which means that a data point can be represented
as a linear combination of cluster representatives. As such, we chose NMF because it is a
good fit for our high dimensional gene-expression data.

2.2 Multimodal Objective

Let A ∈ Rm×n denote the gene-expression matrix and L ∈ R2×n denote the two-dimensional
cell location coordinates, where m is the number of genes and n is the number of cells. We
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use the following objective function for multimodal clustering:

min
{WA,HA}≥0
HL∈{0,1}k×n

HT
L1k=1n

g(WA, HA) = ‖A−WAHA‖2F + α ‖HA −HA ◦HL‖2F ,
(3)

where ◦ represents the element-wise product between two matrices and k is the number
of clusters. This preserves the hard-clustering characteristic of k-means clustering on HL and
also the NMF quality that HA must be nonnegative. Since we are comparing two matrices
HA and HL, and HA from NMF is not unique, we assume that the columns of WA are of
unit norm by normalizing the columns of the computed WA each time, and modifying HA

accordingly.
The first term in Eqn. (3) represents the NMF objective as in Eqn. (2). The second term

combines NMF and k-means clustering results by making the clustering results from NMF
and k-means inform each other. Instead of forcing HA and HL to be similar overall, the
second term forces HA and HL to be similar in terms of cluster membership discovered, i.e.,
we want the location of the largest element in each column of HA and the location of the 1
element in the corresponding column of HL to match as much as possible.

The main focus of this work is to use cell location information to aid the clustering of
cells by gene expression. Because we are specifically adapting our gene clusters to incorpo-
rate location cluster information, our design seeks to align the cluster membership matrices
found in both k-means and NMF while still considering the accuracy of the gene expression
clustering. Because our method incorporates the predetermined location-based clusters, it
would not make sense to adapt the cell location clustering in the consensus. That is why the
k-means objective is not in Eqn. (3), but the resulting clustering membership matrix HL is
in Eqn. (3).

2.3 Proposed Algorithm

We devise scHybridNMF to optimize Eqn. (3) using a consensus clustering on the clusters
determined by NMF on A and k-means on L. The steps in scHybridNMF are outlined below.

We first compute initial WL, HL by optimizing Eqn. (1) on L and initial WA, HA by
running sparse NMF on A [10]. We use sparse NMF because it enforces the sparsity in
the cluster membership matrix HA, which allows for a better comparison against the hard-
clustered HL in term 3 of Eqn. (3). The formulation for sparse NMF is as follows:

min
{WA,HA}≥0

‖A−WAHA‖2F + η ‖WA‖2F + β

n∑
j=1

‖HA(:, j)‖21 , (4)

The crux of our algorithm is in the block coordinate descent for computing HA and
WA. These two terms are computed via an alternating nonnegative least squares (ANLS)
formulation. We isolate the terms that involve HA and WA in Eqn. (3) to formulate the
inputs into ANLS.

To solve for HA, we only need to combine the first and second terms in Eqn. (3). Given
that the second term involves HA twice, we reformulate the second term as follows:

‖HA −HA ◦HL‖2F = ‖HA ◦ 1k×n −HA ◦HL‖2F = ‖HA ◦ C‖2F , (5)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2020. ; https://doi.org/10.1101/2020.11.15.383281doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.15.383281
http://creativecommons.org/licenses/by-nc-nd/4.0/


Hybrid clustering for single cells using NMF and k-means 5

where C = 1k×n −HL and 1k×n the k × n matrix of all ones. We can represent an element-
wise product in a block-ANLS formulation by computing the formulation column-by-column.
Therefore, the new update rule for the first and second terms of Eqn. (3) is as follows:

HA(:, Gi)← arg min
HA(:,Gi)≥0

∥∥∥∥( WA√
β ∗ diag(1k − ei)

)
HA(:, Gi)−

(
A(:, Gi)

0k

)∥∥∥∥2
F

, (6)

where i ∈ {1, . . . , k}, 1k is a k-length vector of all ones, 0k is a k-length vector of all zeros,
and ei is the vector of all zeros, save for a one in position i. Each column in HA is element-
wise multiplied to each column in C in Eqn. (5), and since there are k different forms of C’s
columns, we group columns of HA that share the same vector form in C to more efficiently
compute HA. Each group Gi is determined by whichever entry in a given column of C is zero,
or not a one, and the column that defines Gi is 1k− ei. As such,

⋃
iGi = {1, . . . , n}, and the

pairwise intersection between any two Gi is empty. We use k different groups of columns in
HA to calculate Eqn. (6) because there are only k different forms the columns of C can take.

To solve for WA, we only need to transpose the first term in Eqn. (3):

WA ← arg min
WA≥0

∥∥(HA)TW T
A − AT

∥∥2
F
, (7)

As such, the overall algorithm is described in Algorithm 1. We used the projected gradient,
as used in SymNMF, to be the stopping criterion of scHybridNMF [13].

Algorithm 1: scHybridNMF: I Algorithm to minimize Eqn. (3)

Input : gene expression matrix A ∈ Rm×n, cell location matrix L ∈ R2×n, number
of clusters k.

1 Compute WL, HL using Eqn. (1);
2 Compute WA, HA using Eqn. (4);
3 C = 1k×n −HL;

4 while
∥∥∇Pg(WA, HA)

∥∥
F
> tol ∗

∥∥∥∇Pg
(
W

(0)
A , H

(0)
A

)∥∥∥
F
do

5 for i = 1, . . . , k do
6 Compute Gi as the set of columns in C such that ∀j ∈ Gi, C(:, j) = 1k − ei;
7 Compute HA(:, Gi) using Eqn. (6);

8 end
9 Compute WA using Eqn. (7);

10 end

2.4 Convergence of Algorithm

We use a block coordinate descent (BCD) framework to optimize our objective function for
clustering multimodal data. BCD solves subgroups of problems for each variable of interest,
which iteratively minimizes the total objective function. Our objective aims to iteratively
improve WA and HA, which defines a two block coordinate descent framework. These com-
prise the minimization version of the two-block Gauss-Seidel method, which assigns H(j) and
W (j) values that minimize a shared objective function, Eqn. (3), one-at-a-time.

An important theorem regarding general block Gauss-Seidel methods states that if a
continuously differentiable function over a set of closed convex sets is minimized by block

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2020. ; https://doi.org/10.1101/2020.11.15.383281doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.15.383281
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 S. Oh et al.

coordinate descent, every solution that uniquely minimizes the function in block coordinate
descent is a stationary point [1]. This theorem has the additional property that the unique-
ness of the minimum is not necessary for a two-block Gauss-Seidel nonlinear minimization
scheme [8]. This has been used to show that a two-block formulation for solving Eqn. (2) via
alternating least squares guarantees convergence [11].

Given the constrained nonlinear minimization objective in Eqn. (3), we can rewrite the
block coordinate descent as two ANLS formulations, which follow from Eqns. (6) and (7):

HA(:, Gi)
(j) ← arg min

HA(:,Gi)≥0

∥∥∥∥( W
(j−1)
A√

β ∗ diag(1k − ei)

)
HA(:, Gi)−

(
A(:, Gi)

0k

)∥∥∥∥2
F

(8a)

W
(j)
A ← arg min

WA≥0

∥∥∥∥(H(j)
A

)T
W T

A − AT

∥∥∥∥2
F

, (8b)

Eqns. (8a) and (8b) are executed consecutively to solve for HA and WA. We consider

H
(j)
A to be one block calculation because the calculations for each individual group Gi are

independent of each other. In other words, calculating Gi does not depend on the values
calculated for Gh for all h 6= i. We are then able to apply this theorem because Eqns. (8a)
and (8b) constitute a valid minimization scheme equivalent to minimizing Eqn. (3). As such,
we get the following property, which guarantees the convergence of our algorithm:

Theorem 1. Every point {W (j)
A , H

(j)
A } calculated iteratively via Eqns. (8a) and (8b) is a

stationary point of Eqn. (3).

3 Experiments

We test the performance of scHybridNMF on both simulated and real data. We use Sym-
Sim [23] to simulate single cell gene-expression data where cells are from six cell types. Each
dataset has 1600 cells and 600 genes. The number of genes is set to reflect the relatively low
number of genes profiled in some spatially-resolved single cell gene-expression datasets.

We develop a new procedure to simulate the location data for the cells in a 2-d space
such that cells belonging in the same cell type are closely located in the 2-d location space.
This procedure mimics the cell division process in a tissue. First, in the 2-d space we choose
a starting location for each cell type as the earliest cell for each cell type. Then for each cell
type, a new cell is added in the following fashion: we randomly choose an existing cell of the
same cell type as the parent cell of the new cell, and place the new cell next to the parent
cell. If there is no available position next to the parent cell, then the new cell is located to
a random empty position.

We consider different scenarios for the cell location data depending on how well the
clusters are separated in the space. We denote clusters that are well separated as w-separated,
and clusters that are not well separated as n-separated. For each of these scenarios, we
generate location data with and without noise. In noisy data, cells from different cell types
are mixed in the location space, and in data without noise, cells in the same cell type are
all located together. We obtain the noisy location data from location data without noise
by randomly choosing a percentage of cells and assigning them locations which are not in
the main region of their original cell type. This is to more accurately emulate real-life data.
Fig. 1 shows examples of these cases, where the case of n-separated with noise (as shown in
Fig. 1d) is closest to real-life data.
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(d) n-separated, 20% noise

Fig. 1. An example of noise in location data. The data had σ = 0.3 and 20% noise in location. In each plot, there
are six point colors that correspond to the colorized true cluster labels. (a) and (b) share the same ground truth
w-separated cluster labels, and (c) and (d) share the same ground truth n-separated cluster labels.

SymSim has a parameter σ (Sigma) which adjusts the within-cluster heterogeneity. When
σ increases, the clusters are less separable. In our experiments we test the performance of
our algorithm with varying σ. The hypothesis is that when σ increases the data is more
difficult for clustering algorithms using the gene-expression alone, and we should gain more
improvement through integrating location data.

3.1 Results on Simulated Data

We use four different values for σ, σ = {0.3, 0.4, 0.5, 0.6}, in SymSim to generate single
cell gene-expression data. For each parameter setting, 10 datesets are generated. To test on
datasets where even less genes are measured, we randomly sample 30% and 50% of genes
from the original gene-expression datasets with 600 genes. We then conduct the following
experiments, which test different settings for gene-expression data and cell location data:

1. Gene-expression data that accounts for all genes; with location data with no noise.
2. Gene-expression data that accounts for all genes; with location data with noise.
3. Gene-expression data of random subsets of the total genes; with location data with noise.

The parameter β in our formulation Eqn. 4 has an impact on the results and we provide
analytical forms of setting this parameter. For w-separated location data, we used η = β =∑

(i,j)∈A A(i,j)

|A| , α =
‖A‖2F
‖HA‖2F

and tol = 10−3. For n-separated location data, we used η = β =∑
(i,j)∈A A(i,j)

|A| , α =
‖A−WAHA‖2F
‖L−WLHL‖2F

and tol = 10−3. We use the HA,WA, HL, and WL generated by

steps 1 and 2 in Algorithm 1.
To evaluate the performance of scHybridNMF on our data, we calculated the adjusted

Rand index (ARI) between the calculated clusters and the ground truth clusters for each set
of experiments. In this context, ARI quantifies how similar two clusterings are to each other
while correcting for chance. If the ARI of a clustering is very similar to the ground truth
clustering, the ARI value should be close to 1. To ensure that there was an even comparison
between NMF, k-means clustering, and scHybridNMF, we calculated the NMF and k-means
clustering ARIs for the clusters that were used as steps 1 and 2 in Algorithm 1.

Experiment 1: A Motivating Example We start with the scenario where we have very
informative location data, the location data without noise, to test whether the information
in the location data can be transferred to improve the NMF clustering. Here we use the full
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gene-expression data. The goal was to establish that our method beneficially incorporated cell
location information with the gene expression clusters. For w-separated data, we calculated
the average ARI over 10 location-gene expression pairs for each σ. For n-separated data, we
calculated the average ARI over 100 location-gene expression pairs for each σ. We plotted
the average values as a function of σ in Fig. 2.
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Fig. 2. Using all genes with location data without noise.

In Fig. 2 (a), since the location data is a very easy case for k-means clustering, we get
high ARI by applying k-means alone on the location data. The scHybridNMF is able to
elevate the performance of using NMF on only gene-expression data up to the level of the
k-means performance. The performance of NMF suffers when σ increases, but scHybridNMF
is not affected by the increase of σ thanks to the incorporation of location data. In Fig. 2 (b),
where the location data is hard for k-means clustering, scHybridNMF now is more affected
by σ, though still improves over NMF, and sometimes also improves over k-means, as now
some information from the NMF clustering can be used to correct the wrong clustering of
k-means results.
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(a) 20% noise

0.3 0.4 0.5 0.6

Sigma

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
d

ju
s
te

d
 R

a
n

d
 I

n
d

e
x

k-means

scHybridNMF

NMF

(b) 30% noise

Fig. 3. Using all genes with noisy data on w-separated data.

Experiment 2: All Genes, Noisy Location Data We now move to a more realistic
setting where there is noise in the location data. We used location data with 20% and 30%
noise. For each location data with no noise, we generate 10 noisy location datasets. For w-
separated data, we calculated the average ARI over 100 location-gene expression pairs, for
each σ and each noise percentage. For n-separated data, we calculated the average ARI over
1000 location-gene expression pairs, for each σ and each noise percentage. We plotted the
average values as a function of σ in Figs. 3 and 4.
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Fig. 4. Using all genes with noisy data on n-separated data.

In Figs. 3 and 4, we observe that in both cases, our algorithm had higher ARI values
than in using NMF alone. Increasing the amount of noise should decrease the performance of
k-means clustering, which is evident from the plots. Even with the decreasing performance
of the k-means clustering results, scHybridNMF improves tremendously over NMF. This is
especially evident in Fig. 4, where scHybridNMF achieves a higher performance than both
NMF and k-means, indicating that scHybridNMF is able to gather useful information from
both standalone methods, and that it has high potential to be successful on real-world data.

Experiment 3: Sampled Genes, Noisy Location Data Finally, we investigate the
scenario where we use noisy location data and even smaller number of genes (using 50%
randomly sampled genes), which is the most challenging scenario. For w-separated data
over each σ, we calculated 5 random gene samples over 10 location noise randomizations (for
each noise percentage) for each of the 10 location-gene expression pairs. For n-separated data
over each σ, we calculated 5 random gene samples over 10 location noise randomizations (for
each noise percentage) for each of the 100 location-gene expression pairs. We plotted the
average ARI values for sampling 50% of the genes as a function of σ in Figs. 5 and 6. In this
experiment, we also run the existing HMRF [24] method which also performs cell clustering
using both cell location and gene-expression data, on the same datasets.
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Fig. 5. Using 50% of the genes with 20% and 30% noise in w-separated data.
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Fig. 6. Using 50% of the genes with 20% and 30% noise in n-separated data.

The results show a clear distinction between scHybridNMF and NMF and k-means clus-
tering. For the w-separated location data, the ARI values of scHybridNMF significantly
exceeds those of NMF and HMRF clustering. In data with n-separated location data, scHy-
bridNMF tends to outperform both k-means clustering and NMF, and ourperforms HMRF
in a majority of cases.

These experiments show that scHybridNMF is robust to small datasets with noisy loca-
tions and a subset of the total number of genes. This sort of data is prevalent in the real
world, and the fact that our algorithm performs the strongest relative to individually using
NMF or k-means on this data indicates that it is likely to be successful for real data. Fig. 7
shows the tSNE plots, which visualize high-dimensional data, of the gene expression data
clusters produced by NMF, scHybridNMF, and the ground truth labels. This shows that our
method improves the performance of cell clustering of the gene-expression immensely.
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Fig. 7. An example of NMF vs scHybridNMF vs ground truth clusters for gene expression. The data had σ = 0.3,
30% of the genes sampled, 20% noise in location, and w-separated location data. In each plot, there are six point
colors that correspond to the six cluster labels.

3.2 Results on Real Data

Having tested scHybridNMF extensively on simulated data, we now apply it to real data.
We use the mouse brain gene-expression and location data from [3]. This data has been
adapted from the seqFISH+ dataset [7], and it has been annotated with the locations of
specific cells as well as their gene expression levels. To examine the regions that have varied
genetic expressions, we isolated the 523 cortex cells and filtered the genes to keep those with
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mean greater than 0.7 and correlation of variation greater than 1.2 measured across all cells.
We then further sample only 20% of the genes. The analysis from [3] indicates that there
may be 9 clusters, so we set the number of clusters k = 9. As in Fig. 8, we get 9 distinct
clusters, which can correspond to the spatial domains in mouse brain, like those found in [3].
Each cluster contains cells both with similar gene-expression profiles and locate relatively
closely in space. Further experiments or analysis can be performed to explore the biological
meanings of the identified clusters.
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Fig. 8. The result of scHybridNMF on the mouse brain data with k = 9 in the location space. Each color corresponds
to a cluster.

4 Conclusions and Discussions

In this paper, we present a hybrid clustering approach that can better identify cell types by
incorporating the strengths of NMF and k-means clustering, which work well on the high-
dimensional single cell gene-expression data and low-dimensional location data, respectively.
We show that our hybrid framework, scHybridNMF, significantly improves over the clustering
accuracy of using NMF alone on gene-expression data by integrating location information.
This is particularly useful for the cases where NMF performance is affected by a low number
of genes in the gene-expression data or high within-cluster heterogeneity. scHybridNMF also
outperforms k-means clustering with only location data under realistic scenarios. Through
combining two classical methods for clustering, NMF and k-means, scHybridNMF can exploit
both the high and low dimensional data and achieve better performance than using either
of the standalone methods, as well as an existing method HMRF.

The framework we use is flexible and can be extended to include more constraints and
more types of data. For example, we can include gene-gene relationship data which represent
potential gene-gene interaction in the data, and perform co-clustering of both cells and genes.
The inferred gene clusters can be further used to study regulatory mechanisms in the cells
and reconstruct gene regulatory networks.
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