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ABSTRACT 

Amyotrophic lateral sclerosis (ALS) is an archetypal complex disease centered on 

progressive death of motor neurons. Despite heritability estimates of 52%, GWAS studies 

have discovered only seven genome-wide significant hits, which are relevant to <10% of 

ALS patients. To increase the power of gene discovery, we integrated motor neuron 

functional genomics with ALS genetics in a hierarchical Bayesian model called RefMap. 

Comprehensive transcriptomic and epigenetic profiling of iPSC-derived motor neurons 

enabled RefMap to systematically fine-map genes and pathways associated with ALS. 

As a significant extension of the known genetic architecture of ALS, we identified a group 

of 690 candidate ALS genes, which is enriched with previously discovered risk genes. 

Extensive conservation, transcriptome and network analyses demonstrated the functional 

significance of these candidate genes in motor neurons and disease progression. In 

particular, we observed a genetic convergence on the distal axon, which supports the 

prevailing view of ALS as a distal axonopathy. Of the new ALS genes we discovered, we 

further characterized KANK1 that is enriched with coding and noncoding, common and 

rare ALS-associated genetic variation. Modelling patient mutations in human neurons 

reduced KANK1 expression and produced neurotoxicity with disruption of the distal axon. 

RefMap can be applied broadly to increase the discovery power in genetic association 

studies of human complex traits and diseases. 
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INTRODUCTION 

ALS is an untreatable, universally fatal and relatively common neurodegenerative disease 

with a lifetime risk of ~1/350 in the UK. The hallmark of the disease is motor neuron loss 

leading to respiratory failure and death (Hardiman et al., 2017). 10% of ALS is autosomal 

dominant, and even for sporadic ALS (sALS), the heritability is estimated to be ~50% 

(Ryan et al., 2019; Trabjerg et al., 2020). Genome-wide association studies (GWAS) in 

ALS (Nicolas et al., 2018; van Rheenen et al., 2016) have identified seven genome-wide 

significant loci, which have been linked to missense mutations. However, these changes 

occur in <10% of ALS patients, so there are likely to be a large number of missing ALS 

risk genes. 

ALS GWAS studies to date have lost power by considering genetic variants in isolation, 

whereas in reality, a biological system is the product of a large number of interacting 

partners (Li et al., 2019; Wang et al., 2011). Moreover, noncoding regulatory regions of 

the genome have been relatively neglected in efforts to pinpoint the genetic basis of ALS, 

despite their functional synergy with the coding sequence (Cooper-Knock et al., 2020; 

Wang et al., 2018). Indeed, GWAS studies have suggested that a significant proportion 

of missing heritability in ALS is distributed throughout noncoding chromosomal regions 

(Nicolas et al., 2018; van Rheenen et al., 2016). The function of noncoding DNA is often 

tissue, disease, or even cell-type specific (Heinz et al., 2015), and the understanding of 

the cell-type-specific biological function in complex neurological diseases has been 

improving (Bryois et al., 2020; Lopategui Cabezas et al., 2014). This therefore creates an 

opportunity to dramatically reduce the search space and so boost the power to discover 

ALS genetic risk, by focusing on genomic regions that are functional within the cell type 

of interest, i.e., motor neurons (MNs) (Cooper-Knock et al., 2013).  

Here, we present RefMap (Regional Fine-mapping), a hierarchical Bayesian model to 

perform genome-wide identification of disease-associated genetic variation within active 

genomic regions. RefMap utilizes cell-type-specific epigenetic profiling to determine the 

prior probability of disease-association for each region. This reduces the search space 

by >90% given that a limited proportion of the genome is active in any specific cell type. 

ALS is notable for the selective vulnerability of MNs (Cooper-Knock et al., 2013). However, 
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MNs are difficult to study in post-mortem tissues (Corces et al., 2020) because of their 

relative sparsity, so a different approach is needed. We performed exhaustive 

transcriptomic and epigenetic profiling, including RNA-seq, ATAC-seq, histone ChIP-seq 

and Hi-C, for motor neurons derived from fibroblasts of neurologically normal controls. 

We hypothesized that the genetic variation within regulatory regions may alter the 

expression of their target genes, and we proposed that disease-associated variants are 

likely to reduce gene expression via interfering with regulation. Applying RefMap to 

perform genome-wide fine-mapping based on ALS GWAS data (Fig. 1a) identified 690 

ALS-associated genes, including previous GWAS hits and even known ALS genes not 

previously detected in GWAS studies.  

We explored the functional significance of RefMap ALS genes based on a series of 

orthogonal analyses. Population genetics revealed that RefMap genes consist of 

conserved sequences, suggesting that their functions are important and not subject to 

genetic redundancy. Transcriptome data from MNs, human tissues and mouse models 

demonstrated that RefMap genes are down-regulated in ALS patients, consistent with our 

aforementioned hypothesis. Network analysis of protein-protein interactions (PPIs) 

identified two modules enriched with RefMap genes. These modules are enriched with 

biological functions localized to the distal axon of MNs, suggesting that neurotoxicity may 

be initiated in this subcompartment, which is consistent with previous literature (Frey et 

al., 2000; Moloney et al., 2014). Finally, we have further characterized a new ALS gene, 

i.e., KANK1. Common and rare genetic variants that alter KANK1 expression were shown 

to be associated with ALS and neuronal toxicity. RefMap provides a promising framework 

to pinpoint the genetic bases of human complex traits and diseases based on GWAS data. 

RESULTS 

Transcriptomic and epigenetic profiling of iPSC-derived motor neurons 

To identify genomic regions key to motor neuron function, we performed transcriptomic 

and epigenetic profiling of iPSC-derived motor neurons from neurologically normal 

individuals (Supplementary Fig. 1). The cells exhibited homogenous expression of the 

lower motor neuron markers, including TUJ1, Chat, SMI, MAP2 and NeuN 
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(Supplementary Fig. 1a). We prepared RNA-seq (Wang et al., 2009), ATAC-seq 

(Buenrostro et al., 2015), H3K27ac, H3K4me1 and H3K4me3 ChIP-seq (Creyghton et al., 

2010), as well as Hi-C (van Berkum et al., 2010) libraries using two technical replicates 

and three biological replicates per assay. Sequencing data were processed and quality 

control (QC) was performed according to the ENCODE 4 standards (ENCODE Project 

Consortium et al., 2020), and all samples exceeded ENCODE standard QC measures 

(Supplementary Tables 1-4).  

ATAC-seq identifies open and functional chromatin regions, which is complementary to 

the profiling of transcript expression by RNA-seq. H3K27ac, H3K4me1 and H3K4me3 

ChIP-seq assays pinpoint active enhancer (Pennacchio et al., 2013) regions, which are 

important noncoding regions for the regulation of gene expression. Hi-C profiling of three-

dimensional (3D) genome structure is essential to map regulatory regions including 

enhancers, to their target genes. Our MN epigenetic profiling successfully reduced the 

search space for ALS-associated genetic variation by >90%. Specifically, total ATAC-seq 

peak regions across all biological replicates covered 4.9% of the genome.  

To measure the consistency between distinct motor neuron profiles, we used our RNA-

seq dataset to identify promoter regions for high (>90th centile) and low (<10th centile) 

expressed transcripts. We compared enrichment of ATAC-seq and histone ChIP-seq 

peak regions, and Hi-C loops in high versus low expressed promoters. Significant 

enrichment within highly expressed promoters was confirmed for ATAC-seq (P=1.1e-182, 

odds ratio (OR)=1.9, Fisher’s exact test), H3K27ac ChIP-seq (P=2.0e-57, OR=2.2, 

Fisher’s exact test), H3K4me1 ChIP-seq (P=8.5e-57, OR=1.9, Fisher’s exact test), 

H3K4me3 ChIP-seq (P=4.8e-196, OR=2.6, Fisher’s exact test), and Hi-C loops (P=4.0e-

14, OR=1.3, Fisher’s exact test) (Fig. 1b). Similarly, epigenetic peak regions were 

enriched in MN Hi-C loops: ATAC-seq (P<1.0e-198, OR=1.9, Fisher’s exact test), 

H3K27ac ChIP-seq (P<1.0e-198, OR=2.0, Fisher’s exact test), H3K4me1 ChIP-seq 

(P<1.0e-198, OR=2.0, Fisher’s exact test), and H3K4me3 ChIP-seq (P<1.0e-198, 

OR=1.7, Fisher’s exact test). These observations confirm that our epigenetic profiling 

captured functionally significant genomic variation, and that our epigenetic profiles were 

internally consistent. 
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RefMap identifies ALS risk genes 

Mismatch between the relatively small number of characterized ALS risk genes and the 

estimate of high heritability suggests that a new approach is required to discover more 

ALS-associated genetic variation. Here, we designed a hierarchical Bayesian network 

named RefMap that exploits the epigenetic profiling of MNs to reduce the search space 

and so improve the statistical power to discover ALS-associated loci across the genome. 

Specifically, RefMap integrates the prior probability of significance derived from the 

epigenome of MNs, with allele effect sizes estimated from GWAS (Figs. 1a and 1c, 

Methods). Based on a linear genotype-phenotype model (Supplementary Notes), 

RefMap first disentangles effect sizes from GWAS Z-scores, which are confounded by 

the structure of linkage disequilibrium (LD). Effect sizes are then summarized across 

genomic regions in individual LD blocks. Those regions that are within active chromatin, 

and where the distributions of allele effect sizes are shifted from the null distribution, are 

prioritized by the algorithm (Methods).  

In our study, the Z-scores were calculated based on the largest published ALS GWAS 

study (Nicolas et al., 2018; van Rheenen et al., 2016), including genotyping of 12,577 

sporadic ALS patients and 23,475 controls. An epigenetic signal was calculated from a 

linear combination of MN chromatin accessibility and histone marks specific to active 

enhancer regions (Methods). We defined LD blocks as 1Mb windows, where we 

assumed significant internal LD but negligible external LD (Loh et al., 2015). Within LD 

blocks, SNP correlations were estimated based on the European population (EUR) data 

from the 1000 Genomes Project (Consortium and The 1000 Genomes Project Consortium, 

2015). With this information, RefMap scanned the genome in 1kb windows and identified 

all regions that are likely to harbor ALS-associated genetic variation (Figs. 1c and 1d, 

Methods, and Supplementary Table 5). 

Next, we mapped ALS-associated regions identified by RefMap to expressed transcripts 

in MNs (RNA-seq, TPM>=1), based on their regulation targets. We defined regulation 

targets as genes that overlap either ALS-associated regions by extension, or via their Hi-

C loop anchors (Methods). This resulted in 690 ALS-associated genes (Supplementary 
Table 6). Among this list, we discovered well-known ALS genes, including C9orf72 
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(DeJesus-Hernandez et al., 2011) and ATXN2 (Elden et al., 2010) (Fig. 1d). Indeed, 

RefMap genes are enriched with an independently curated list (Supplementary Table 7) 

of ALS genes including previous GWAS hits (P=5.20e-3, OR=2.07, Fisher's exact test) 

and also with clinically reportable (ClinVar(Landrum et al., 2018)) ALS genes (P=0.03, 

OR=3.06, Fisher’s exact test). Interestingly, certain ALS genes, such as UNC13A (Daoud 

et al., 2010; Diekstra et al., 2012), are missing from RefMap genes, but their paralogues 

are present, including UNC13B, which is consistent with a functional overlap. If we 

consider paralogues as equivalent to ALS genes, then the enrichment of RefMap genes 

with known ALS genes is further increased (curated: P=6.12e-43, OR=8.71; ClinVar: 

P=6.40e-14, OR=12.26; Fisher’s exact test). 

As a negative control, we randomly shuffled SNP Z-scores, in which case there was no 

overlap between RefMap outputs and known ALS genes. Additional shuffling of 

epigenetic features disrupted the signal further such that there were no significant RefMap 

outputs. This illustrates the dependence of RefMap on the two primary inputs: GWAS Z-

scores and MN epigenetic features. 

As a comparison to RefMap, we also applied MAGMA (v1.08) (de Leeuw et al., 2015), 

Pascal (Lamparter et al., 2016) and PAINTOR (Kichaev et al., 2014), which are three of 

the most popular methods for integrative analysis based on GWAS summary statistics. 

After multiple testing correction, MAGMA identified 10 genes as ALS-associated 

(P<2.76x10-6), and Pascal identified 5 genes (P<2.29x10-6), both including the known 

ALS gene C9orf72. Unlike MAGMA and Pascal, PAINTOR includes the capacity to 

integrate epigenetic annotations. Despite this, PAINTOR pinpointed only two ALS-

associated genes: MOB3B and LOC105376001 (Supplementary Table 8). This exercise 

indicates that MAGMA, Pascal and PAINTOR do not substantially address the problem 

of missing heritability in ALS and demonstrates very effectively the significant statistical 

advantage offered by our Bayesian approach. 

Conservation analysis demonstrates the functional importance of RefMap genes 

A large proportion of RefMap ALS genes were identified because of ALS-associated 

genetic variation within noncoding regulatory regions. We hypothesized that the functional 
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consequence of pathogenic genetic variation within regulatory regions is likely to be 

reduced expression of the target genes. A conservation analysis was first carried out, 

revealing that change in the expression of RefMap ALS genes is likely to be pathogenic 

based on population genetics. 

Conservation refers to DNA sequences that are preserved in the population presumably 

because disruption would be deleterious. Conservation can be quantified by the 

haploinsufficiency (HI) score, which is a measure of functional similarity to known 

haplosufficient and haploinsufficient genes (Huang et al., 2010) . Conservation is also 

related to intolerance scores, in which the rate of observed mutation of a gene in the 

population is compared to the expected rate in the absence of negative selection (Fadista 

et al., 2017; Karczewski et al., 2020; Petrovski et al., 2013). In particular, a lower than 

expected mutation rate implies intolerance to mutation. We discovered that RefMap 

genes are significantly haploinsufficient based on their HI score (P=2.59e-19, one-sided 

Wilcoxon rank-sum test; Fig. 2a), and intolerant to loss of function mutations within the 

Exome Aggregation Consortium (ExAC) dataset (Lek et al., 2016) as measured by 

LoFtool score (Fadista et al., 2017): P=2.28e-4 (one-sided Wilcoxon rank-sum test; Fig. 
2b). They are also intolerant to other mutation types as measured by RVIS score 

(Petrovski et al., 2013): P=8.08e-13 (one-sided Wilcoxon rank-sum test; Fig. 2c), as well 

as within the larger gnomAD (v.2.1) dataset as measured by o/e score (Karczewski et al., 

2020): P=4.08e-10 (one-sided Wilcoxon rank-sum test; Fig. 2d). Taken together, these 

results support the functional significance of RefMap ALS genes. 

Transcriptome analysis supports functional significance of RefMap genes in motor 
neurons and in ALS 

We have hypothesized that the ALS-associated genetic variation identified by RefMap is 

likely to be pathogenic through altered expression of the 690 RefMap genes. We have 

also demonstrated, based on population genetics, that the function of RefMap genes is 

highly sensitive to changes in expression. To explore this possibility further, we examined 

whether change in the expression of RefMap genes is associated with ALS, using 

transcriptome data from patient-derived MNs, central nervous system (CNS) tissues and 

an ALS animal model.  
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First, we inspected the expression of RefMap genes in our iPSC-derived MNs from 

neurologically normal individuals. RefMap genes were upregulated (P=3.07e-17, one-

sided Wilcoxon rank-sum test; Fig. 3a) compared to the overall transcriptome, indicating 

their importance in normal MN function. No differential expression was observed for 

genes derived from RefMap using randomly shuffled Z-scores.  

Next, we examined the expression of RefMap ALS genes in CNS tissues derived from 

ALS patients (n=18) and controls (n=17) (Prudencio et al., 2015). We hypothesized that 

RefMap genes would be downregulated in ALS patient tissues. As expected, a significant 

decrease in the expression of RefMap genes was observed in both frontal cortex 

(C9orf72-ALS (cALS): false discovery rate (FDR)=0.002, one-sided Wilcoxon rank-sum 

test) and cerebellum (C9orf72-ALS: FDR=0.002; sporadic ALS: FDR=0.005) of ALS 

patients compared to the overall transcriptome (Fig. 3b). As an independent validation, 

we analyzed gene expression within iPSC-derived MNs from ALS patients (n=55, 

https://www.answerals.org/), and confirmed that RefMap genes were downregulated 

(P=3.85e-04, one-sided Wilcoxon rank-sum test; Fig. 3c) compared to neurologically 

normal controls (n=15).  

Finally, we used longitudinal data to infer whether changes in expression of RefMap ALS 

genes occur upstream or downstream in the development of neuronal toxicity. To achieve 

this, we utilized the SOD1-G93A-ALS mouse model, which is the best characterized ALS 

model to date (Philips and Rothstein, 2015) and the only model featuring consistent and 

reproducible loss of spinal cord MNs that mirrors the human disease. We examined 

longitudinal gene expression averaged across spinal cord sections from SOD1-G93A 

(n=32) and SOD1-WT (n=24) mice (Maniatis et al., 2019). Four time points were sampled, 

including presymptomatic (p30), onset (p70), symptomatic (p100) and end-stage (p120). 

The model-estimated expression levels (! ) (Maniatis et al., 2019) were adopted to 

quantify the gene expression difference ("! ) between diseased and control mice at 

different time points. To determine the expression changes of RefMap genes over the 

course of ALS pathogenesis, we first mapped RefMap genes to their mouse homologs 

(n=510), and then performed unsupervised clustering on gene expressions over time. We 

identified two different expression patterns for RefMap homologs (Figs. 3d and 3e) with 
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verified clustering quality (Supplementary Fig. 2). Strikingly, the largest group (286/510) 

of RefMap homologs were progressively downregulated through consecutive disease 

stages (C1; Figs. 3d and 3e, Supplementary Table 9), consistent with our human 

observations. Functional enrichment analysis (Kuleshov et al., 2016) of C1 genes 

revealed significant enrichment with functions associated with motor neuron biology (Fig. 
3f), including ‘cholinergic synapse’, ‘axon’ and ‘cytoskeleton’, which is consistent with 

known ALS biology (Cooper-Knock et al., 2013) and with the prevailing view of ALS as a 

distal axonopathy (Frey et al., 2000; Moloney et al., 2014). C2 genes do not contain 

significant functional enrichment (data not shown). 

Systems analysis dissect ALS-associated functional modules 

We have used RefMap to extend the number of ALS-associated risk genes to 690. We 

aimed to assess whether these genes are functionally consistent with current knowledge 

regarding the biology of MNs and ALS. Genes do not function in isolation and therefore, 

rather than examining individual genes, we mapped RefMap ALS genes to the global 

protein-protein interaction (PPI) network and inspected functional enrichment of ALS-

associated network modules.  

We first extracted high-confidence (combined score >700) PPIs from STRING 

v11.0(Szklarczyk et al., 2019), which include 17,161 proteins and 839,522 protein 

interactions. To eliminate the bias of hub genes(Krishnan et al., 2016), we performed the 

random walk with restart algorithm over the raw PPI network to construct a smoothed 

network based on those edges with weights in the top 5% (Supplementary Table 10, 

Methods). Next, this smoothed PPI network was decomposed into non-overlapping 

subnetworks using the Louvain algorithm(Blondel et al., 2008a) that maximizes the 

modularity to detect communities from a network. This process yielded 912 different 

modules (Supplementary Table 11), in which genes within modules were densely 

connected with each other but sparsely connected with genes in other modules. As a 

negative control, we constructed 100 shuffled networks by randomly rewiring the PPI 

network while keeping the same number of neighbors. None of the randomized networks 

achieved the same modularity of our smoothed network after clustering, demonstrating 

the significance of our derived gene modules (P<0.01; Supplementary Fig. 3a).  
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RefMap ALS genes were then mapped to individual modules, and two modules were 

found to be significantly enriched with RefMap genes: M421 (721 genes; FDR<0.1, 

hypergeometric test; Fig. 4a) and M604 (308 genes; FDR<0.1, hypergeometric test; Fig. 
4b) (Supplementary Table 11). Functionally M421 is enriched with GO/KEGG terms 

related to the distal axon, including synapse and axonal function within motor neurons 

(Fig. 4c). M421 is also enriched with genes related to relevant neurodegenerative 

diseases, including ‘amyotrophic lateral sclerosis’ and ‘Alzheimer’s disease’. M604 is 

enriched with GO/KEGG terms related to the actin cytoskeleton and axonal function (Fig. 
4d). Notably, the actin cytoskeleton is key for neuronal function and for axonal function in 

particular. Overall, the functional enrichment of both modules highlights an important role 

of the distal axon in ALS etiology (Fig. 4e), which is consistent with previous literature 

(Frey et al., 2000; Moloney et al., 2014). Finally, both M421 and M604 were 

overexpressed in control iPSC-derived MNs (Fig. 4f), in a similar manner to the total set 

of RefMap genes. Interestingly, many functions ascribed to M421 and M604 overlap with 

the functions of the C1 cluster from our analysis of the SOD1-G93A mouse model (Fig. 
3f), demonstrating a functional convergence of RefMap ALS genes. 

Rare variant burden analysis is consistent with KANK1 as a novel ALS risk gene 

Among all ALS-associated active regions identified by RefMap, chr9:663,001-664,000 

has the highest concentration of ALS risk SNPs (22 SNPs). This region lies within intron 

2 of KANK1 and consists of independently annotated ENSEMBL regulatory features, 

including an enhancer element (ENSR00000873709) and a CTCF binding site 

(ENSR00000873710) (Fig. 5a). Overlap with independently annotated features supports 

the utility of RefMap to identify functional regulatory regions within noncoding DNA. We 

hypothesized that ALS-associated genetic variation within chr9:663,001-664,000 would 

reduce the expression of KANK1, leading to MN toxicity. Existing biological 

characterization of KANK1 is consistent with our hypothesis: KANK1 is expressed in 

motor neurons, functions in actin polymerization and deletion of this gene results in a 

severe developmental phenotype with MN loss (Lerer et al., 2005).  

If reduced expression of KANK1 is linked to MN toxicity, then it is reasonable to expect 

other loss-of-function (LoF) KANK1 mutations to be associated with an increased risk of 
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ALS. Thus far RefMap has utilized common genetic variants from a GWAS study (van 

Rheenen et al., 2016) so, to further investigate KANK1, here we performed rare variant 

burden tests. Rare variant analysis utilized whole-genome sequencing (WGS) data from 

5,594 sporadic ALS patients and 2,238 controls (Project MinE ALS Sequencing 

Consortium, 2018). We filtered for rare, deleterious variants within KANK1 enhancer, 

promoter and coding regions based on evolutionary conservation, functional annotations 

and population frequency (Huang et al., 2017; Karczewski et al., 2020; Rentzsch et al., 

2019; Ritchie et al., 2014) (Methods). Enhancer and promoter regions for KANK1 were 

defined as previously described (Cooper-Knock et al., 2020; Fishilevich et al., 2017). 

Enhancer and promoter regions were independently enriched with ALS-associated rare 

deleterious variants (P<0.05, SKAT; Fig. 5b) (Lee et al., 2012; Wu et al., 2011), and 

nonsense coding variants were absent from controls and present in a small number (n=4) 

of ALS patients. Across all three regions, there was significant enrichment of rare 

deleterious variants in ALS patients compared to controls (P=0.003, Stouffer's method 

(Whitlock, 2005); Fig. 5b). The observation of both rare and common ALS-associated 

genetic variation in independent datasets utilizing independent methodology strongly 

suggests KANK1 is a new ALS risk gene. 

KANK1 was located within a distinct module (M826, 687 genes; Supplementary Fig. 3b) 

in our network analysis, and this module is enriched with RefMap genes (P=5.6e-3, 

hypergeometric test), but not after multiple testing correction. Functionally the KANK1-

module is highly expressed in normal MNs (Fig. 4f), and is enriched for biological 

functions centered on the distal axon and synapse (Supplementary Fig. 3c), which are 

consistent with other RefMap-enriched modules. 

Experimental validation of KANK1 in ALS development 

To further investigate the role of KANK1 in ALS, we experimentally determined the effect 

of ALS-associated genetic variation on gene expression and neuronal health (Fig. 5c). 

We used CRISPR/SpCas9 editing of SH-SY5Y neurons to recapitulate ALS-associated 

regulatory and coding mutations.  
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We discovered a high density of ALS-associated genetic variants within a region at 

chr9:663001-664000, which also contains an independently validated enhancer element 

(Fig. 5a). To replicate disruption of this sequence, we designed gRNAs to target 

protospacer adjacent motif (PAM) sites up- and downstream so as to delete the entire 

region (Zheng et al., 2014) (Methods). In addition, our rare variant analysis identified 

ALS-associated nonsense mutations in ALS cases but not in controls, therefore we also 

targeted a PAM site within KANK1 exon 2 so as to introduce a series of indels (Methods). 

Sanger sequencing and waveform decomposition analysis(Hsiau et al.) in 

undifferentiated SH-SY5Y cells confirmed the exon 2 editing efficiency (Supplementary 
Figs. 4a and 4b) and the deletion of the enhancer sequence (Supplementary Fig. 4c). 

For experimental evaluation, a commercially available control gRNA targeting HPRT 

served as a negative control. CRISPR/SpCas9-edited SH-SY5Y cells were differentiated 

to a neuronal phenotype, and successful differentiation was confirmed by altered 

expression of PAX6 (Supplementary Fig. 4d) (Forster et al., 2016) and increased total 

dendritic length (P=0.046, paired Student's t-test; Supplementary Fig. 4e) (Forster et al., 

2016). Differentiated cells were harvested and RNA was extracted for qPCR. We 

confirmed the reduced expression of KANK1 mRNA in both exon and enhancer edited 

neurons (Supplementary Fig. 4f). Furthermore, the reduction in KANK1 expression was 

associated with a trend towards reduced neuronal viability in exon edited cells, and with 

a significant reduction in neuronal viability in enhancer edited cells (exon: P=0.1, 

enhancer: P=0.003, paired Student's t-test; Fig. 5d). Finally, neurons with reduced 

expression of KANK1 exhibited shorter neurites (exon: P=0.04, enhancer: P=0.02, paired 

Student's t-test; Fig. 5e) with reduced branch length (exon: P=0.02, enhancer: P=0.01, 

paired Student's t-test; Fig. 5f). In all instances, measures of neuronal toxicity are 

correlated with KANK1 expression (Supplementary Fig. 4f), which in turn reflects editing 

efficiency (Supplementary Figs. 4a-c). These experimental observations collectively 

demonstrate the neuronal toxicity focused on the axon caused by ALS-associated genetic 

variants in KANK1, and further support KANK1 as a new ALS risk gene. 

DISCUSSION 
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Study of the genetic architectures of complex diseases has been greatly advanced by 

large GWAS studies. However, many of these studies have not considered cell-type-

specific aspects of genomic function, which is particularly relevant for noncoding 

regulatory sequence (Heinz et al., 2015). This may explain why diseases such as ALS 

have been linked to relatively few risk genes despite substantial estimates of heritability 

(Ryan et al., 2019; Trabjerg et al., 2020). Fine-mapping methods have been proposed to 

disentangle causal SNPs from genetic associations (Benner et al., 2016; Chen et al., 

2016b; Hormozdiari et al., 2014; Kichaev et al., 2014; Pickrell, 2014; Schaid et al., 2018), 

but these approaches are not integrated with cell-type-specific biology (Benner et al., 

2016; Hormozdiari et al., 2014), or assume a fixed number of causal SNPs per locus 

(Chen et al., 2016b; Kichaev et al., 2014; Pickrell, 2014), limiting their power for gene 

discovery. We have characterized epigenetic features within MNs, which are the key cell 

type for ALS pathogenesis. Integrating MN epigenetic features with ALS GWAS data in 

our RefMap model has discovered 690 ALS risk genes, which extends the list of candidate 

ALS genes by two orders of magnitude. We confirmed the effectiveness of RefMap by 

direct comparison with three popular fine-mapping methods (Kichaev et al., 2014; 

Lamparter et al., 2016; de Leeuw et al., 2015), which recovered a maximum of 10 ALS 

genes. Others have performed more limited epigenetic profiling of motor neurons (Song 

et al., 2019), but our data are unique with respect to the depth and number of 

assessments.  

Consistent with previous literature, RefMap ALS genes are functionally associated with 

the distal axon (Frey et al., 2000; Moloney et al., 2014). Several known ALS risk genes 

are related to axonal function and axonal transport in particular (De Vos and Hafezparast, 

2017). Unlike previous literature, our work is based on a comprehensive genome-wide 

screening and not on a small number of rare variants. As a result, our data suggest that 

the distal axon may be the site of disease initiation in most ALS patients, and should be 

the focus of future translational research. 

RefMap ALS genes include KANK1, which is enriched with common and rare ALS-

associated genetic variation across multiple domains and datasets. KANK1 is functionally 

related to a number of known ALS genes that are important for cytoskeletal function, 
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including PFN1, KIF5A and TUBA4A. In particular, PFN1, like KANK1, is implicated in 

actin polymerization (Boopathy et al., 2015). Disruption of actin polymerization has been 

associated with alterations in synaptic organization (Dillon and Goda, 2005), including the 

neuromuscular junction (NMJ) (Mallik and Kumar, 2018), but also with nucleocytoplasmic 

transport defects (Giampetruzzi et al., 2019). We have experimentally verified the link 

between variants identified by RefMap to ALS, and KANK1 expression. Moreover, we 

have demonstrated that the reduced expression of KANK1 in a human CNS-relevant 

neuron is toxic and produces axonopathy. By contrast, KANK1 upregulation could be a 

new therapeutic target for ALS patients with mutations that reduce KANK1 expression, 

and possibly more broadly. 

In summary, our study provides a general framework that can be applied for the 

identification of risk genes involved in a large number of complex diseases. With the 

expansion of genotyping data and increasing understanding of cell-type-specific functions, 

it should prove valuable to the identification of the genetic underpinnings of many such 

diseases. 

FIGURE LEGENDS 

Figure 1. Genome-wide identification of ALS-associated genes.  
(a) Schematic of the study design for identifying ALS risk genes by integrating ALS 

genetics with functional genomics from motor neurons. (1-2) We sequenced the 

transcriptome and epigenome of the iPSC-derived motor neurons. By integrating (3) ALS 

genetics with functional genomics of MNs, (4) a machine learning model called RefMap 

was developed to fine-map ALS-associated regions. (5) After mapping those identified 

regions to their target genes, 690 ALS-associated genes were pinpointed. (6) 

Transcriptome analysis based on iPSC-derived MNs, human tissues and mouse models, 

as well as (7) network analysis were performed to demonstrate the functional significance 

of RefMap genes in ALS. (8) CRISPR/Cas9 reproduction of newly identified ALS-

associated KANK1 mutations experimentally verified the proposed link to neuronal toxicity. 

The LD heatmap matrix in (4) was visualized in both R2 (red) and D’ (blue) using LDmatrix 

(https://ldlink.nci.nih.gov/?tab=ldmatrix). GRU=Gene Regulatory Unit; GO=Gene 

Ontology. (b) Epigenetic profiling data from motor neurons is internally consistent. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 15, 2021. ; https://doi.org/10.1101/2020.11.14.382606doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.14.382606


 

16 

Markers of genomic activity are significantly enriched in promoter regions of high-

expressed genes compared to low-expressed genes. Circle area is proportional to % 

overlap. Hi-C data was scaled by a factor of ten for clarity. (c) Graphical representation 

of RefMap. Observed variables were annotated in grey, local hidden variables were in 

green and global latent variables were in pink (Methods). (d) A region 

(chr12:112,036,001-112,038,000) around ATXN2 was precisely pinpointed by RefMap 

because of elevated SNP Z-scores and enriched epigenome peaks (ATAC-seq, H3K27ac 

and H3K4me3 histone ChIP-seq). The output of RefMap was labeled as Q-score. ATAC-

seq and ChIP-seq signals were shown in fold change (FC) based on one replicate from 

sample CS14. 

Figure 2. RefMap genes are intolerant to loss of function.  
(a-d) Comparison of (a) haploinsufficiency score, (b) LoFtool percentile, (c) RVIS-ExAC 

percentile and (d) o/e score between RefMap genes and all the genes in the 

transcriptome. All comparisons were performed using the one-sided Wilcoxon rank-sum 

test. RefMap genes showed a significant increase in HI score (a) and a decrease in 

LoFtool percentile (b), RVIS-ExAC percentile (c) and o/e score (d). The bottom and top 

of the boxes indicate the first and third quartiles, respectively, where the black line in 

between indicates the median. The whiskers denote the minimal value within 1.5 

interquartile range (IQR) of the lower quartile and the maximum value within 1.5 IQR of 

the upper quartile. The plus symbols represent outliers. In e, the black dashed lines 

indicate the lower and upper limits of the regions with regular scale. Outliers outside of 

the black dashed lines are visualized with compressed scale in regions surrounded by 

gray lines for better visualization. 

Figure 3. Transcriptomics supports the functional importance of RefMap genes in 
motor neurons and in ALS.  
(a) RefMap genes were upregulated compared to the transcriptome in iPSC-derived 

motor neurons from neurologically normal individuals (n=3). For a fair comparison, we 

only considered those genes with expressed transcripts (TPM>=1) in the transcriptome, 

following a similar procedure in mapping ALS-associated regions to their targets. (b) 

RefMap genes were downregulated in post-mortem CNS tissue from C9orf72-ALS (n=8) 
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and sporadic ALS (n=10) patients compared to neurologically normal controls (n=17). 

FC=Frontal Cortex; CB=Cerebellum. (c) RefMap genes were downregulated in iPSC-

derived motor neurons from ALS patients (n=55) compared to neurologically normal 

controls (n=15). All comparisons in a-c were performed using the one-sided Wilcoxon 

rank-sum test, and the Benjamini-Hochberg (BH) correction was carried out in b. In a-c, 

the bottom and top of the boxes indicate the first and third quartiles, respectively, where 

the black line in between indicates the median. The whiskers denote the minimal value 

within 1.5 IQR of the lower quartile and the maximum value within 1.5 IQR of the upper 

quartile. The plus symbols represent outliers. In b, the black dashed lines indicate the 

lower and upper limits of the regions with regular scale. Outliers outside of the black 

dashed lines are visualized with compressed scale in regions surrounded by gray lines 

for better visualization. (d) Hierarchical clustering of expression changes of RefMap 

genes during disease progression based on the SOD1-G93A mouse model. RefMap 

genes were mapped to their mouse homologs (n=510). Gene expression levels were 

estimated using the ! scores calculated in (Maniatis et al., 2019), and were averaged 

across different sections of spinal cords at each time point. Time points p30, p70, p100, 

and p120 represent presymptomatic, onset, symptomatic and end-stage, respectively. 

Difference of gene expressions between SOD1-G93A and SOD1-WT mice at each time 

point was quantified by the difference of corresponding ! ("!). Before clustering, "! were 

standardized across genes, and one minus correlation was used as the clustering 

distance. (e) Two distinct expression patterns (C1: 286 genes; C2: 224 genes) of RefMap 

genes identified after clustering. The larger cluster C1 was progressively downregulated 

during ALS progression. Solid plot represents the mean of expressions within each cluster, 

and the standard error was shown as shading. (f) Gene ontology analysis of C1, showing 

that C1 is enriched with functions related to the motor neuron distal axon and synapse. 

GOBP=Gene Ontology Biological Process; GOCC=Gene Ontology Cellular 

Compartment. Dashed line represents P=0.05. 

Figure 4. Protein-protein interaction network analyses associate RefMap genes 
with distal axonopathy within motor neurons.  
(a-b) PPI network analysis revealed two modules that are significantly (FDR<0.1) 

enriched with RefMap genes: (a) M421 (721 genes) and (b) M604 (308 genes). 
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Hypergeometric test was performed to quantify the enrichment followed by the BH 

correction. Module nodes were colored to demonstrate RefMap enrichment, where 

RefMap genes are in blue and other module genes are in yellow. Edge thickness is 

proportional to STRING confidence score (>700). (c-d) RefMap modules, including (c) 

M421 and (d) M604, are enriched for motor neuron functions localized within the distal 

axon. GOBP=Gene Ontology Biological Process; GOCC=Gene Ontology Cellular 

Compartment. Dashed line represents P=0.05. (e) Representation of pathways enriched 

in each module (c and d) in MNs. (f) RefMap modules were highly expressed within 

control motor neurons, consistent with an important role in motor neuron function. All 

comparisons were performed using the one-sided Wilcoxon rank-sum test. The bottom 

and top of the boxes indicate the first and third quartiles, respectively, where the black 

line in between indicates the median. The whiskers denote the minimal value within 1.5 

IQR of the lower quartile and the maximum value within 1.5 IQR of the upper quartile. The 

plus symbols represent outliers. The black dashed lines indicate the lower and upper 

limits of the regions with regular scale. Outliers outside of the black dashed lines are 

visualized with compressed scale in regions surrounded by gray lines for better 

visualization. 

Figure 5. Reduced KANK1 expression is associated with ALS-associated genetic 
variants and produces neurotoxicity.  
(a) We identified a high density of ALS-associated genetic variants within a region at 

chr9:663001-664000, which overlaps with the regulatory regions in iPSC-derived control 

motor neurons as well as in the ENSEMBL regulatory build. (b) Whole genome 

sequencing data from sporadic ALS patients (n=5,594) and neurologically normal controls 

(2,238) was analyzed to determine the frequency of rare deleterious variants within 

KANK1 coding and regulatory sequences. ALS-associated rare variants are shown. All 

variants were present in a single patient unless stated. No variant was found in a control 

individual. (c) To experimentally evaluate ALS-associated KANK1 variants, we performed 

CRISPR/Cas9 perturbation proximate to patient mutations in enhancer and coding 

regions within SH-SY5Y neurons, including resection of the chr9:663001-664000 region. 

Edited neurons revealed (d) reduced viability, (e) reduced axonal length and (f) reduced 
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axonal-branch length compared to HPRT-edited controls. Data shown is mean and 

standard deviation. Neuronal viability was quantified relative to HPRT-edited controls. 

SUPPLEMENTARY INFORMATION 

Supplementary Figure 1. iPSC-derived motor neurons (a) are morphologically 

consistent with lower motor neurons including expression of appropriate markers. (b) 
iPSC cells were derived from control fibroblasts. 

Supplementary Figure 2. Clustering quality checking for clusters (a) C1 and (b) C2. 

The correlations of "! for individual genes and the mean of the cluster were calculated. 

The comparisons were performed using the Wilcoxon rank-sum test. Significantly 

increased between-cluster distance and significantly decreased in-cluster distance were 

observed, demonstrating the high quality of the clustering. 

Supplementary Figure 3. Additional results from network analysis. (a) Distribution 

of modularities after Louvain for the smoothed PPI network (red) and 100 randomized 

networks (blue). The modularity of our smoothed network is significantly shifted from the 

randomized network. (b) M826 contains KANK1. M826 is enriched with RefMap genes 

(P=5.6e-3, hypergeometric test) but not after multiple testing correction. (c) M826 is 

functionally enriched for vesicle transport within the motor neuron axon. GOBP=Gene 

Ontology Biological Process. Dashed line represents P=0.05.  

Supplementary Figure 4. CRISPR-editing of SH-SY5Y cells. (a) Sanger sequencing 

traces demonstrating spCas9 cut site adjacent to PAM and subsequent waveform 

decomposition in KANK1 open reading frame edited cells. (b) Indel distribution within 

KANK1 open reading frame CRISPR-edited SH-SY5Y cells. (c) PCR amplification of the 

relevant genomic segment in enhancer CRISPR-edited SH-SY5Y cells reveals that the 

chr9:663001-664000 region has been resected compared to HPRT-edited control cells. 

(d) Altered PAX6 expression and (e) increased dendrite length confirm the successful 

neuronal differentiation of SH-SY5Y cells. (f) pPCR reveals that the expression of KANK1 

mRNA was reduced in CRISPR-edited SH-SY5Y neurons. 

Supplementary Table 1 
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Quality control measures for RNA-seq of iPSC-derived motor neurons 

Supplementary Table 2 

Quality control measures for ATAC-seq of iPSC-derived motor neurons 

Supplementary Table 3 

Quality control measures for histone ChIP-seq of iPSC-derived motor neurons 

Supplementary Table 4 

Quality control measures for Hi-C of iPSC-derived motor neurons 

Supplementary Table 5 

ALS-associated regions identified by RefMap including Q-scores 

Supplementary Table 6 

690 ALS-associated genes identified by RefMap 

Supplementary Table 7 

Manually curated ALS gene list with evidence for association including references 

Supplementary Table 8 

ALS genes discovered by analysis of GWAS data using MAGMA, Pascal and PAINTOR. 

Supplementary Table 9 

Clusters of RefMap homologs in transcriptome data from SOD1-G93A ALS mouse model 

Supplementary Table 10 

Smoothed PPI network after preserving top 5% edges predicted by random walk with 

restart 

Supplementary Table 11 
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Gene modules detected from network analysis 

Supplementary Table 12 

Project MinE ALS Sequencing Consortium 

Supplementary Notes 

Mathematical and technical details of RefMap 
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STAR METHODS 

KEY RESOURCES TABLE 

Reagent or Resource Source Identifier 

Antibodies   

Anti-H3K4me1 Cell Signaling Technologies #5326S, lot 3 

Anti-H3K4me3 Cell Signaling Technologies #9751S, lot 10 

Anti-H3K27ac ActiveMotif #93133, lot 
28518012 

α-tubulin Sigma #T9026 

Anti-Pax6 Abcam #ab5790 

Chemicals, Peptides and Recombinant 
Proteins 

    

Thiazolyl Blue Tetrazolium Bromide 
(MTT) 

Sigma-Aldrich #M2128 

Alt-R S.p. Cas9 Nuclease V3 Integrated DNA technologies #1081059 

Alt-R Cas9 Electroporation Enhancer Integrated DNA technologies #1075915 

Dulbecco’s Modified Eagle medium Lonza #12-604F 

KnockOut DMEM/F-12 ThermoFisher Scientific #12660012 

Neurobasal medium ThermoFisher Scientific #12348017 

Penicillin-Streptomycin Sigma #P4333 

Fibronectin Merck #FC010 

10x Trypsin Sigma #59427C 

Foetal bovine serum ThermoFisher Scientific #10270106 

Matrigel Corning #356230 

mTeSR-Plus Medium StemCell Technologies #05825 

ReLeSR StemCell Technologies #05872 

Ethidium bromide solution Sigma #E1510 
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VeriFi mix red PCRBio #PB10.42-01 

Tri reagent Sigma #93289-100ML 

M-MLV reverse transcriptase ThermoFisher Scientific #28025-013 

5x First Strand buffer ThermoFisher Scientific #18057-018 

0.1M Dithiothreitol ThermoFisher Scientific #707265ML 

dNTP Mix ThermoFisher Scientific #10534823 

SYBR Green Brilliant III master mix Agilent #600882 

Random hexamer primer ThermoFisher Scientific #SO142 

Purmorphamine Tocris Bioscience #4551 

StemPro Accutase Cell Dissociation 
Reagent 

Gibco #A1110501 

ROCK inhibitor (Y-27632 
dihydrochloride) 

Tocris Bioscience #1254 

Compound E Tocris Bioscience #6476 

NEBNext 2xMasterMix New England Biolabs M0541 

EDTA Sigma #E5134 

HEPES Sigma #H3375 

PMSF protease inhibitor ThermoFisher Scientific #36978 

Protease inhibitor tablet Roche  #1697498 

Gibco GlutaMAX Supplement ThermoFisher Scientific #35050061 

TracrRNA Integrated DNA technologies #1072533 

TE Buffer, RNAse-free pH 8 ThermoFisher Scientific #AM9849 

Dulbecco’s Phosphate Buffered Saline Sigma #D8537-500ML 

Triton X-100 Sigma-Aldrich #T8787 

Normal horse serum Vector #S-2000-20 

Hoechst 33342 ThermoFisher Scientific #62249 

All-trans retinoic acid Sigma #R2625 
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BDNF PeproTech #450-02 

IGF ThermoFisher Scientific #PHG0078 

CNTF ThermoFisher Scientific #PHC7015 

N-2 supplement ThermoFisher Scientific #17502048 

B-27 supplement ThermoFisher Scientific #17504001 

DMH-1 Tocris Bioscience #4126 

SB431542 Tocris Bioscience #1614 

CHIR99021 Tocris Bioscience #4423 

Critical Commercial Assays     

Pierce BCA Assay Protein Assay Kit ThermoFisher Scientific #23225 

GenElute Mammalian Genomic DNA 
Miniprep Kit 

Sigma #G1N350 

Direct-zol RNA Miniprep Kit Zymo Research #R2050 

Neon Transfection System 10 µL Kit ThermoFisher Scientific #MPK1096 

Alt-R CRISPR-Cas9 Control Kit, Human, 
2 nmol 

Integrated DNA technologies #1072554 

QIAquick PCR Purification kit Qiagen #28104 

MiElute kit. Qiagen #28004 

KAPA Library Quantification kit Roche #07960140001  

KAPA HiFi HotStart ReadyMix Roche #07958927001 

KAPA Library Amplification Primer Mix Roche #07958978001 

QIAquick Gel Extraction Kit Qiagen #28506 

Ribo-Zero rRNA depletion kit Illumina #20040526 

NEBext Ultra RNA prep kit New England Biolabs #E7530 

Experimental Models: Cell Lines     

SH-SY5Y ATCC Cat.#CRL-2266 

Software and Algorithms     
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Sickle v1.200 https://github.com/najoshi/sickle  

Cutadapt v1.2.1 https://pypi.org/project/cutadapt/1.2.1/  

Kallisto v0.46.0 https://pachterlab.github.io/kallisto/  

SKAT https://cran.r-
project.org/web/packages/SKAT/index.
html 

  

R v4.0.1 https://cran.r-project.org/mirrors.html   

snpStats https://www.bioconductor.org/packages
/release/bioc/html/snpStats.html 

 

VariantAnnotation https://www.bioconductor.org/packages
/release/bioc/html/VariantAnnotation.ht
ml 

 

PLINK V1.90 http://zzz.bwh.harvard.edu/plink/downlo
ad.shtml 

 

PRISM 7 GraphPad  

ICE CRISPR analysis tool https://ice.synthego.com/#/  

CRISPOR guide RNA design tool http://crispor.tefor.net/  

CFX Maestro Bio-Rad  

Harmony Imaging Analysis Software PerkinElmer  

FIJI (FIJI Is Just ImageJ) NIH  

MATLAB R2018b MathWorks  

MAGMA v1.08 https://ctg.cncr.nl/software/magma  

Pascal https://www2.unil.ch/cbg/index.php?title
=Pascal 

 

PAINTOR v3.0 https://github.com/gkichaev/PAINTOR_
V3.0 

 

 

RESOURCE AVAILABILITY 

Lead Contact: 
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Further information and requests for resources and reagents should be directed to and 

will be fulfilled by the corresponding author, Micheal P. Snyder 

(mpsnyder@stanford.edu). 

Materials Availability: 

All unique/stable reagents generated in this study are available from the Lead Contact 

without restriction. 

Data and Code Availability: 

Epigenetic profiling of iPSC-derived motor neurons is available at encodeproject.org 
with the following accession numbers: ENCSR065CER, ENCSR410DWV, 
ENCSR812ZKP, ENCSR634WYX, ENCSR459PVP, ENCSR913OWV, ENCSR704VZY, 
ENCSR131HOY, ENCSR516YAD, ENCSR709QRD ENCSR754DRC, ENCSR672RKZ, 
ENCSR571HAY, ENCSR503HWR, ENCSR207VLY, ENCSR962OTG, ENCSR745TRI, 
ENCSR595HWK, ENCSR312HLG, ENCSR682BFG, ENCSR680IWU, ENCSR564EFE, 
ENCSR358AOC, ENCSR698HPK, ENCSR778FKK, ENCSR425FUS, ENCSR489LNU 
and ENCSR540KQC. 

Code is available on request. 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Study cohorts: 

iPSC-cells were derived from fibroblasts obtained from three neurologically normal 

controls of different ages: 55-year old male, a 52-year old female and a 6-year old male 

(Supplementary Fig. 1b). GWAS summary statistics were previously published (van 

Rheenen et al., 2016). The 6,180 patients and 2,370 controls included in this study were 

recruited at specialized neuromuscular centers in the UK, Belgium, Germany, Ireland, 

Italy, Spain, Turkey, the United States and the Netherlands (Project MinE ALS 

Sequencing Consortium, 2018). Patients were diagnosed with possible, probable or 

definite ALS according to the 1994 El-Escorial criteria (Brooks, 1994). All controls were 

free of neuromuscular diseases and matched for age, sex and geographical location. 

The study was approved by the South Sheffield Research Ethics Committee. Also, this 

study followed study protocols approved by Medical Ethical Committees for each of the 
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participating institutions. Written informed consent was obtained from all participating 

individuals. All methods were performed in accordance with relevant national and 

international guidelines and regulations. 

SH-SY5Y neuroblastoma cells: 

Human SH-SY5Y neuroblastoma cells were cultured in Dulbecco's Modified Eagle’s 

Medium (DMEM) (Lonza) supplemented with 10% (v/v) foetal bovine serum (FBS) 

(Thermo-Fisher Scientific), 50 units/mL of penicillin and 50 μg/mL of streptomycin. Cell 

lines were maintained at 5% CO2 in a 37°C incubator and split every 3-4 days. All 

experimental work was performed using cells within the range of 7-32 passages. 

METHOD DETAILS 

Cell culture: 

Human induced pluripotent stem cells iPSCs were maintained in Matrigel-coated plates 

(Corning) according to the manufacturer’s recommendations in complete mTeSR-Plus 

Medium (StemCell Technologies). The culture medium was replaced daily and confirmed 

mycoplasma free. Cells were passaged every four to six days as clumps using ReLeSR 

an enzyme-free reagent for dissociation (StemCell Technologies) according to the 

manufacturer’s recommendations. For all the experiments in this study, iPSCs were 

between passage 20 and 32.  

iPSC-derived motor neuron differentiation: 

iPSCs derived from unaffected controls were differentiated to motor neurons using the 

modified version of the dual SMAD inhibition protocol (Du et al., 2015). Briefly iPCS cells 

were transferred for Matrigel-coated plate (Corning). On the day after plating (day 1), after 

the cells had reached ~100% confluence, the cells were washed once with PBS and then 

the medium was replaced for neural medium (50% of KnockOut DMEM/F-12, 50% of 

Neurobasal), 0.5× N2 supplement (ThermoFisher), 1x Gibco GlutaMAX Supplement 

(ThermoFisher), 0.5x B-27 (ThermoFisher), 50 U ml−1 penicillin and 50 mg ml−1 
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streptomycin, supplemented with SMAD inhibitors (DMH-1 2 μM; SB431542 10 μM; and 

CHIR99021 3 μM).  

The medium was changed every day for 6 days, on day 7, the medium was replaced for 

neural medium supplemented with DMH-1 2 μM, SB431542-10 μM and CHIR 1 μM, All-

Trans Retinoic Acid 0.1 μM (RA), and Purmorphamine 0.5 μM (PMN), the cells were kept 

in this medium until day 12 when is possible to see a uniform neuroepithelial sheet, the 

cells were split 1:6 with Accutase (Gibco), onto matrigel substrate in the presence of 10 

µM of ROCK inhibitor (Y-27632 dihydrochloride, Tocris), giving rise to a sheet of neural 

progenitor cells (NPC). After 24 hours of incubation the medium was changed for neural 

medium supplemented with RA 0.5 μM and PMN 0.1 μM, the medium was changed every 

day for more 6 days. On day 19 the motor neuron progenitors were split with accutase 

onto to matrigel-coated plates and the medium was replaced for neural medium 

supplemented with RA 0.5 μM, PMN 0.1 μM, compound E 0.1 µM (Cpd E, Tocris), BDNF 

10ng/mL, CNTF 10ng/mL and IGF 10ng/mL until day 28. On day 29, the media was 

replaced for Neuronal media (Neurobasal media supplemented with 1% of B27, BDNF 

10ng/mL, CNTF 10ng/mL and IGF 10ng/mL). The cells were then fed alternate days with 

neuronal medium until day 40. 

ATAC-seq: 

50,000 viable motor neurons were spun down at 500 RCF at 4°C for 5 min. Supernatant 

was discarded. 50 µl cold ATAC Resuspension Buffer (RSB) (10 mM Tris-HCl pH 7.4, 10 

mM NaCl, 3 mM MgCl2, sterile H2O) containing 0.1% NP40, 0.1% Tween-20, and 0.01% 

Digitonin was added and carefully mixed. Tubes were incubated on ice for 3 min. 1 ml of 

cold ATAC-RSB containing 0.1% Tween-20 was added and the tubes were inverted three 

times. Nuclei were spun down at 500 RCF for 10 min at 4°C. Supernatant was aspirated. 

Cell pellet was resuspended in 50 µl of transposition mix (25 µl 2x TD buffer, 2.5µl 

transposase (100 nM final), 16.5 µl PBS, 0.5 µl 1% digitonin, 0.5 µl 10% Tween-20, 5 µl 

H2O) by pipetting up and down 6 times. TD buffer consists of 20 mM Tris-HCl pH 7.6, 10 

mM MgCl2, 20% DMF, sterile H2O. pH was adjusted with acetic acid before adding DMF. 

The reaction was incubated at 37°C for 30 minutes in a thermomixer while shaking at 

1000 RPM. Reaction was cleaned up with a Qiagen MiElute kit. DNA was eluted in 20 µL 
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elution buffer. DNA was amplified using the NEBNext 2xMasterMix. Cycling conditions: 5 

min at 72°C, 30 sec at 98°C, followed by 5 cycles of 10 sec at 98°C, 30 sec at 63°C and 

1 min at 72°C, hold at 4°C. 5µl (10% of the pre-amplified mixture) were used for qPCR to 

determine the number of additional cycles needed (3.76 µL H2O, 0.5 µL 25 µM Primer1, 

0.5 µL 25 µM Primer2, 0.24 µL 25x SYBR Green, 5 µL NEBNext MasterMix). Cycling 

conditions: 30 sec at 98°C, followed by 20 cycles of 10 sec at 98°C, 30 sec at 63°C and 

1 min at 72°C, hold at 4°C. Amplification profiles were assessed as previously described 

(Buenrostro et al., 2015). The remainder of the pre-amplified DNA (45µL) was used to run 

the required number of additional cycles. The final PCR reaction was cleaned up using 

Qiagen MinElute kit and eluted in 20 µl H2O. Libraries were quantified with the KAPA 

Library Quantification kit (Roche) and sequenced on a NovaSeq 6000 system (Illumina). 

Raw data were processed with the ENCODE 4 pipeline for ATAC-seq according to 

ENCODE 4 standards (https://www.encodeproject.org/atac-seq/). All samples exceeded 

ENCODE 4 standards for % mapped reads, enrichment of transcription start sites, the 

fraction of reads that fall within peak regions (FRiP), and reproducibility between technical 

replicates (Supplementary Table 1). 

Files are available at encodeproject.org with the following accession numbers: 

ENCSR065CER, ENCSR410DWV, ENCSR812ZKP, ENCSR634WYX, ENCSR459PVP, 

ENCSR913OWV, ENCSR704VZY, ENCSR131HOY, ENCSR516YAD, ENCSR709QRD. 

Histone ChIP-seq: 

5 million motor neurons were crosslinked and resuspended in 10 mL of cold L1 buffer 

(50mM Hepes KOH, pH 7.5, 140mM NaCl, 1mM EDTA, 10% Glycerol, 0.5% NP-40, 0.25% 

Triton X-100, dH2O, 1 protease inhibitor tablet (Roche) per 50ml buffer). Cells were 

incubated on a rocking platform at 4°C for 10 minutes and spun down at 3000 rpm at 4°C 

for 10 minutes. Pellets were resuspended in 10 mL of L2 buffer (200mM NaCl 1mM EDTA 

pH 8 0.5mM EGTA 10mM Tris, pH 8, dH2O, 1 protease inhibitor tablet (Roche) per 50ml 

buffer, room temperature). Tubes were incubated at room temperature for 10 minutes and 

spun down at 3000 rpm for 10 minutes at 4°C. Nuclei were resuspended in 3 mL 1X RIPA 

buffer and incubated on ice for 30 minutes. Samples were sonicated with Branson 250 

Sonifier to shear the chromatin. 3 mL of sheared chromatin lysate were transferred to two 
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2 mL tubes and spun down at 14,000 rpm at 4°C for 15 minutes. 50 µL were saved from 

each replicate and pooled as input (no antibody added, kept at -20°C). 2 μL histone 

modification antibody was added to each 3 mL lysates and incubated at 4°C on a neutator 

for 12-16 hours. The following antibodies were used: H3K4me1 (Cell Signaling 

Technologies), H3K4me3 (Cell signaling technologies), H3K27ac (ActiveMotif). 80 μL of 

Protein A/G-agarose for each sample were washed twice with 1 mL of ice cold 1X RIPA 

buffer, spun down at 5000 rpm for 1 minute at 4°C and resuspended in 80µL in 1x RIPA 

buffer. Beads were added to tubes containing Ag-Ab complex (80 μ L 1X RIPA to wash 

out the beads) and incubated for 1 hour at 4°C with neutator rocking. Tubes were spun 

down at 1500 rpm for 3 minutes, beads were washed 3 times 15 minutes each with 10 

mL of fresh, ice cold 1x RIPA buffer supplemented per 50 mL with 1 protease inhibitor 

tablet, 250 μL of 100 mM PMSF, 50 μL of 1M DTT, 2 ml of phosphatase inhibitor (sodium 

pyrophosphate 1mM, sodium orthovanadate 2mM, sodium fluoride 10mM). Afterwards, 

beads were washed once with ice cold 1 x PBS for 15 minutes. Beads were resuspended 

in 1200 µL ice cold 1x PBS, transferred to an 1.5mL Eppendorf tube and spun down at 

5000 rpm for 1 minute. PBS was removed and 100 µL of Elute 1 solution (1% SDS, 1x 

TE, dH2O) was added to resuspend beads and tubes were incubated at 65°C for 10 

minutes with gentle mixing every 2 minutes. Beads were spun down at 5000 rpm for 1 

minute at room temperature and the supernatant was kept as Elute 1. 150 µL of Elute 2 

solution (0.67% SDS, 1x TE) was added to the bead pellets and incubated at 65°C for 10 

minutes with gentle vortexing. After spinning down for 1 minute at 5000 rpm, the second 

elute was combined with the first. Input DNA was thawed and 150 µL of Elute 1 solution 

was added. All samples incubated at 65°C overnight to reverse cross-linking. 250 μL 1X 

TE containing 100 μg RNase was added to each sample and incubated for 30 minutes at 

37°C. 5 μL of 20 mg/mL Proteinase K was added to each sample and incubated at 45°C 

for 30 minutes. After transferring samples to 15 mL tubes, DNA was purified (Qiaquick 

PCR purification kit, Qiagen). DNA was eluted in elution buffer (50µL for input, 35µL for 

ChIP sample).  

The following components were combined and mixed in a microfuge tube: ChIP DNA to 

be end-repaired (25ng) 34 μL, 5 μL 10X End-Repair Buffer, 5 μL 2.5 mM dNTP Mix , 5 

μL10 mM ATP, 1 μL End-Repair Enzyme Mix. The mixture was incubated at room 
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temperature for 45 minutes. DNA was purified (MinElute PCR purification kit, Quiagen) 

and eluted in 19 μL EB. Adapter ligated DNA was run on a 2% EX-Gel and excised in the 

range of 450-650 bp with a clean scalpel. DNA was purified (Gel extraction kit, Quiagen) 

and eluted in 20 μL EB. The following components were mixed in a PCR tube: 20 μL of 

purified DNA, 25 μL KAPA HiFi HotStart ReadyMix (2X), 5 μL KAPA Library Amplification 

Primer Mix (10X). DNA was amplified with the following conditions: 45 sec at 98°C, 15x 

[15 sec at 98°C, 30 sec at 60°C, 30 sec at 72°C], 60 sec at 72°C, hold at 4°C. The PCR 

product was purified (MinElute PCR purification kit, Quiagen) and eluted in 19 μL EB. 

DNA was run on a 2% EX-Gel and excised in the range of 300-450 bp (or brightest smear) 

with a clean scalpel. DNA was purified (Qiaquick Gel extraction kit, Quiagen) and eluted 

in 12 μL EB. Library concentration was measured using Qubit and each library was run 

on the Bioanalyzer. Equal concentrations of different barcoded libraries were pooled and 

sequenced on a NovaSeq 6000 system (Illumina). Raw data were processed with the 

ENCODE 4 pipeline for Histone ChIP-seq according to ENCODE 4 standards 

(https://www.encodeproject.org/chip-seq/histone/). All samples exceeded ENCODE 

standards for % mapped reads, the fraction of reads that fall within peak regions (FRiP), 

and reproducibility between technical replicates (Supplementary Table 2) 

Files are available at encodeproject.org with the following accession numbers: 

ENCSR754DRC, ENCSR672RKZ, ENCSR571HAY, ENCSR503HWR, ENCSR207VLY, 

ENCSR962OTG, ENCSR745TRI, ENCSR595HWK, ENCSR312HLG, ENCSR682BFG, 

ENCSR680IWU, ENCSR564EFE, ENCSR358AOC, ENCSR698HPK, ENCSR778FKK, 

ENCSR425FUS, ENCSR489LNU, ENCSR540KQC 

Hi-C: 

We generated Hi-C libraries following the protocol previously described(Rao et al., 2014, 

2017). In brief, 2-5 million cells were crosslinked with formaldehyde. Nuclei were 

permeabilized and DNA was digested with 100U of MboI. DNA fragments were labelled 

with biotinylated nucleotides. Ligated DNA was purified and sheared to a length of 300-

500 bp after reverse cross-linking. Ligation junctions were pulled-down with magnetic 

streptavidin beads. Libraries were amplified by PCR and purified. Library concentrations 

were measured (Qubit). Hi-C libraries were paired-end sequenced on a NovaSeq 6000 
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system (Illumina). Raw data were processed with the ENCODE 4 pipeline for Hi-C 

according to ENCODE 4 standards 

(https://www.encodeproject.org/documents/75926e4b-77aa-4959-8ca7-87efcba39d79/). 

RNA-seq: 

RNA libraries were prepared by first depleting ribosomal RNA using the Illumina Ribo-

Zero rRNA depletion kit. Strand-specific libraries were then prepared using NEBext Ultra 

RNA prep kit. RNAseq libraries were paired-end sequences on a NovaSeq 6000 system 

(Illumina). Minimum 80 million reads were obtained per sample. The raw Fastq files were 

trimmed for the presence of Illumina adapter sequences using Cutadapt v1.2.1 (Martin, 

2011). The reads were further trimmed using Sickle v1.200 with a minimum window 

quality score of 20. Reads shorter than 15 bp after trimming were removed. If only one of 

a read pair passed this filter, it was included in the R0 file. Reads were aligned to hg19 

transcripts (n=180,253) using Kallisto v0.46.0 (Bray et al., 2016). 

CRISPR/Cas9 editing of SH-SY5Y cells: 

Guide RNAs (gRNAs) were designed using the Crispor tool to target KANK1 regulatory 

and coding regions. Design was guided by proximity to patient enhancer mutation sites, 

available protospacer adjacent motifs (PAM), and predicted on- and off- target efficiencies. 

gRNAs targeting within 30bp either side of the patient enhancer mutation site 

(chr9:663,001-664,000, hg19) were considered and screened for editing efficiency. One 

pair of guide sequences (5' -UCAUGGGAACUCUUCAAAUA-3' and 5’-

UCAUGGGAACUCUUCAAAUA-3’) was most efficient and chosen for subsequent 

experimentation. Validated, commercially available CRISPR control targeting HPRT (IDT) 

and KANK1 exon-targeting (ThermoFisher Scientific, 5’-

GUCUAGUUGAUAACCAUAGG-3’) gRNAs were also obtained. gRNA duplexes were 

assembled from tracrRNA and crRNA in a thermocycler according to manufacturer’s 

instructions under RNAse-free conditions. Cells were cultured to ensure 70-90% 

confluency on the day of transfection. 1ml antibiotic-free DMEM (Lonza) was prepared 

and incubated in 24-well plates at 37°C. CRISPR/Cas9 Ribonucleoproteins were formed 

by complexing 240ng gRNA duplex with 1250ng Alt-R V3 Cas9 Protein (IDT) in 10μL 
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buffer R (from 10μL Neon transfection kit, ThermoFisher Scientific) - a 1:1 molar ratio - 

for 10 minutes. 100,000 viable cells were aliquoted per transfection and centrifuged at 

400 x g for 4 minutes. Cells were washed in calcium- and magnesium-free Dulbecco’s 

Phosphate Buffered Saline (Sigma) and centrifuged at 400 x g for 4 minutes. Cell pellets 

were resuspended in 10μL buffer R containing Cas9 protein and gRNA duplexes. 2μL of 

10.8μM electroporation enhancer (IDT) was added and the solution mixed thoroughly to 

ensure a suspension of single cells. 10μL of this mixture was loaded into a Neon 

transfection system (ThermoFisher Scientific) and electroporated according to 

manufacturer’s instructions (1200V, 3 pulse, 20s pulse width for SH-SY5Y cells). Cells 

were then transferred to pre-warmed media in 24-well plates. 

Determining CRISPR editing efficiency: 

Genomic DNA was isolated from CRISPR-edited and control cells using a GenElute 

Mammalian DNA Miniprep Kit (Sigma) according to manufacturer’s instructions. A 

~400bp region around the expected cas9 cut site was amplified by polymerase chain 

reaction using VeriFi mix (PCRbio). Expected amplification was confirmed using gel 

electrophoresis, and the products were Sanger-sequenced. Sequencing trace files were 

uploaded to ICE (https://ice.synthego.com) and an indel efficiency calculated. 

Quantitative PCR (RT-PCR): 

Cells were cultured until at least 70% confluent, lysed on ice using an appropriate volume 

of Tri Reagent (Sigma) for 5 minutes and transferred to 1.5ml RNAse-free tubes. Total 

RNA was extracted using a Direct-zol RNA Miniprep Kit (Zymo) according to 

manufacturer’s instructions, and RNA concentration confirmed using a NanoDrop 

spectrophotometer (ThermoFisher Scientific). 2μg of total RNA was then converted to 

cDNA by adding 1μL 10mM dNTPs, 1μL 40μM random hexamer primer (ThermoFisher 

Scientific), and DNAse/RNAse-free water to a total volume of 14μL. This mixture was 

heated for 5 minutes at 70°C then placed on ice for 5 minutes. 4μL of 5x FS buffer, 2μL 

0.1M DTT, and 1μL M-MLV reverse transcriptase (ThermoFisher Scientific) were then 

added and cDNA conversion performed in a PCR thermocycler (37°C for 50 minutes, 

70°C for 10 minutes). cDNA was amplified using RT-PCR with Brilliant III SYBR Green 
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(Agilent) as per manufacturer’s instructions. Ct analysis was performed using CFX 

Maestro software (BioRad). GAPDH was chosen as a reference gene because 

expression is relatively stable in SH-SY5Y cells (Hoerndli et al., 2004).  

SH-SY5Y neuronal differentiation:  

Human SH-SY5Y neuroblastoma cells were seeded at densities of either 5x104 cells per 

well of a 6-well culture plate, or 2x103 cells per well of a 96-well culture plate in DMEM 

(Lonza) supplemented with 10% (v/v) FBS, 50 units/mL penicillin and 50 μg/mL of 

streptomycin. 24 hours after seeding the media was changed to DMEM supplemented 

with 5% (v/v) FBS, 50 units/mL penicillin, 50 μg/mL of streptomycin, 4mM l-glutamine and 

10μM retinoic acid. After 72 hours, the medium was switched to neurobasal media 

(ThermoFisher Scientific) containing 1% (v/v) N-2 supplement 100x, 50 units/mL penicillin, 

50 μg/mL of streptomycin, 1% l-glutamine and 50ng/mL human BDNF. Cells were 

cultured for an additional 3 days until fully differentiated.  

Immunocytochemistry: 

SH-SY5Y cells were fixed with 4% paraformaldehyde for 15 minutes and washed 3x with 

PBS. Cells were blocked in 5% normal horse serum containing 0.1% Triton X-100 for 1 

hour at RT. All primary antibodies were diluted in blocking solution (α-tubulin, 1:2000; 

anti-Pax6, 1:200). Cells were incubated in the primary antibody for 2 hours at RT and 

washed 3x in PBS before incubation in the appropriate secondary antibody (1:1000 in 

PBS) for 1 hour at RT. Nuclear counterstain (Hoechst 33342) was applied for 10 minutes 

followed by a 3x wash in PBS. Cells were imaged using an Opera Phenix High Content 

Screening System (PerkinElmer). 

MTT assays: 

A colorimetric assay using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide 

(MTT) dye was used to assess neuronally differentiated SH-SY5Y cellular metabolic 

activity and hence neuronal viability. 55 μL of 5mg/mL of MTT reagent in PBS was added 

per well of a 24-well culture plate and incubated at 37°C for 1 hour. 550 μL of un-

precipitated 20% SDS in 50% di-methyl formamide (DMF) + dH2O (pH 7.4) was added 
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per well and mixed thoroughly to lyse the cells. Cells were incubated in a dark 

environment on an orbital shaker for 1 hour. The colorimetric change was measured using 

a PHERAstar FS spectrophotometer (BMG Biotech), and absorbance readings taken at 

590nm were normalized to media-only wells. Mean absorbance readings were calculated 

for each biological repeat and expressed as a percentage of controls. 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Model design and inference of RefMap: 

In this study, allele Z-scores were calculated as Z=b/se, where b and se are effect size 

and standard error, respectively, and they were estimated from a mixed linear model in 

the ALS GWAS study (Nicolas et al., 2018; van Rheenen et al., 2016). Given allele Z-

scores and the epigenetic profiling of iPSC-derived motor neurons, we were interested in 

predicting causal associations of individual genomic regions with ALS risk. Suppose we 

have K 1Mb LD blocks with non-zero alleles, whose approximate between-block 

independence has been verified in previous literature(Loh et al., 2015). Also suppose 

each LD block contains Jk (k=1, ..., K) 1kb regions and each region harbors Ij,k (j=1, ..., Jk, 

Ij,k>0) SNPs. We further denote the Z-score for the i-th SNP in the j-th region of the k-th 

block as zi,j,k (i=1, ..., Ij,k). Under a linearity hypothesis, we can prove that zk follows a 

multivariate normal distribution (Supplementary Notes), i.e., 

, (1) 

in which uk are the effect sizes of individual SNPs that can be expressed as 

. (2) 

Moreover, in Eq. (1)  represents the in-sample LD matrix comprising of the 

pairwise Pearson correlation coefficients between SNPs within the k-th block, where Ik is 

the total number of SNPs given by . Here, since we have no access to the 

individual genotypes, we used EUR samples from the 1000 Genomes Project to estimate 

 (i.e., out-sample LD matrix). 
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Here, the latent variables uk can be treated as the disentangled Z-scores from LD 

confounding, leaving the right place for independence assumption and facilitating 

downstream modelling. Indeed, we assume ui,j,k (i=1, ..., Ij,k) are independent and 

identically distributed (i.i.d.), following a normal distribution given by 

, (3) 

where the precision  follows a Gamma distribution, i.e., 

. (4) 

Moreover, to characterize the shift of the expectation in Eq. (3) from the background due 

to its functional effect, we model mj,k by a three-component Gaussian mixture model, i.e., 

, (5) 

where the precisions follow 

, (6) 

and v-1 and v+1 are non-negative variables quantifying the absolute values of effect size 

shifts for the negative and positive components, respectively. 

To impose non-negativity over v-1 and v+1, here we employ the rectification nonlinearity 

technique proposed previously (Harva and Kabán, 2007). In particular, we assume v-1 

and v+1 follow 

, (7) 

, (8) 

in which the rectified Gaussian distribution is defined via a dumb variable. Specifically, 

we first define v-1 and v+1 by 

, (9) 

, (10) 

which guarantee that v-1 and v+1 are non-negative. The dump variable r-1 and r+1 follow 

Gaussian distributions given by 

, (11) 
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, (12) 

where  and  follow the Gaussian-Gamma distributions, i.e., 

, (13) 

. (14) 

The indicator variables in Eq. (5) denote whether that region is ALS-associated or not. 

Indeed, we define the region to be disease-associated if  or , and to be 

non-associated otherwise. To simplify the analysis, we put a symmetry over  and 

, and define the distribution by 

. (15) 

Furthermore, the probability parameter  in Eq. (15) is given by 

, (16) 

where  is the sigmoid function,  is the vector of epigenetic features for the j-th 

region in the k-th LD block, and the weight vector w follows a multivariate normal 

distribution, i.e., 

, (17) 

and  follows 

. (18) 

In our study, the epigenetic features  were calculated as the overlapping ratios of that 

region with the narrow peaks of ATAC-seq and histone ChIP-seq, respectively. 

Based on Eqs. (1) to (18), we are interested in calculating p(T | Z, S) wherein the 

calculation of integrals is intractable. Here we seek for approximate inference based on 

the mean-field variational inference (MFVI)(Blei et al., 2017). To reduce false positives, 

we set a hard threshold for  with respect to the ATAC-seq signal, where we set 

 if the corresponding region overlaps no ATAC-seq peak. This was motivated 

by our particular interest in active regions. More technical details, including a coordinate 

ascent-based inference algorithm, were provided in Supplementary Notes. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 15, 2021. ; https://doi.org/10.1101/2020.11.14.382606doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.14.382606


 

39 

In this study, we ran the inference algorithm per chromosome to accelerate the 

computation. The Q+- and Q--scores were defined as  and , 

respectively, and we also defined the Q-score as Q=Q++Q-. To prioritize RefMap-scored 

regions, we set a cutoff of 0.95 and defined those regions with either Q+- or Q--score 

larger than the cutoff as significant regions (i.e., ALS-associated regions) 

(Supplementary Table 5). 

Code relevant to RefMap is available on request. 

Target gene identification: 

After identifying ALS-associated regions based on RefMap, we mapped those active 

regions to their target genes for a better understanding of their functions. In particular, we 

performed such mapping according to to two principles: (i) assign to a gene if the region 

overlaps the gene or the region up to 10kb either side of the gene body; (ii) assign to a 

gene if the region overlaps a loop anchor harboring the transcription start site (TSS) of 

that gene. The loops were called from the Hi-C data sequenced from the iPSC-derived 

MNs. Note the only transcripts with TPM>=1 were kept for downstream analysis. 

Network analysis: 

We first downloaded the human PPIs from STRING v11, including 19,567 proteins and 

11,759,455 protein interactions. To eliminate the bias caused by hub proteins, we first 

carried out the random walk with restart algorithm(Wang et al., 2015) over the PPI network, 

wherein the restart probability was set to 0.5, resulting in a smoothed network after 

preserving the top 5% predicted edges. To decompose the network into different 

subnetworks/modules, we performed the widely-used Louvain algorithm(Blondel et al., 

2008b), a classic community detection algorithm that searches for densely connected 

modules by optimizing the modularity. After the algorithm converged, we obtained 912 

modules with an average size of 18.39 nodes (Supplementary Table 11). Two modules 

(M421 and M604) were significantly enriched (FDR<0.1) with our RefMap genes based 

on the hypergeometric test followed by the BH correction (Supplementary Table 11). 
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To test whether the network modularity could be observed by chance, we randomly 

shuffled the edges of the network while preserving the number of neighbors for each node 

(Milo et al., 2002). We generated 100 such randomized networks followed by the Louvain 

decomposition, against which the modularity of the smoothed PPI network was tested. 

Rare variant burden tests: 

ALS features a polygenic rare variant architecture (van Rheenen et al., 2016), therefore, 

all searches for pathogenic variants in enhancer and coding regions featured a filter for 

MAF within the Genome Aggregation Database (gnomAD) of <1/100 control alleles (Lek 

et al., 2016). Additional filtering varied reflecting differences in function between enhancer, 

promoter and coding sequence. In enhancer regions, variants were included only if 

evolutionary conserved based on a LINSIGHT score >0.8 (Huang et al., 2017). We also 

utilized an independently compiled score for ALS-associated regulatory variation (Chen 

et al., 2016a): variants were excluded with a DIVAN score <0.5. In promoter regions, we 

utilized two independent scores for functionality and pathogenicity: variants were included 

in burden testing if their CADD (Rentzsch et al., 2019) score >25 and GWAVA (Ritchie et 

al., 2014) score >0.5. In coding regions, we filtered for variants with impact on protein 

function as defined by snpeff (Cingolani et al., 2012): variants annotated 

HIGH/MODERATE/LOW impact were included, but we excluded variants annotated 

‘synonymous’ or ‘TF_binding_site_variant’ because these functions are independent of 

amino acid sequence. 

The optimal unified test (SKAT-O) was used to perform burden testing in enhancer and 

promoter regions because it is optimized for large numbers of samples and for regions 

where a significant number of variants may not be causal (Lee et al., 2012). SKAT tests 

upweight significance of rare variants according to a beta density function of MAF in which 

wj = Beta(pj, a1, a2), where pj is the estimated MAF for SNPj using all cases and controls, 

parameters a1 and a2 are prespecified, and a2=2500 was chosen for all statistical tests. 

To adjust for confounders including population structure, burden testing used the first ten 

eigenvectors generated by principal components analysis of common variant profiles, 

sequencing platform and sex as covariates.  
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Morphological assessment of differentiated SH-SY5Y cells: 

To confirm neuronal differentiation and to assess for changes consistent with axonopathy, 

semi-automated analysis of neurite length was performed using the SimpleNeuriteTracer 

plugin for FIJI (Longair et al., 2011). 2D images were converted to 8-bit grayscale and 

successive points along the midline of a neural process were selected. The software 

automatically identified the path between the two points. Tracing accuracy was improved 

using Hessian-based analysis of image curvatures. The AnalyzeSkeleton plugin 

(Arganda-Carreras et al., 2010) was used to quantify the morphology of the traces 

including the length of neurites. In the case of joined neurites the shorter path length was 

assigned to ‘branches’. To determine whether observed changes in neurite length are 

significant three fields of view were analyzed and differences were assessed by a 

Student’s t-test, where a one-tailed test was chosen based on the hypothesis that ALS-

associated mutations would reduce neurite length.  

Quantitative PCR and MTT assays: 

Relative mRNA expression values were then calculated using the 2-ΔΔCT method 

(Schmittgen and Livak, 2008). Statistical analysis was conducted in GraphPad Prism 7 

(La Jolla, CA) and R (v4.0.2). All bar graphs show the mean ± SD. To identify statistical 

differences between treatment groups utilised Student’s unpaired t-test. 
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Supplemental Notes for “Genome-wide identification of the
genetic basis of amyotrophic lateral sclerosis”

1 Mathematical foundation of RefMap

Here, we provide a mathematical theory to justify Eq. 1 in the Method section of the main
text. To facilitate the development of the theory, we first describe a universal discrimina-
tive framework that models the relationship between the genotype and phenotype, and then
deduce a general distribution over summary statistics from this framework. Based on this
result, a flexible probabilistic model that characterizes summary statistics with various prior
structures can be developed, which generalizes multiple previous studies [1–4, 6–8]. In par-
ticular, Equation 1 of RefMap follows directly after assuming a linear relation between the
genotype and phenotype. In the following, we will develop the framework in both cases of
quantitative trait and case-control studies.

1.1 Quantitative trait studies

We start from considering a general genotype-phenotype model for continuous traits, i.e.,

yn = F (xn,w) + ✏n, n = 1, · · · , N, (1)

in which N is the sample size, xn and yn are the genotypes and phenotype for the nth sample,
respectively, F is an unknown (usually non-linear) function with parameters w determining
personal phenotype from his/her genotypes, and ✏n is the random noise following

✏n ⇠ N (0,�2
✏ ). (2)

Note that as a routine procedure, genotypes are first standardized by

xni =
gni � 2pip
2pi(1� pi)

, i = 1, · · · ,M, (3)

whereM is the number of alleles, gni is the genotype of the ith allele for the nth sample, and pi
is the frequency of the ith allele in the study cohort. After standardization, the sample mean
and sample variance of each allele are 0 and 1, respectively. Moreover, we adopt a general
setting and treat both genotypes and function parameters as random variables, yielding

yn | xn,w,�✏ ⇠ N (F (xn,w),�2
✏ ). (4)

1
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Following the conventional annotation in the genome-wide association study (GWAS), the
estimated e↵ect sizes �̂i for individual alleles are the most widely-used summary statistics,
which are closely related to �2 and Z-score. Given the genotype standardization, we have

�̂i =
x|
i y

N
, (5)

where xi is the genotype vector for the ith allele and y = y1:N . With matrix representation,
we have

�̂ =
1

N
X|y =

1

N

NX

n=1

xnyn, (6)

where X = (xni) 2 RN⇥M . Indeed, we have the following theorem characterizing the asymp-
totic distribution of

p
N �̂.

Theorem 1. Given the definitions in Eqs. 1, 2 and 5, when the sample size N is large

enough, we have p
N �̂ | X,w,�✏ ⇠ N

⇣p
Nµ(X, F,w),�2

✏⌃LD

⌘
, (7)

where ⌃LD is the in-sample linkage disequilibrium (LD) matrix quantifying SNP correlations,

and µ(X, F,w) is a quantity depending on the genotypes and the discriminative function F .

Proof. We first show that
p
N �̂ follows a normal distribution asymptotically. In fact, accord-

ing to Eq. 6, given the genotypes and the discriminative function,
p
N �̂ can be computed by

the sum of xnyn, which are independent with each other but with di↵erent expectations. On
the other hand, the variance of xnyn is given by

Var [xnyn | xn,w,�✏] = Var [xn(F (xn,w) + ✏n) | xn,w,�✏]

= Var [xn✏n | xn,w,�✏]

= E
⇥
✏2nxnx

|
n | xn,w,�✏

⇤

= xnx
|
n�

2
✏ , (8)

yielding

lim
N!1

1

N

NX

n=1

xnx
|
n�

2
✏ = lim

N!1

1

N
X|X · �2

✏

= �2
✏ ⌃̂LD

⇡ �2
✏⌃LD, (9)

in which the estimated LD matrix ⌃̂LD = (r̂ij) is given by

r̂ij =
x|
ixj

p
x|
ixi

q
x|
jxj

=
1

N
x|
ixj , (10)

and the last approximation is guaranteed by E[r̂ij ] = rij = E[xixj ]. Therefore, according
to the multivariate Lindeberg-Feller central limit theorem (CLT), we conclude that

p
N �̂ =

2
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1/
p
N
PN

i=1 xnyn asymptotically follows a normal distribution with covariance �2
✏⌃LD, whose

expectation is given by

1p
N

NX

n=1

E [xnyn | xn,w,�✏] =
1p
N

NX

n=1

E [xn(F (xn,w) + ✏n) | xn,w,�✏]

=
1p
N

NX

n=1

xnF (xn,w)

=
p
Nµ(X, F,w), (11)

where µ(·) is defined as

µ(X, F,w) =
1

N

NX

n=1

xnF (xn,w). (12)

This completes the proof.

Note that if we use Z-scores computed by GWAS as the approximation of
p
N �̂/�✏, i.e.,

dividing �̂i by its estimated standard error, we have

ẑ | X,w ⇠ N
⇣p

Nµ(X, F,w),⌃LD

⌘
, (13)

in which �✏ is absorbed into µ(·) for annotation brevity.

1.2 Case-control studies

We state the analysis for case-control studies using a Bernoulli distribution over case-control
status, i.e.,

yn | ⇡n ⇠ Bernoulli(⇡n), n = 1, · · · , N, (14)

whose logit is defined similarly as Eq. 1 but without random noise, i.e.,

log
⇡n

1� ⇡n
= F (xn,w). (15)

After a few calculations we can easily get

⇡n = �(F (xn,w)), (16)

where �(·) is the sigmoid function defined by �(x) = 1/(1 + exp(�x)).
To facilitate the following analysis, here we illustrate the standardization procedure in

more detail, i.e.,

xni =
gni � 2p̂ip
2p̂i(1� p̂i)

, (17)

where gni is the genotype coded by 0, 1 and 2, and p̂i is the in-sample allele frequency.
Therefore, suppose we have the same number (N/2) of cases and controls in the study cohort,
the widely-used Z-scores for case-control studies defined as

ẑi =

p
N(p̂+i � p̂�i )p
2p̂i(1� p̂i)

(i = 1, · · · ,M) (18)

3
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can be written as

ẑ =
1p
N

NX

n=1

(21{yn = 1)}� 1)xn. (19)

Again, utilizing the multivariate Lindeberg-Feller CLT, we can derive the asymptotic
conditional distribution of ẑ, which is approximately the same as that in the quantitative
trait studies (Eq. 13). In particular, we have the following result.

Theorem 2. Given the definitions in Eqs. 14, 15 and 19, when the sample size N is large

enough, we have

ẑ | X,w ⇠ N
⇣p

Nµ(X, F,w),⌃LD

⌘
, (20)

where ⌃LD is the in-sample LD matrix, and µ(X, F,w) is a quantity depending on the geno-

types and the discriminative function.

Proof. Conditioned on X and w, the variance of (21{yn = 1)}� 1)xn can be calculated as

Var [(21{yn = 1}� 1)xn] = xnx
|
n � E [21{yn = 1}� 1]2 xnx

|
n

= 4xnx
|
nP [yn = 1] (1� P [yn = 1])

= 4xnx
|
nVar [yn] , (21)

where the conditions are omitted for brevity. In fact, as Var [yn | xn,w] < 1, we conclude that
the average of variance 1/N

PN
n=1Var [(21{yn = 1}� 1)xn | xn,w] converges as N ! 1,

whose limit is denoted as ⌃1. According to the multivariate Lindeberg-Feller CLT, the
asymptotic conditional distribution of ẑ is a normal distribution with covariance matrix ⌃1.

To get a clearer structure of ⌃1, we now apply a few approximations for Eq. 21. In
particular, we have

⌃1 = lim
N!1

1

N

NX

n=1

Var [(21{yn = 1}� 1)xn | xn,w]

= lim
N!1

1

N

NX

n=1

4xnx
|
nVar [yn | xn,w]

= E [4xnx
|
nVar [yn | xn,w]]

⇡ 4⌃LDE [Var [yn | xn,w]]

= 4⌃LD (Var [yn | w]�Var [E [yn | xn,w]])

< 4⌃LDVar [yn | w]

⇡ 4⌃LDE [Var [yn | w]]

= 4⌃LD (Var [yn]�Var [E [yn | w]])

< 4⌃LDVar [yn]

= ⌃LD, (22)

in which the third and the fourth “=” come from the law of total variance, the first and
the second “<” are implied by the positivity of variance, and ⌃LD is the in-sample LD
matrix. For the last “=”, we argue that the expectation and variance in Eq. 22 are taken
over the sampling space in case-control studies, rather than the general population. Under

4
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the assumption of equal number of cases and controls, the sampling disease prevalence is 0.5,
yielding Var [yn] = 0.25.

Furthermore, the expectation of the asymptotic conditional distribution can be calculated
as

1p
N

NX

n=1

E [(21{yn = 1}� 1)xn | xn,w] =
1p
N

NX

n=1

xn (2�(F (xn,w))� 1)

=
p
Nµ(X, F,w), (23)

where we define

µ(X, F,w) =
1

N

NX

n=1

xn (2�(F (xn,w))� 1) . (24)

This completes the proof.

1.3 A linear model for RefMap

We consider a linear model that underlies the design of RefMap. Specifically, in the quanti-
tative trait studies, we define

F (xn,w) = w0 +
MX

i=1

wixni. (25)

Note that this linear model has been widely used in traditional GWAS studies [1–3], and wi

is called the e↵ect size of the ith allele. The linear model for case-control studies can be
developed similarly by considering the approximation of sigmoid function using its Taylor
expansion. Therefore, the expectation of the asymptotic distribution of Z-scores can be
calculated as

p
Nµ(X, F,w) =

1p
N

NX

n=1

xn (x
|
nw + w0)

=
p
N⌃̂LDw, (26)

indicating that the expected Z-score for each allele is determined by its e↵ect size as well as
its strongly-associated neighbors. By absorbing

p
N into w, we eventually get Eq. 1 in the

RefMap model.

2 Inference for RefMap

The RefMap model was defined in Eqs. 1 to 18 in the Method section of the main text. Here,
we are interested in the posterior p(T | Z,S), whose exact calculation is intractable. There-
fore, we seek for approximate inference based on the mean-field variational inference (MFVI).
Basically, we first assume that the approximate posterior over latent variables factorizes,
indicating conditional independence across latent variables, and then perform approximate

5
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inference by optimizing the evidence lower bound (ELBO) with respect to factorized proposal
distributions, i.e.,

q (�j,k,�, ⌧ ,v,w,M ,T ,U ,⇤) = max
q

Eq


log

✓
p (Z,�j,k,�, ⌧ ,v,w,M ,T ,U ,⇤ | S)

q (�j,k,�, ⌧ ,v,w,M ,T ,U ,⇤)

◆�
,

(27)
which can be shown to be equivalent to minimizing the Kullback-Leibler (KL) divergence
between the true posterior and its proposal.

In the following, we will first introduce several specific techniques we used in MFVI, and
then summarize the update rules for di↵erent variational parameters. At last, a coordinate
ascent-based VI algorithm will be given.

2.1 Rectification nonlinearity

We impose non-negativity on v�1 and v+1 using the technique of rectification nonlinearity
proposed in [5]. This technique relaxes the sparsity constraint over factors and meanwhile
enjoys tractable variational inference.

We first note that the approximate posterior q(r�1) from MFVI follows the free-form
solution

q(r�1) =
1

Z̃�1

KY

k=1

JkY

j=1

N
�
E[mj,k] | �v�1,E[⌧�1]

�1
�E

h
t
(�1)
j,k

i

⇥N
�
r�1 | E[m�1],E[��1]

�1
�
,

(28)

where Z̃�1 is the normalization term to be computed later. Moreover, it can be easily shown
that Eq. 28 can be written as q(r�1) = qp(r�1) + qn(r�1) with the form

qp(r�1) =
w̃(�1)
p

Z̃�1
N
✓
r�1 | µ̃(�1)

p ,
⇣
�̃(�1)
p

⌘�1
◆
u(r�1), (29)

qn(r�1) =
w̃(�1)
n

Z̃�1
N
✓
r�1 | µ̃(�1)

n ,
⇣
�̃(�1)
n

⌘�1
◆
u(�r�1), (30)

in which

µ̃(�1)
p =

0

@�E[⌧�1]
KX

k=1

JkX

j=1

E
h
t(�1)
j,k

i
E[mj,k] + E[��1]E[m�1]

1

A
⇣
�̃(�1)
p

⌘�1
,

µ̃(�1)
n = E[m�1],

�̃(�1)
p = E[⌧�1]

KX

k=1

JkX

j=1

E
h
t(�1)
j,k

i
+ E[��1],

�̃(�1)
n = E[��1],

(31)

(32)

(33)

(34)

and u(·) is the standard step function. With Eqs. 31 to 34, w̃(�1)
p and w̃(�1)

n can be computed
by integrating Eqs. 28, 29 and 30 with respect to r�1. Then the normalization term is given

6
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by

Z̃�1 =
w̃(�1)
n

2
erfc

✓
µ̃(�1)
n

q
�̃(�1)
n /2

◆
+

w̃(�1)
p

2
erfc

✓
�µ̃(�1)

p

q
�̃(�1)
p /2

◆
. (35)

The moments for posteriors are obtained by

E[r�1] = M̃ (�1)
p + M̃ (�1)

n , (36)

E[r2�1] = M̃ (�2)
p + M̃ (�2)

n , (37)

E[v�1] = M̃ (�1)
p , (38)

E[v2�1] = M̃ (�2)
p , (39)

where

M̃ (�0)
p =

w̃(�1)
p

2Z̃�1
erfc

✓
�µ̃(�1)

p

q
�̃(�1)
p /2

◆
, (40)

M̃ (�1)
p =

w̃(�1)
p

2Z̃�1

8
>><

>>:
erfc

✓
�µ̃(�1)

p

q
�̃(�1)
p /2

◆
µ̃(�1)
p +

s
2

⇡�̃(�1)
p

1

exp

✓
�̃(�1)
p

⇣
µ̃(�1)
p

⌘2
/2

◆

9
>>=

>>;
, (41)

M̃ (�2)
p =

w̃(�1)
p

2Z̃�1

8
>><

>>:
erfc

✓
�µ̃(�1)

p

q
�̃(�1)
p /2

◆ ⇣
µ̃(�1)
p

⌘2
+

1

�̃(�1)
p

!
+

s
2

⇡�̃(�1)
p

µ̃(�1)
p

exp

✓
�̃(�1)
p

⇣
µ̃(�1)
p

⌘2
/2

◆

9
>>=

>>;
,

(42)

M̃ (�0)
n =

w̃(�1)
n

2Z̃�1
erfc

✓
µ̃(�1)
n

q
�̃(�1)
n /2

◆
, (43)

M̃ (�1)
n =

w̃(�1)
n

2Z̃�1

8
>><

>>:
erfc

✓
µ̃(�1)
n

q
�̃(�1)
n /2

◆
µ̃(�1)
n �

s
2

⇡�̃(�1)
n

1

exp

✓
�̃(�1)
n

⇣
µ̃(�1)
n

⌘2
/2

◆

9
>>=

>>;
, (44)

M̃ (�2)
n =

w̃(�1)
n

2Z̃�1

8
>><

>>:
erfc

✓
µ̃(�1)
n

q
�̃(�1)
n /2

◆ ⇣
µ̃(�1)
n

⌘2
+

1

�̃(�1)
n

!
�
s

2

⇡�̃(�1)
n

µ̃(�1)
n

exp

✓
�̃(�1)
n

⇣
µ̃(�1)
n

⌘2
/2

◆

9
>>=

>>;
.

(45)

Similar to q(r�1), the posterior q(r+1) also follows a free-form solution given by

q(r+1) =
1

Z̃+1

KY

k=1

JkY

j=1

N
�
E[mj,k] | v+1,E[⌧+1]

�1
�E

h
t
(+1)
j,k

i

⇥N
�
r+1 | E[m+1],E[�+1]

�1
�
,

(46)

where Z̃+1 is the normalization term. Equation 46 can also be written as q(r+1) = qp(r+1) +
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qn(r+1) with the form

qp(r+1) =
w̃(+1)
p

Z̃+1
N
✓
r+1 | µ̃(+1)

p ,
⇣
�̃(+1)
p

⌘�1
◆
u(r+1), (47)

qn(r+1) =
w̃(+1)
n

Z̃+1
N
✓
r+1 | µ̃(+1)

n ,
⇣
�̃(+1)
n

⌘�1
◆
u(�r+1), (48)

in which

µ̃(+1)
p =

0

@E[⌧+1]
KX

k=1

JkX

j=1

E
h
t(+1)
j,k

i
E[mj,k] + E[�+1]E[m+1]

1

A
⇣
�̃(+1)
p

⌘�1
,

µ̃(+1)
n = E[m+1],

�̃(+1)
p = E[⌧+1]

KX

k=1

JkX

j=1

E
h
t(+1)
j,k

i
+ E[�+1],

�̃(+1)
n = E[�+1].

(49)

(50)

(51)

(52)

After computing w̃(+1)
p and w̃(+1)

n , the normalization term is given by

Z̃+1 =
w̃(+1)
n

2
erfc

✓
µ̃(+1)
n

q
�̃(+1)
n /2

◆
+

w̃(+1)
p

2
erfc

✓
�µ̃(+1)

p

q
�̃(+1)
p /2

◆
. (53)

The moments for posteriors are obtained by

E[r+1] = M̃ (+1)
p + M̃ (+1)

n , (54)

E[r2+1] = M̃ (+2)
p + M̃ (+2)

n , (55)

E[v+1] = M̃ (+1)
p , (56)

E[v2+1] = M̃ (+2)
p , (57)

in which

M̃ (+0)
p =

w̃(+1)
p

2Z̃+1
erfc

✓
�µ̃(+1)

p

q
�̃(+1)
p /2

◆
, (58)

M̃ (+1)
p =

w̃(+1)
p

2Z̃+1

8
>><

>>:
erfc

✓
�µ̃(+1)

p

q
�̃(+1)
p /2

◆
µ̃(+1)
p +

s
2

⇡�̃(+1)
p

1

exp

✓
�̃(+1)
p

⇣
µ̃(+1)
p

⌘2
/2

◆

9
>>=

>>;
, (59)

M̃ (+2)
p =

w̃(+1)
p

2Z̃+1

8
>><

>>:
erfc

✓
�µ̃(+1)

p

q
�̃(+1)
p /2

◆ ⇣
µ̃(+1)
p

⌘2
+

1

�̃(+1)
p

!
+

s
2

⇡�̃(+1)
p

µ̃(+1)
p

exp

✓
�̃(+1)
p

⇣
µ̃(+1)
p

⌘2
/2

◆

9
>>=

>>;
,

(60)

M̃ (+0)
n =

w̃(+1)
n

2Z̃+1
erfc

✓
µ̃(+1)
n

q
�̃(+1)
n /2

◆
, (61)
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M̃ (+1)
n =

w̃(+1)
n

2Z̃+1

8
>><

>>:
erfc

✓
µ̃(+1)
n

q
�̃(+1)
n /2

◆
µ̃(+1)
n �

s
2

⇡�̃(+1)
n

1

exp

✓
�̃(+1)
n

⇣
µ̃(+1)
n

⌘2
/2

◆

9
>>=

>>;
, (62)

M̃ (+2)
n =

w̃(+1)
n

2Z̃+1

8
>><

>>:
erfc

✓
µ̃(+1)
n

q
�̃(+1)
n /2

◆ ⇣
µ̃(+1)
n

⌘2
+

1

�̃(+1)
n

!
�
s

2

⇡�̃(+1)
n

µ̃(+1)
n

exp

✓
�̃(+1)
n

⇣
µ̃(+1)
n

⌘2
/2

◆

9
>>=

>>;
.

(63)

2.2 Local variational method

We adopt the local variational method to tackle the intractability of MFVI for w due to the
introduction of the sigmoid function (Eq. 16 in the Method section). In particular, we have
the following result regarding Eq. 15 in the Method section:

(0.5⇡j,k)
t
(�1)
j,k (1� ⇡j,k)

t
(0)
j,k(0.5⇡j,k)

t
(+1)
j,k / ⇡

t
(�1)
j,k +t

(+1)
j,k

j,k (1� ⇡j,k)
t
(0)
j,k

= exp
n
w|sj,k

⇣
t(�1)
j,k + t(+1)

j,k

⌘o
� (�w|sj,k)

� exp
n
w|sj,k

⇣
t(�1)
j,k + t(+1)

j,k

⌘o
�(⇠j,k) exp

⇢
�1

2
(w|sj,k + ⇠j,k)� �(⇠j,k)

�
(w|sj,k)

2 � ⇠2j,k
��

,

(64)

where

�(⇠) =
1

2⇠

✓
�(⇠)� 1

2

◆
. (65)

Then we can perform standard MFVI with respect to the lower bound of Eq. 64, which yields

ln q(w) / E�w

2

4
KX

k=1

JkX

j=1

w|sj,k
⇣
t(�1)
j,k + t(+1)

j,k

⌘
� 1

2
w|sj,k � �(⇠j,k)(w

|sj,k)
2 � 1

2
w|

⇤w

3

5

= �1

2
w|

0

@E[⇤] + 2
KX

k=1

JkX

j=1

�(⇠j,k)sj,ks
|
j,k

1

Aw +w|
KX

k=1

JkX

j=1

sj,k

✓
E
h
t(�1)
j,k

i
+ E

h
t(+1)
j,k

i
� 1

2

◆
.

(66)

This indicates that q(w) follows a normal distribution given by

q
⇣
w; µ̃w, ⇤̃w

⌘
= N

⇣
µ̃w, ⇤̃w

⌘
, (67)

in which

µ̃w = ⇤̃
�1
w

KX

k=1

JkX

j=1

sj,k

✓
E
h
t(�1)
j,k

i
+ E

h
t(+1)
j,k

i
� 1

2

◆
,

⇤̃w = E[⇤] + 2
KX

k=1

JkX

j=1

�(⇠j,k)sj,ks
|
j,k.

(68)

(69)
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2.3 Update rules for other variational parameters

For other latent variables in RefMap besides v�1, v+1 and w, we carry out the naive MFVI
and obtain

q
⇣
uk; µ̃k, ⇤̃k

⌘
= N

⇣
uk; µ̃k, ⇤̃

�1
k

⌘
, (70)

q
⇣
mj,k; µ̃j,k, �̃j,k

⌘
= N

⇣
mj,k; µ̃j,k, �̃

�1
j,k

⌘
, (71)

q(�j,k; ãj,k, b̃j,k) = Gamma
⇣
�j,k; ãj,k, b̃j,k

⌘
, (72)

q
⇣
⌧�1; ã�1, b̃�1

⌘
= Gamma

⇣
⌧�1; ã�1, b̃�1

⌘
, (73)

q
⇣
⌧+1; ã+1, b̃+1

⌘
= Gamma

⇣
⌧+1; ã+1, b̃+1

⌘
, (74)

q
⇣
⌧0; ã0, b̃0

⌘
= Gamma

⇣
⌧0; ã0, b̃0

⌘
, (75)

q
⇣
m�1,��1; µ̃�1, �̃�1, c̃�1, d̃�1

⌘
= N

✓
m�1; µ̃�1,

⇣
�̃�1��1

⌘�1
◆
Gamma

⇣
��1; c̃�1, d̃�1

⌘
,

(76)

q
⇣
m+1,�+1; µ̃+1, �̃+1, c̃+1, d̃+1

⌘
= N

✓
m+1; µ̃+1,

⇣
�̃+1�+1

⌘�1
◆
Gamma

⇣
�+1; c̃+1, d̃+1

⌘
,

(77)

q (tj,k; ⇡̃j,k) = ⇡̃
tj,k
j,k , (78)

q
⇣
⇤; W̃⇤, ⌫̃⇤

⌘
= W

⇣
W̃⇤, ⌫̃⇤

⌘
, (79)

in which

µ̃k = ⇤̃
�1
uk

⇣p
Nzk + E[⇤k]E[mk]

⌘
,

⇤̃k = N⌃k + E[⇤k],

µ̃j,k =

 
E[�j,k]

Ij,kX

i=1

E[ui,j,k]� E[v�1]E[⌧�1]E
h
t(�1)
j,k

i
+ E[v+1]E[⌧+1]E

h
t(+1)
j,k

i!
�̃�1
j,k ,

�̃j,k = Ij,kE[�j,k] + E
h
t(�1)
j,k

i
E[⌧�1] + E

h
t(0)j,k

i
E[⌧0] + E

h
t(+1)
j,k

i
E[⌧+1],

ãj,k = a0 +
Ij,k
2

,

b̃j,k = b0 +
1

2

Ij,kX

i=1

E
⇥
u2i,j,k

⇤
+

Ij,k
2

E
⇥
m2

j,k

⇤
� E [mj,k]

Ij,kX

i=1

E [ui,j,k] ,

ã�1 = a0 +
1

2

KX

k=1

JkX

j=1

E
h
t(�1)
j,k

i
,

b̃�1 = b0 +
1

2

KX

k=1

JkX

j=1

E
h
t(�1)
j,k

i �
E
⇥
m2

j,k

⇤
+ E

⇥
v2�1

⇤
+ 2E [mj,k]E [v�1]

�
,

(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)
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ã+1 = a0 +
1

2

KX

k=1

JkX

j=1

E
h
t(+1)
j,k

i
,

b̃+1 = b0 +
1

2

KX

k=1

JkX

j=1

E
h
t(+1)
j,k

i �
E
⇥
m2

j,k

⇤
+ E

⇥
v2+1

⇤
� 2E [mj,k]E [v+1]

�
,

ã0 = a0 +
1

2

KX

k=1

JkX

j=1

E
h
t(0)j,k

i
,

b̃0 = b0 +
1

2

KX

k=1

JkX

j=1

E
⇥
m2

j,k

⇤
E
h
t(0)j,k

i
,

µ̃�1 =
�0µ0 + E[r�1]

�0 + 1
,

�̃�1 = �0 + 1,

c̃�1 = a0 +
1

2
,

d̃�1 = b0 +
1

2
�0µ

2
0 +

1

2
E
⇥
r2�1

⇤
� 1

2(�0 + 1)
(�0µ0 + E[r�1])

2 ,

µ̃+1 =
�0µ0 + E[r+1]

�0 + 1
,

�̃+1 = �0 + 1,

c̃+1 = a0 +
1

2
,

d̃+1 = b0 +
1

2
�0µ

2
0 +

1

2
E
⇥
r2+1

⇤
� 1

2(�0 + 1)
(�0µ0 + E[r+1])

2 ,

⇡̃(i)
j,k =

exp
n
⇢̃(i)j,k

o

exp
n
⇢̃(�1)
j,k

o
+ exp

n
⇢̃(0)j,k

o
+ exp

n
⇢̃(+1)
j,k

o (i = �1, 0,+1),

⌫̃⇤ = ⌫0 + 1,

W̃⇤ =
�
W�1

0 + E [ww|]
��1

,

(88)

(89)

(90)

(91)

(92)

(93)

(94)

(95)

(96)

(97)

(98)

(99)

(100)

(101)

(102)

and we define

⇢̃(�1)
j,k =

1

2
E[ln ⌧�1]�

1

2
E[⌧�1]

�
E
⇥
m2

j,k

⇤
+ E

⇥
v2�1

⇤
+ 2E[mj,k]E[v�1]

�
+ E[ln⇡j,k]� ln 2,

(103)

⇢̃(+1)
j,k =

1

2
E[ln ⌧+1]�

1

2
E[⌧+1]

�
E
⇥
m2

j,k

⇤
+ E

⇥
v2+1

⇤
� 2E[mj,k]E[v+1]

�
+ E[ln⇡j,k]� ln 2,

(104)

⇢̃(0)j,k =
1

2
E[ln ⌧0]�

1

2
E[⌧0]E

⇥
m2

j,k

⇤
+ E[ln(1� ⇡j,k)]. (105)
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Algorithm 1: MFVI for RefMap
Input : Z-scores zi,j,k, epigenome features sj,k and LD matrices ⌃k.
Output : Posteriors q and local variational parameters ⇠j,k.

1 Initialize variational parameters.

2 while not converged do

3 Update global variational parameters based on Eqs. 31, 32, 33, 34, 49, 50, 51, 52,
68, 69, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
100, 101, and 102.

4 Update local variational parameters based on Eq. 107.
5 Calculate ELBO (details omitted).

6 end

2.4 Update rules for local variational parameters

One needs to maximize the lower bound on marginal likelihood in Eq. 64 with respect to ⇠j,k
to rationalize the local variational inference. In particular, we have the following optimization
problem

Q
⇣
⇠, ⇠old

⌘
/

KX

k=1

JkX

j=1

ln�(⇠j,k)�
1

2
⇠j,k � �(⇠j,k)

�
(w|sj,k)

2 � ⇠2j,k
�
. (106)

Solving the above problem with respect to each ⇠j,k gives its update rule

⇠newj,k =
q

s|j,kE [ww|] sj,k. (107)

2.5 Coordinate ascent algorithm for MFVI

With the above update rules we can construct a coordinate ascent algorithm to update
variational parameters iteratively until convergence (i.e., the change of ELBO falls below a
threshold which was set to be 10�6 in our study). The inference algorithm is summarized in
Algorithm 1.
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