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Abstract 14 

Predictions shape our perception. The theory of predictive processing poses that our brains make 15 

sense of incoming sensory input by generating predictions, which are sent back from higher to lower 16 

levels of the processing hierarchy. These predictions are based on our internal model of the world 17 

and enable inferences about the hidden causes of the sensory input data. It has been proposed that 18 

conscious perception corresponds to the currently most probable internal model of the world. 19 

Accordingly, predictions influencing conscious perception should be fed back from higher to lower 20 

levels of the processing hierarchy. Here, we used functional magnetic resonance imaging (fMRI) and 21 

multivoxel pattern analysis to show that non-stimulated regions of early visual areas contain 22 

information about the conscious perception of an ambiguous visual stimulus. These results indicate 23 

that early sensory cortices in the human brain receive predictive feedback signals that reflect the 24 

current contents of conscious perception.  25 

 26 
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Introduction 28 

Predictions play an important role in perception1. According to the theory of predictive processing, 29 

our brains use an internal model of the world to make predictions that are fed back from higher to 30 

lower levels of the processing hierarchy, thereby enabling inferences about the hidden causes of the 31 

sensory input data2,3. This framework might provide the key to a neuroscientific account of 32 

conscious perceptual experiences, one of the greatest challenges for theories of human brain 33 

function. Within the framework of predictive processing, it has been proposed that conscious 34 

perception corresponds to the currently most probable internal model of the world, that is, the 35 

model that makes the best predictions about the incoming sensory data4. From this 36 

conceptualization of conscious perception as reflecting a predictive model, it follows that predictions 37 

generated by this model should be fed back from higher to lower levels of the processing hierarchy. 38 

However, empirical studies supporting this idea are lacking. In the current study, we investigated 39 

whether predictive feedback signals that reflect the current contents of conscious perception can be 40 

observed in non-stimulated regions of human early visual cortex. Non-stimulated visual regions do 41 

not receive any bottom-up stimulation, therefore any information in these regions must come from 42 

higher visual areas through feedback connections. This approach has successfully been used in 43 

several previous studies, showing for example that feedback signals contain information not only 44 

about which visual scene is presented5, but also about the spatial frequency of the scene6. High-field 45 

fMRI studies have confirmed that decoded information in non-stimulated visual areas is due to 46 

feedback mechanisms, as this information was present in superficial cortical layers, where feedback 47 

signals arrive, and not the middle cortical layers, which process feedforward input7. Measuring 48 

neural activity in regions of retinotopic visual cortex that do not receive feedforward input thus 49 

provides an elegant way to isolate effects of predictive feedback signalling in the human brain. Here, 50 

we used this method to probe whether the actual contents of conscious visual perception, too, 51 

would be reflected by neural signals in non-stimulated regions of early visual cortex. We used an 52 

ambiguous motion stimulus that gives rise to bistable perception (i.e., spontaneous alternations 53 
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between two perceptual states) and that was partially occluded. Decoding the two perceived visual 54 

interpretations of the constant ambiguous stimulus, rather than two distinct stimuli, from non-55 

stimulated visual regions would thus enable us to identify the presence of feedback signals reflecting 56 

the current conscious percept. 57 

 58 

Results 59 

During fMRI scanning, participants were presented with ambiguous plaid-motion stimuli, composed 60 

of two gratings moving in different directions (fig. 1A)8. The luminance of gratings and intersections 61 

was chosen such that the stimuli could be perceived either as two gratings moving in different 62 

directions (hereafter referred to as ‘component perception’) or as one pattern moving in the 63 

average direction of the two gratings (‘pattern perception’). We used four different stimulus 64 

configurations: The angle between the gratings could be 60° or 150°, and the average motion 65 

direction was either leftward or rightward. Crucially, one quadrant of the stimulus was always 66 

occluded, which allowed us to analyse fMRI signals in non-stimulated parts of retinotopic visual 67 

areas.  68 

Participants were asked to fixate the central fixation cross and indicate transitions between 69 

component and pattern percepts via button presses. Trials in which no perceptual transitions were 70 

reported were excluded. Eye tracking was performed and used for a control analysis, in which we 71 

discarded runs with poor fixation performance. Functional localisers of the stimulated area, 72 

occluded area, and border in between, as well as standard retinotopic mapping procedures, were 73 

used to delineate regions of interest for early visual regions that responded to our stimuli and for 74 

those representing the non-stimulated quadrant. For an additional control analysis, we used a V5 75 

localiser to define hMT+/V5. We then applied multi-voxel pattern analysis using a linear support-76 

vector-machine classifier to decode participants’ perception from both stimulated and non-77 

stimulated regions of visual cortex for each stimulus configuration, and averaged decoding 78 
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accuracies across conditions. Permutation tests were performed to determine significance (see 79 

figure S1 and Supplementary Methods for details).  80 

 81 

Fig. 1. A) Ambiguous moving plaid stimuli were presented in four different stimulus configurations, 82 

which differed in the angle between the two component gratings (60° or 150°) and the overall 83 

motion direction of the resulting pattern (leftward or rightward). B) Classifier accuracy discriminating 84 

component and pattern perception across all stimulus configurations for stimulated and non-85 

stimulated regions of early retinotopic areas. Error bars represent 95% confidence interval (CI). 86 

*p<0.05, **p<0.01, ***p<0.001. 87 

 88 

As displayed in figure 1B, significant above-chance decoding performance was obtained for 89 

both stimulated (64.1%, p<0.001) and non-stimulated (58.6%, p<0.001) regions of areas V1-V3 90 

together. Decoding performance also reached significance in each of the retinotopic areas 91 

separately (V1: 63.4% stimulated, 59.4% non-stimulated; V2: 63.3% stimulated, 58.4% non-92 

stimulated; V3: 64% stimulated, 56.3% non-stimulated; all p<0.001). Our control analysis in which 93 

runs with poor fixation performance were discarded led to comparable results (see fig. S2 and 94 

Supplementary methods and results for details). Furthermore, when we corrected for the difference 95 

in number of voxels between our stimulated and non-stimulated regions, we still obtained 96 

significant above-chance decoding results (see fig. S3 and Supplementary methods and results for 97 

details). 98 
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According to the predictive processing theory, predictions about incoming sensory data are 99 

fed back from higher visual areas. In the case of plaid motion stimuli, area hMT+/V5 has been 100 

reported to be differentially activated during component vs. pattern motion9 and is therefore a likely 101 

candidate for the origin of feedback signalling. Here, we replicated the previous finding of greater 102 

hMT+/V5 activity during component motion compared to pattern motion (fig. S5). More critically, 103 

we additionally tested whether perceptual states could also be decoded from hMT+/V5 activity in a 104 

subsample of participants, as this area should be able to represent the different percepts if it feeds 105 

back predictions about these stimuli. This proof-of-concept analysis revealed that indeed the 106 

component and pattern percepts could be decoded from hMT+/V5 with high accuracy (69.0%, p < 107 

0.001, see fig. S4 and Supplementary methods and results for details).  108 

 109 

Discussion 110 

Our findings show that the current perceptual state during bistability can be decoded from fMRI 111 

signal patterns not only in stimulated early visual regions, which is in line with previous studies10, but 112 

crucially also in non-stimulated retinotopic visual cortex, which did not receive any bottom-up input. 113 

This suggests that non-stimulated regions of early visual cortex contain information not only about 114 

visual stimulation in the surrounding context, as previously shown5, but even about conscious 115 

perception independent of visual stimulation per se. This is in line with current theories that model 116 

bistable perception within the framework of predictive processing4,11. According to this view, 117 

ambiguous stimuli (such as the bistable moving plaids used here) provide equally strong sensory 118 

evidence for two different percepts, but the currently dominant percept establishes an implicit 119 

prediction regarding the cause of the sensory input. This prediction is thought to stabilize the 120 

current perceptual state through feedback from higher to lower hierarchical levels, while sensory 121 

evidence for the currently suppressed perceptual interpretation elicits prediction errors that act to 122 

destabilize the current percept, eventually leading to a perceptual change12,13. Here, we for the first 123 

time provide evidence supporting the notion of feedback signalling of predictions in bistable 124 
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perception. Along these lines, we suggest that the percept-related information that we found in non-125 

stimulated regions of early visual areas most likely arises from feedback signalling that originates 126 

from higher-level areas concerned with the computation of component vs. pattern motion 127 

perception, such as area hMT+/V59. Our significant decoding results in hMT+/V5 support the idea 128 

that this area generates the predictions that are sent back to early visual areas, though future 129 

studies will have to provide direct causal evidence. 130 

In conclusion, our current results provide compelling support for the notion that conscious 131 

perception reflects an internal model that generates predictions about the current state of the 132 

world, and that these predictions are fed back to the lowest levels of sensory processing to enable 133 

inferences regarding the sensory input. 134 
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Supplementary methods 1 

 2 

Subjects 3 

Sixteen participants took part in the study. Data from one participant had to be excluded, because 4 

this participant reported only one percept in certain conditions, so that the other percept of the 5 

respective condition could not be modelled (see fMRI analysis). This resulted in a final sample of 15 6 

participants (age 18-33, M = 23.5 years, SD = 4.22, 5 male). None of the participants reported 7 

current or previous neurological or psychiatric disorders. All had normal or corrected-to-normal 8 

vision and were right-handed. Besides these general criteria, inclusion was based on performance in 9 

a previous behavioural session with the same ambiguous plaid stimuli. An average perceptual phase 10 

duration of > 4 s and a balance of at least 80/20 between the two percepts in each possible stimulus 11 

configuration (pattern and component perception, see Stimuli) were required to be selected for the 12 

fMRI session. The study was approved by the local ethics committee, and participants gave written 13 

informed consent. 14 

 15 

Stimuli 16 

Plaid stimuli were created by superimposing two individual component square-wave gratings. The 17 

stimuli were designed to be perceptually ambiguous, yielding bistable perception with spontaneous 18 

alternations between perception of either the two components moving in different directions 19 

(‘component perception’) or of one pattern moving in the average direction of the two gratings 20 

(‘pattern perception’). The angle between the components could be 60° or 150°, but for both angles 21 

the average motion direction between the two gratings was horizontal, either leftward or rightward, 22 

resulting in four stimulus configurations (60° left, 60° right, 150° left, 150° right) that all elicited 23 

bistability between component and pattern perception. fMRI results were pooled across these four 24 

stimulus configurations, as they were not relevant to the purpose of the present study. The 25 

individual gratings had a spatial frequency of 0.5 cycles per degree of visual angle and a duty cycle of 26 
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0.3. The term ‘duty cycle’ refers to the proportion of the width of the darker bars within one cycle of 27 

the grating. The speed of the individual gratings was 1.3 cycles/s for the 60° stimuli, and 0.39 28 

cycles/s for the 150° stimuli. The speed of the resulting plaid stimuli was 1.5 cycles/s for all stimulus 29 

configurations. 30 

 31 

The plaid stimuli were presented within a centred annulus with a diameter of 13° of visual angle. In 32 

the centre of the annulus, which had a diameter of 3°, a fixation cross was presented. The 33 

background surrounding the stimuli had a luminance of 40 cd/m2. The luminance of the gratings of 34 

the 150° stimuli was 14 cd/m2. For the 60° stimuli, the two component gratings differed in 35 

luminance: one grating had 2 cd/m2, the other 20 cd/m2. The luminance of the intersections of the 36 

gratings was determined in pilot experiments that aimed at approximate equiprobability of 37 

component and pattern perception for all stimulus types and resulted in an intersection luminance 38 

of 9 cd/m2 for the 150° stimuli and 2 cd/m2 for the 60° stimuli. 39 

 40 

Procedure 41 

The stimuli were presented on a screen at the end of the MRI scanner bore. Participants laid in the 42 

scanner in supine position and viewed the stimuli on the screen through an angled mirror. They 43 

were asked to fixate on the central fixation cross and report their percept (pattern or component 44 

perception) by button presses. They had to report their percept as soon as the stimulus was 45 

presented, and press a button anytime their percept changed. A pattern percept was reported with 46 

the right index finger, and a component percept with the right middle finger. Each run comprised 47 

eight trials, lasting 60 s each, during which a plaid stimulus was continuously presented in one of the 48 

four stimulus configurations. Each trial was followed by a 10 s fixation interval, during which only the 49 

fixation cross was presented. Each stimulus configuration was presented twice per run in 50 

pseudorandomised order. There were six runs in total. 51 

 52 
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After the main experiment, two functional localisers were presented. The first was a stimulus 53 

localiser. Here, each stimulus from the main experiment was presented for 12 s, followed by fixation 54 

for 8 s, in a block-design. Different from the main experiment, participants were asked to fixate only 55 

and not report their perception. All conditions were presented four times in total. This functional 56 

stimulus localiser allowed for selection of voxels that were activated by the stimuli used in the main 57 

experiment. Furthermore, we used a functional localiser that mapped the non-stimulated region and 58 

was designed to preclude any spill-over of activity from the stimulated region, similar to the localiser 59 

of Smith & Muckli (2010). During this localiser, participants viewed contrast-reversing checkerboard 60 

stimuli (4Hz), which were again presented for 12 s each, followed by 8 s of fixation. Each condition 61 

was repeated 8 times. The localiser contained ‘surround stimuli’, mapping the border between 62 

stimulated and non-stimulated regions, and ‘target stimuli’, mapping the non-stimulated region. The 63 

surround stimulus was presented at 0.5° of visual angle diagonally from the fixation cross, mapping 64 

the outer 1° of the non-stimulated quadrant (see figure S1A). The checkerboard representing the 65 

non-stimulated quadrant, i.e. the target stimulus, was presented at 1° diagonally from the surround 66 

stimulus (see figure S1B). Thus, the target region, from which voxels were selected for our decoding 67 

analysis of the non-stimulated quadrant, was ~2° away from the stimulated region. The scanning 68 

session ended with a structural T1 scan (MPRAGE). Standard phase-encoded retinotopic mapping 69 

was performed in a separate scanning session to define regions V1-3.  70 

 71 

 72 
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Fig. S1. A) The surround stimulus mapping the border between stimulated and non-stimulated 73 

regions. B) The target stimulus mapping the non-stimulated quadrant. 74 

 75 

Scanning parameters 76 

Functional MRI data were acquired using a 3 T TIM Trio scanner (Siemens, Erlangen, Germany), 77 

equipped with a 12-channel head-coil. A gradient echo EPI sequence was used (TR: 2 sec, TE: 30 78 

msec, flip angle: 78°, voxel size 2.3 x 2.3 x 2.3 mm). Slices were oriented parallel to the calcarine 79 

sulcus and acquired in descending order. A total of 135 volumes were acquired for each run of the 80 

main experiment, 163 volumes for the stimulus localiser, 163 volumes for the non-stimulated 81 

quadrant localiser, 123 volumes per run (3 in total) for the polar angle retinotopic mapping, and 102 82 

volumes per run (3 in total) for eccentricity mapping. Anatomical images were obtained using an 83 

MPRAGE sequence (TR: 1.9 sec, TE: 2.52 msec, flip angle: 9°). 84 

 85 

Eye movements 86 

Eye movements were recorded with an iView Xtm MRI-LR system [SensoMotoric Instruments (SMI), 87 

Teltow, Germany] using a sampling rate of 50 Hz. Due to technical difficulties, no usable eye tracking 88 

data were obtained for four participants, and for one run of a fifth participant. The eye tracking data 89 

were used in a control analysis to discard runs with poor fixation performance. To determine fixation 90 

performance, a radius of 1.5° from fixation was defined as the fixation area. Eye movements beyond 91 

this area were considered as outliers. Data were detrended and mean-corrected to determine the 92 

number of these outliers, and runs in which eye movements extended beyond 1.5° of fixation in 93 

more than 5% of all data points were excluded. A total of 10 runs distributed across 5 participants 94 

were excluded in the control analysis based on eye tracking exclusion criteria. 95 

 96 

fMRI analysis 97 
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The fMRI data were preprocessed and analysed using SPM12. First, the functional images were 98 

realigned to correct for head motion, after which they were coregistered with the structural image 99 

obtained in the same session. Then, both functional and structural images were coregistered with 100 

the structural image obtained in the retinotopy session. No normalisation or smoothing was applied, 101 

as is common for studies using MVPA. 102 

A general linear model (GLM) was set up with regressors modelling the participants’ percepts 103 

(pattern vs components) of each condition, resulting in eight regressors of interest. Motion 104 

parameters as well as a regressor modelling fixation in between trials were included as regressors of 105 

no interest. If participants reported only one percept for a certain condition, the other percept of 106 

that condition could not be modelled in that run; therefore, such runs were excluded. This affected 107 

all runs from one participant, and another 7 runs distributed across 3 participants.   108 

 109 

ROI definition 110 

Regions of interest (ROIs) were defined with similar methods as those used by Smith & Muckli 111 

(2010). First, regions V1-V3 were defined using standard retinotopic mapping procedures. Within 112 

regions V1-3, only the voxels that showed significant positive response to the stimulated region (t-113 

contrast stimulus > fixation, p < 0.01 uncorr.) in our stimulus localiser were selected. For the non-114 

stimulated region, the following procedure was used. First, only voxels that showed significant 115 

positive response to the target region (t-contrast stimulus > fixation, p < 0.01 uncorr.) were selected. 116 

Then, in order to ensure that these voxels were not also responsive to the stimulated region, we 117 

further selected only the voxels that met these criteria: significant positive response to the non-118 

stimulated target area alone (t > 1.65, p < 0.01 uncorr.), no significant response to the stimulated 119 

area alone (t > 1.65, p < 0.01 uncorr.), and no significant response to the surround region (t > 1.65, p 120 

< 0.01 uncorr.). 121 

The stimulated ROIs were naturally larger than the non-stimulated ROIs, as the stimulus spanned 122 

three quadrants compared to one occluded quadrant. Furthermore, our strict criteria for selecting 123 
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non-stimulated voxels outlined above meant we only selected a small sample of the voxels 124 

corresponding to the occluded quadrant. To correct for potential biases induced by this difference in 125 

ROI size, we performed an additional control analysis with smaller stimulated ROIs that had the 126 

same number of voxels as their non-stimulated counterpart ROI. These ROIs were generated by 127 

manually selecting voxels corresponding to the stimulus quadrant immediately opposite the 128 

occluded quadrant, in our case the quadrant in the upper left visual field. As such, we selected 129 

voxels in the right hemisphere below the calcarine sulcus. From these voxels, we randomly selected 130 

n voxels, with n being the number of voxels of the non-stimulated ROI for that particular visual area 131 

(V1-3) and participant. For two participants, not enough voxels were available in the respective 132 

stimulated quadrant of V1 to match the number of voxels from the non-stimulated V1 ROI. For these 133 

two participants, we therefore used all the voxels available in the stimulated quadrant and thus had 134 

slightly less voxels in stimulated V1 ROI compared to the non-stimulated V1 ROI (for one participant 135 

12 stimulated voxels vs 15 non-stimulated voxels, for the other participant 6 stimulated voxels vs 24 136 

non-stimulated voxels). 137 

 138 

MVPA 139 

 140 

Multi-voxel pattern analysis (MVPA) was performed using The Decoding Toolbox (Hebart, Görgen, & 141 

Haynes, 2015), which implements LibSVM software (http://www.csie.ntu.edu.tw/wcjlin/libsv). A 142 

linear support vector machine was trained to discriminate pattern from component percepts based 143 

on the beta values resulting from the GLM. This classification was performed for each stimulus 144 

configuration separately. Classifier performance was tested using a leave-one-run-out cross-145 

validation approach. Training was carried out on all but one run, which served as the test data. This 146 

was repeated until all runs had served as a test run once. The decoding accuracy was averaged 147 

across cross-validations and then across conditions. Permutation testing was conducted to 148 

determine the significance at the group level as described by Stelzer, Chen, & Turner (2013). In brief, 149 
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we provided the classifier with all possible combinations of shuffled label assignments for each 150 

participant and performed the decoding procedure for each label assignment. Then, we randomly 151 

selected one of these decoding accuracies from each participant and calculated the mean decoding 152 

accuracy. This procedure of random selection and calculation of mean decoding accuracy was 153 

repeated 10,000 to generate a distribution of decoding accuracies. We then used a cut-off of 95% to 154 

determine significance of our results. 155 

 156 

Supplementary results 157 

 158 

Phase durations 159 

The mean perceptual phase duration of the 60° stimuli (averaged across leftward and rightward 160 

moving stimuli) was 7.4 s for components (SD = 8.6) and 9.9 s for patterns (SD = 4.6). For the 150° 161 

stimuli, mean phase duration for components was 8.2 s (SD = 7.5) and for patterns 4.9 s (SD = 1.7). 162 

 163 

Control analysis discarding runs with poor fixation performance 164 

Overall fixation accuracy across all participants was 97.3%. Despite this high accuracy, we performed 165 

a control analysis discarding runs with fixations more than 5% outside of our fixation ROI. As 166 

displayed in figure S2, significant above-chance decoding performance was obtained for both 167 

stimulated (64.0%, p<0.001) and non-stimulated (58.9%, p<0.001) regions of areas V1-V3 together. 168 

Decoding performance also reached significance in each of the retinotopic areas separately (V1: 169 

62.9% stimulated, p<0.001, 57.8% non-stimulated, p=0.015; V2: 62.4% stimulated, p<0.001, 58.0% 170 

non-stimulated, p = 0.007; V3: 63.0% stimulated, p<0.001, 56.7% non-stimulated, p<0.001). 171 
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 172 

Fig. S2. Classifier accuracy discriminating component and pattern perception across all stimulus 173 

configurations for stimulated and non-stimulated regions of early retinotopic areas. In this analysis, 174 

runs with poor fixation performance were excluded. Error bars represent 95% confidence interval 175 

(CI). *p<0.05, **p<0.01, ***p<0.001. 176 

 177 

Control analysis correcting for the difference in number of voxels between stimulated and non-178 

stimulated ROIs 179 

In this analysis, we decoded from stimulated and non-stimulated ROIs that were matched in size. As 180 

displayed in figure S2, significant above-chance decoding performance was obtained for both 181 

stimulated (60.9%, p<0.001) and non-stimulated (58.6%, p<0.001) regions of areas V1-V3 together. 182 

Decoding performance also reached significance in each of the retinotopic areas separately (V1: 183 

55.2% stimulated, 59.4% non-stimulated; V2: 56.5% stimulated, 58.4% non-stimulated; V3: 59.2% 184 

stimulated, 56.3% non-stimulated, all p<0.001). 185 
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 186 

Fig. S3. Classifier accuracy discriminating component and pattern perception across all stimulus 187 

configurations for stimulated and non-stimulated regions of early retinotopic areas. In this analysis, 188 

the number of voxels in stimulated V1 ROIs matched those of non-stimulated V1 ROIs. Error bars 189 

represent 95% confidence interval (CI). *p<0.05, **p<0.01, ***p<0.001. 190 

 191 

 192 

Control analysis decoding from hMT+/V5 193 

hMT+/V5 localiser data were available for 10 of our subjects. From these hMT+/V5 ROIs, we could 194 

decode component vs pattern percepts significantly above chance (69.0%, p < 0.001; see figure S4). 195 
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 196 

Fig. S4. Classifier accuracy discriminating component and pattern perception across all stimulus 197 

configurations for area hMT+/V5. Error bars represent 95% confidence interval (CI). *p<0.05, 198 

**p<0.01, ***p<0.001. 199 

 200 

Control analysis testing for non-specific effects in early visual cortex 201 

In order to test whether non-specific effects related to the change in perception and resulting 202 

decision making influenced our results, we performed a univariate analysis contrasting component 203 

with pattern percepts and vice versa. To this end, data preprocessing included coregistration of 204 

functional and anatomical images, normalisation to MNI space and smoothing with an 8mm full 205 

width at half maximum kernel. The same GLM was run as was used for our MVPA analysis. T-206 

contrasts of components > patterns and patterns > components were passed on to group level T-207 

tests. An initial voxel threshold of p < 0.001 uncorrected was used with FWE cluster correction to 208 

determine significance. 209 

Since it has been shown that components elicit more activity in hMT+/V5 than patterns (Castelo-210 

Branco et al., 2002), we expected clusters in hMT+/V5 for the contrast components > patterns. As 211 
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such we performed a ROI analysis using an anatomical mask of hMT+/V5 from the anatomy toolbox. 212 

This contrast indeed revealed clusters in bilateral hMT+/V5, supporting the results by Castelo-Branco 213 

et al. (2002). No other clusters reached significance. The reverse contrast, patterns > components, 214 

also yielded no significant clusters. These results suggest that no non-specific effects influenced our 215 

decoding results in visual cortex. 216 

 217 

Fig. S5. Univariate analysis showing increased activity for components compared to patterns in 218 

bilateral hMT+/V5. ROI analysis with anatomical hMT+/V5 ROI from the anatomy toolbox using an 219 

initial voxel threshold of p < 0.001, uncorrected, showing FWE cluster corrected results. 220 

 221 
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