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Abstract 

Visual information processing requires an efficient visual attention system. The          

neural theory of visual attention (TVA) proposes that visual processing speed           

depends on the coordinated activity between frontoparietal and occipital brain areas.           

Previous research has shown that the coordinated activity between (i.e., functional           

connectivity, ‘inter-FC’) cingulo-opercular (COn) and right-frontoparietal (RFPn)       

networks is linked to visual processing speed. However, evidence for how inter-FC of             

COn and RFPn with visual networks links to visual processing speed is still missing.              

Forty-eight healthy human adult participants (27 females) underwent resting-state         

(rs-)fMRI and performed a whole-report psychophysical task. To obtain inter-FC, we           

analyzed the entire frequency range available in our rs-fMRI data (i.e., 0.01-0.4 Hz)             

to avoid discarding neural information. Following previous approaches, we analyzed          

the data across frequency bins (Hz): Slow-5 (0.01-0.027), Slow-4 (0.027-0.073),          

Slow-3 (0.073-0.198), and Slow-2 (0.198-0.4). We used the mathematical TVA          

framework to estimate an individual, latent-level visual processing speed parameter.          

We found that visual processing speed was negatively associated with inter-FC           

between RFPn and visual networks in Slow-5 and Slow-2, with no corresponding            

significant association for inter-FC between COn and visual networks. These results           

provide first empirical evidence that links inter-FC between RFPn and visual           

networks with the visual processing speed parameter. These findings suggest a           

direct connectivity between occipital and right frontoparietal, but not frontoinsular,          

regions, to support visual processing speed. 

 

Keywords: cingulo-opercular network; functional connectivity; right frontoparietal       

network; visual networks; visual processing speed  
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Significance statement 

An efficient visual processing is at the core of visual cognition. Here, we provide              

evidence for a brain correlate of how fast individuals process visual stimuli. We used              

mathematical modeling of performance in a visual report task to estimate visual            

processing speed. A frequency-based analysis of resting-state fMRI signals revealed          

that functional connectivity between the right frontoparietal network and primary and           

dorsal occipital networks is linked to visual processing speed. This link was present             

in the slowest, typical frequency of the fMRI signal but also in the higher frequencies               

that are routinely discarded. These findings imply that the coordinated spontaneous           

activity between right frontoparietal and occipital regions supports the individual          

potential of the visual system for efficient processing. 
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Introduction 

Visual information processing requires an efficient visual attention system. The          

speed of information uptake in a given unit of time can be estimated using the               

mathematical framework of the ‘theory of visual attention’ (TVA; Bundesen, 1990).           

Within the TVA framework, visual processing speed (VPS) is estimated based on an             

individual’s accuracy in a whole-report task requiring the observer to report as many             

letters as possible from briefly presented displays. The estimated VPS represents a            

latent-level parameter that is relatively constant across diverse conditions (e.g.,          

Finke et al., 2005). At a neural level, the computations that determine VPS, i.e., the               

selection of visual features, involve frontal, parietal, and limbic (control) areas in            

conjunction with occipital (visual-coding) areas (Bundesen et al., 2005). A prior           

resting-state functional magnetic resonance imaging (rs-fMRI) study showed that         

VPS relates to the inter-network functional connectivity (inter-FC) between the          

cingulo-opercular (COn) and the right frontoparietal (RFPn) networks (Ruiz-Rizzo et          

al., 2018) — both of which comprise frontal, parietal, and limbic areas. However,            

empirical evidence for the link between VPS and the inter-FC of COn and RFPn with               

occipital areas is missing. The present study set out to provide this evidence. 

COn regions, such as the prefrontal, insular, and midcingulate cortices          

(Seeley et al., 2007; Dosenbach et al., 2008), increase their functional connectivity            

with the occipital cortex during eyes open versus eyes closed (Riedl et al., 2016).              

These regions exhibit sustained activity in tasks involving active visual processing           

(Sestieri et al., 2013). Similarly, the volume of the white matter tracts underlying             

RFPn regions (i.e., dorsolateral prefrontal cortex and areas around the intraparietal           

sulcus; Dosenbach et al., 2007) predict faster stimulus detection in visuospatial           

attention tasks (Thiebaut de Schotten et al., 2011), and more right-hemispheric           
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lateralization of the inferior fronto-occipital fasciculus has been associated with          

higher values of the TVA-based VPS parameter (Chechlacz et al., 2015). The            

present study adds to the extant literature by shedding light on how inter-FC of COn               

and RFPn with occipital regions support VPS. 

Rs-fMRI allows measuring the correlation between brain regions’        

spontaneous (i.e., intrinsic) hemodynamic activity (Raichle, 2011). We, thus, used          

rs-fMRI to study the intrinsic inter-FC of COn and RFPn with visual networks.             

Rs-fMRI data are typically temporally filtered (0.01-0.1 Hz) to remove non-neural           

scanner signal drifts (low frequencies) and cardio-respiratory signals (high         

frequencies) (Cordes et al., 2001). However, the spectral centroid (or ‘center of            

gravity’ of the frequencies) of COn, RFPn, and visual networks lies around the upper              

limit of the traditionally filtered frequency range ( i.e., 0.098, 0.090, and 0.090-0.118            

Hz, respectively; Ries et al., 2018). Further, within-network functional connectivity          

can be stronger in the typical range (< 0.08 Hz) for dorsal prefrontal regions (RFPn),               

but above 0.08 Hz for insular and orbitofrontal areas (COn, Salvador et al., 2008). 

Previous rs-fMRI studies (e.g., Zuo et al., 2010; Gohel and Biswal, 2015;            

Wang et al., 2018) have examined all frequencies in their signal by adopting the              

slowest, supra-second oscillatory ranges derived from electrophysiological measures        

of neuronal activity (Penttonen and Buzsáki, 2003). This approach has revealed a            

similar spatial extent of functional connectivity within COn, RFPn, and visual           

networks across frequencies, with most of their total power in intermediate ranges            

( i.e., 0.073 to 0.198 Hz; Gohel and Biswal, 2015). Following this approach, here we              

used the entire frequency spectrum available in our rs-fMRI data (i.e., 0.01 to 0.4 Hz)               

and analyzed discrete frequency bins, including one ‘reference’ bin (i.e., entire           

spectrum). We expected significant inter-FC between COn, RFPn, and visual          
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networks across frequency bins (Gohel and Biswal, 2015; Wang et al., 2018). We             

furthermore expected the inter-FC of COn and RFPn (respectively) with visual           

networks to be significantly linked to VPS and explored whether this link is             

frequency-specific. 

 

Methods 

Participants 

Forty-eight healthy adults (age range: 20-50 years; 27 females), taken from the            

‘INDIREA’ Munich cohort published in Ruiz-Rizzo et al. (2019), were included in the             

current study (see demographic information in Table 1), although the current           

hypotheses and analyses were generated independently. The study was approved          

by the ethics committee of the Faculty of Psychology and Educational Sciences of             

LMU Munich, and all participants provided written informed consent. To avoid strong            

age effects (e.g., on the VPS parameter; McAvinue et al., 2012), we selected all              

participants younger than 50 years from the original cohort. All of them exhibited             

normal psychomotor speed performance in a neuropsychological paper-and-pencil        

task (TMT-A, Reitan, 1958; Tombaugh, 2004), all had normal or corrected-to-normal           

visual acuity, and none was suffering from psychological or neurological disorders           

potentially affecting cognition, or from diabetes or color-blindness. To further ensure           

health status, participants additionally completed demographic and behavioral (e.g.,         

Beck Depression Inventory, BDI; Beck et al., 1996) self-report questionnaires, as           

well as a test of crystallized intelligence ( i.e., the multiple-choice vocabulary test:            

“Mehrfachwahl-Wortschatz-Test”; Lehrl et al., 1999). Thus, we assumed the         

relationship between inter-FC and our TVA-based measure of VPS to be           

uncontaminated by potential pathological influences. 
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Table 1. Demographic variables 

Notes. BDI: Beck Depression Inventory (Beck et al., 1996); SD: Standard           
deviation; TMT-A: Trail-Making Test part A. Handedness: 1: completely right          
handed; -1: completely left-handed; BDI cutoff: 19. TMT-A mean and SD           
correspond with those reported in (Tombaugh, 2004). 

 
Details on data acquisition are reported elsewhere (Ruiz-Rizzo et al., 2019).           

Briefly, after screening for inclusion and exclusion criteria, participants underwent          

rs-fMRI at the Klinikum rechts der Isar (Munich, Germany) in a first session. In a               

second session, participants performed the TVA-based whole-report task. 

 

Experimental Design and Statistical Analyses 

Assessment and estimation of VPS parameter C 

A whole-report task based on TVA (Bundesen, 1990) was used to estimate            

the TVA VPS parameter or parameter ‘ C’. In this task, arrays of four letters were               

presented in an imaginary semicircle under different exposure durations determined          

in a pretest before the actual task. To identify individual shortest exposure durations,             

we used a staircase procedure in the pretest, which included four blocks of 12 trials               

each: four ‘adjustment’ trials, four trials with unmasked displays presented for 200            

ms, and four masked displays presented for 250 ms. Each block started with one (of               

8 

Variable ( N = 48) Mean ± SD 

Age (years) 32.96 ± 9.58 

Sex (female/male) 27/21 

Education (years) 12.21 ± 1.07 

Intelligence (IQ) 110.30 ± 14.05 

Depression (BDI score) 4.96  ± 4.80 

Handedness 0.71 ± 0.55 

TMT-A (time in s) 25.53 ± 10.71 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2020. ; https://doi.org/10.1101/2020.11.11.378406doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?KUQp5P
https://www.zotero.org/google-docs/?8PEWDe
https://www.zotero.org/google-docs/?PHcRDa
https://www.zotero.org/google-docs/?XIyHbi
https://doi.org/10.1101/2020.11.11.378406
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

four) adjustment trial displayed for 80 ms, immediately followed by a post-display            

mask (see below). If the participant reported at least one letter correctly, the             

exposure duration was decreased by 10 ms in the following three adjustment trials             

within each block, until the participant could no longer report one letter correctly (i.e.,              

the shortest exposure duration). If this point was reached before the last of the 16               

adjustment trials, the exposure duration was held constant for the remaining. Setting            

the exposure duration that short ensured obtaining a valid estimate of the visual             

perceptual threshold parameter. Then, based on the shortest exposure duration,          

longer values were added to obtain report performance across the whole range from             

near-floor to near-ceiling and thus allow for a more precise TVA-based parameter            

estimation. In the actual whole-report task, on each trial, red letters were presented             

on either the left or the right side (counterbalanced) of a fixation point located in the                

screen center (Figure 1). Four blue items (shapes made of letter parts) were             

presented on the corresponding opposite site to balance visual stimulation. Letter           

stimuli were randomly chosen from the set (A, B, D, E, F, G, H, J, K, L, M, N, O, P,                     

R, S, T, V, X). In a given trial, a particular letter appeared only once, and each letter                  

was equally frequent within a block. Participants were instructed to report, verbally,            

all letters they were “fairly certain” they had seen (i.e., to avoid too conservative or               

too liberal a report criterion). Only report accuracy, but not report order or speed,              

was considered to assess performance. 
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Figure 1. Whole-report task used to estimate the visual processing speed           

parameter C. Participants are asked to report all letters they are fairly certain they              

have seen, placing emphasis on accuracy, and not speed, of verbal report. 

 

The task consisted of 400 trials, split into ten blocks of 40 trials each. Within a                

block, in fifteen of the trials, masks immediately followed stimuli presentation. These            

masks were jumbled blue and red squares, presented for 900 ms at each stimulus              

location to counteract visual persistence (Figure 1). Masked trials were presented for            

five different exposure durations (three times each). The use of varying exposure            

durations set for each individual was intended to increase precision in the            

TVA-based parameter estimation by allowing variability in report performance. The          

remaining 25 block trials were unmasked to add a component of iconic memory             

buffering (Sperling, 1960) to the estimation and ensure a valid and reliable TVA             

parameter fitting. These unmasked trials were presented for either the second           

shortest masked duration (three trials) or 200 ms (22 trials)—We chose the duration             
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of 200 ms because electroencephalographic measures were simultaneously        

obtained to analyze event-related potentials (not reported in this study). Furthermore,           

as the shortest trial was too brief for visual perception, the second shortest was              

presented. Hence, in each block, trials were presented for seven effective exposure            

durations (five masked and two unmasked). 

The VPS parameter, C, was estimated by modeling participants’ report          

accuracy as a function of the effective exposure duration, using a maximum            

likelihood-fitting algorithm (Bundesen, 1990; Kyllingsbæk, 2006; Dyrholm et al.,         

2011). Specifically, performance was modeled by an exponential growth function          

characterizing the increase in the probability of correct letter report with increasing            

effective exposure duration. The VPS parameter C represents the rate of uptake of             

visual information (in numbers of elements per second) and is given by the function’s              

slope at its origin. Although not in the focus of the present study, three additional               

parameters were estimated, namely, parameter t0, parameter K, and parameter μ.           

Parameter t 0, the function’s origin, indicates the longest exposure duration (in ms)            

below which information uptake is effectively zero and represents the visual           

perceptual threshold. Parameter K, the function’s asymptote, indicates the maximum          

number of elements that can be simultaneously encoded in the visual short-term            

memory store. Parameter μ reflects the duration of iconic memory buffering in            

unmasked trials. 

 

Statistical analyses 

To statistically compare networks’ inter-FC Z-values across frequency bins,         

we performed repeated-measures analyses of variance (ANOVA), one for each          

relevant network pair, with frequency bins as the within-subject factor and Z-values            
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for a particular network pair as the dependent variable. The relevant network pairs             

were COn and visual networks, RFPn and visual networks, COn and RFPn, and all              

visual networks. After each repeated-measures ANOVA, post-hoc tests were         

performed on individual Z-values for the respective network pairs. When Mauchly’s           

test indicated that the assumption of sphericity had been violated,          

Greenhouse-Geisser correction was applied. Bonferroni correction ( p0.05/6 = 0.008 for          

comparisons involving COn, p 0.05/3 = 0.017 for the rest of networks) was applied to              

post-hoc paired-sample t-tests. These analyses were performed in R 4.0.0 (R Core            

Team, 2020; https://www.R-project.org/ ; R.Studio v. 1.2.5042; RStudio Team, 2020;         

https://www.rstudio.com/ ) . 

We analyzed the relationship between inter-FC of COn and RFPn with visual            

networks and VPS parameter C by multiple regressions. Specifically, individual          

values of C were predicted from inter-FC Z-values in each frequency bin (Slow-5,             

Slow-4, Slow-3, Slow-2), frequencies altogether (henceforth named “Global”; see         

Temporal filtering of rs-fMRI data below), age (as after exclusion of high age the              

range was still 30 years), and framewise displacement (a measure of head            

movement in the scanner from frame to frame). Five multiple regression models            

were tested, one for each visual network’s inter-FC with COn and RFPn. Therefore,             

each model consisted of 13 predictors: six for the inter-FC of COn with a particular               

visual network across frequency bins and Global; five for the inter-FC of RFPn with              

the same visual network across frequency bins and Global; one for age; and one for               

framewise displacement. Note that the predictors involving COn were six instead of            

five because there were two subcomponents of COn in Slow-3 instead of one (see              

Brain network selection in the Results section). The goal of this analysis was to              

determine whether any of the predictors (i.e., inter-FC between a visual network and             
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COn and RFPn, across frequency bins) in any of the models (that differed by i.e.,               

visual network) was associated with parameter C — as we had no priors about one               

specific visual network or frequency bin being more relevant than the others. A             

second goal was to determine whether those associations were frequency-specific.          

Thus, we compared the beta coefficients in the models where significant predictors            

were found with linear post-hoc contrasts. Results were deemed significant if p <             

0.05. 

 

MRI data acquisition 

Image acquisition was conducted on a Philips Ingenia 3T MRI-scanner (Philips           

Healthcare, Best, the Netherlands) with a standard 32-channel SENSE head coil,           

located in the Klinikum rechts der Isar, Munich (Germany). During the rs-fMRI            

session, participants were asked to try to avoid thinking about anything in particular,             

moving, or falling asleep. Head motion was restrained throughout the scanning           

session by foam padding around participants’ heads, and scanner noise was           

reduced by providing participants with earplugs and headphones. Six-hundred         

T2*-weighted blood oxygenation level-dependent (BOLD)-fMRI volumes were       

acquired per participant, using a multiband echo-planar imaging (EPI) sequence,          

with a 2-fold in-plane SENSE acceleration (SENSE factor, S = 2; Preibisch et al.,              

2015) and an M-factor of 2 (repetition time, 1250 ms; time to echo, 30 ms; flip angle,                 

70°; 40 slices; 3-mm slice thickness and 0.3-mm inter-slice gap; voxel size, 3 × 3 ×                

3.29 mm³; matrix size, 64 × 64). Anatomical detail was achieved by a higher              

resolution T1-weighted volume, acquired with a 3D magnetization prepared rapid          

acquisition gradient echo (MPRAGE) sequence (repetition time, 9 ms; time to echo,            

4 ms; flip angle, 8°; 170 slices; voxel size, 1 mm³; matrix size, 240 × 240). 
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Rs-fMRI data preprocessing 

As we were interested in examining frequencies that could also include physiological            

non-neural (e.g., respiratory) or scanner ‘noise’ signals (e.g., > 0.1 Hz), we reduced             

the possibility of including those non-neural signals by applying physiologic          

estimation by temporal independent component analysis (PESTICA; Beall and Lowe,          

2007). PESTICA estimates the breathing and pulse signals from the data by            

performing slice-wise temporal ICA, identifying noise components per slice, and          

implementing signal correction (Beall and Lowe, 2007). We used this approach           

because no respiratory or cardiac signals were directly measured during rs-fMRI. 

Next, we pre-processed the PESTICA-corrected rs-fMRI data using DPARSF         

( Data Processing Assistant for Resting-State fMRI; Yan and Zang, 2010), running on            

MATLAB (2016a, The Mathworks, Inc., Natick, U.S.A.). The preprocessing steps          

included discarding the first 5 volumes to remove initial T1 saturation; slice-timing            

correction; reorienting to anterior commissure-posterior commissure plane;       

realignment; co-registration to the high-resolution, structural image; DARTEL        

( Diffeomorphic Anatomical Registration using Exponentiated Lie algebra; Ashburner,        

2007) segmentation into the three tissue types (gray matter, white matter, and            

cerebrospinal fluid); normalization to the Montreal Neurological Institute (MNI) space;          

spatial smoothing with a 4 mm full-width-at-half-maximum Gaussian kernel, and          

detrending. Moreover, the signals from white matter and cerebrospinal fluid, the six            

head motion parameters and their corresponding first derivatives, and the ‘bad’           

frames ( based on the framewise displacement metric of Power et al., 2012, as             

implemented in DPARSF) were regressed out from the rs-fMRI data. The global            
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signal was not regressed out during preprocessing to avoid possible spurious           

anticorrelations. 

 

Temporal filtering of rs-fMRI data 

Following the frequency ranges of the slowest oscillations as defined in Penttonen            

and Buzsáki (2003) and on previous rs-fMRI studies (e.g., Zuo et al., 2010; Gohel              

and Biswal, 2015), we focused on four frequency bins: ‘Slow-5’ (0.01-0.027 Hz),            

‘Slow-4’ (0.027-0.073 Hz), ‘Slow-3’ (0.073-0.198 Hz), and ‘Slow-2’ (0.198-0.4 Hz).          

The upper limit of Slow-2, and our highest frequency possible, was defined based on              

the Nyquist frequency for our 1.25-s repetition time, i.e., (1/1.25)/2 Hz. The current             

sampling frequency did not permit including the actual upper limit of Slow-2 (i.e., 0.5              

Hz), and ‘Slow-1’ (0.5–0.75 Hz) ( cf. Gohel and Biswal, 2015). We used these bins to               

temporally filter the preprocessed data. Thus, we obtained five data versions, each            

with a different frequency composition, namely, the four frequency bins and one            

‘Global,’ encompassing all bins (i.e., 0.01-0.4 Hz), for comparison. Note that these            

versions solely differed in their spectral content and that Global was included as a              

reference, to better appreciate the possible frequency specificity of inter-FC and its            

association with VPS. 

 

Independent component analysis (ICA) and dual regression 

Spatial group ICA was used to decompose the preprocessed BOLD-fMRI volumes           

into 75 independent components (ICs; following Allen et al., 2011) with FSL ( v. 5.0.7;              

Jenkinson et al., 2012) MELODIC (v. 3.14; Smith et al., 2004). Dual regression was              

performed on all ICs to generate participant-specific time courses (stage 1) and            

spatial maps (stage 2) (Beckmann et al., 2009). The participant-specific time courses            
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were used as input for the inter-FC analysis. Both ICA and dual regression were              

performed separately for each of the four frequency bins and for the Global data. 

 

Brain network selection 

For each frequency bin, we obtained the ICs’ spatial cross-correlation values with            

resting-state network templates (Allen et al., 2011) using FSL’s fslcc command           

( https://surfer.nmr.mgh.harvard.edu/pub/dist/freesurfer/tutorial_packages/OSX/fsl_50

1/src/avwutils/fslcc.cc ). As we were interested in networks relevant for VPS, we           

selected the two ICs, as defined in Allen et al. (2011), that showed the highest               

correlation coefficients with, correspondingly, COn (Allen et al.’s Salience, IC 55),           

RFPn (Allen et al.’s IC 60), and visual networks (Allen et al.’s IC 39, IC 46, IC 48, IC                   

59, IC 64, and IC 67). Next, the two ICs that correlated the highest were visually                

inspected and the one including the most relevant regions of each network were             

chosen. These regions included the anterior insula and anterior midcingulate cortex           

for COn; the right middle frontal gyrus and anterior inferior parietal lobule for RFPn;              

and striate and extrastriate cortex, as well as lateral geniculate nucleus of the             

thalamus, for the visual networks (Uddin et al., 2019). After visual inspection, if both              

ICs included parts of the relevant regions in a complementary manner (i.e., the             

network was split), both were selected. If both ICs included the relevant regions but              

these were unidentifiable from the overall spatial pattern of the IC (i.e., the ICs              

additionally included other brain regions or noise patterns), none was selected. 

 

Inter-FC analyses 

To calculate the individual inter-FC of network pairs, the specific time courses (i.e.,             

those derived from stage 1 of the dual regression) of the networks of interest were               
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correlated for each participant. The resulting r-value matrices were Fisher          

Z -transformed and averaged across participants to obtain a group-level inter-FC          

matrix. One-sample t-tests were computed on the group mean Fisher- Z-transformed          

correlation matrix and the false discovery rate method (FDR; Benjamini and           

Hochberg, 1995) was used to correct for multiple comparisons ( p < 0.05 and q <               

0.05). We repeated this step for each frequency bin (including Global). This analysis             

was performed with custom code written in MATLAB (Ruiz-Rizzo and Küchenhoff,           

2020). 

 

Code Accessibility 

Analysis scripts for the inter-FC and the statistical analyses and analyzed           

neuroimaging data are publicly available and can be accessed at          

( https://osf.io/nhqg3/ ). Analyzed behavioral data will also be accessible to qualified          

researchers upon request. 

 

Results 

Brain network selection 

Coefficients for the cross-correlation of ICs with the network templates of Allen et al.              

(2011) are listed in Table 2. COn was consistently identified across all frequency             

bins and Global. For Slow-3, two subcomponents of COn were identified, one            

centered on the insula and the other on the anterior cingulate cortex (ACC) (Figure              

2A, top row, third column; IC32 and IC42 respectively). Thus, both ICs (i.e., IC32 and               

IC42) were included in further analyses. RFPn was consistently identified across all            

frequency bins and Global (Figure 2A, bottom row). Finally, five (out of six) of Allen               

et al.’s visual system networks (named here as Vis-39, Vis-46, Vis-59, Vis-64, and             
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Vis-67 following Allen et al’s IC numbering) were consistently identified across all            

frequency bins and Global (Figure 2B). Allen et al.’s IC 48 could be identified only in                

Global and Slow-4 and, thus, was excluded from further analyses. 

 

Figure 2. Networks of interest identified for each frequency bin. Independent           

components (IC) representative of the cingulo-opercular and right frontoparietal         

networks (A) and visual networks (B) (following Allen et al., 2011) in each frequency              

bin (Slow-5 to Slow-2) and Global, for comparison. Montreal Neurological Institute           

coordinates (x, y, z, in mm) correspond to the slices shown for each network. Slow-5:               

0.01-0.027 Hz; Slow-4: 0.027-0.073 Hz; Slow-3: 0.073-0.198 Hz; Slow-2: 0.198-0.4          

Hz. 

 

Table 2. ICs with highest correlation coefficients with network templates across 

frequency bins (and Global, for comparison) 
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Note. Correlation coefficients between Allen et al. (2011)’s templates and the two independent             
components (ICs) with the highest values are shown separately for networks of interest and frequency               
bins. Selected ICs (based on correlation coefficients and visual inspection) are marked in bold. Allen               
et al.’s Salience (IC 55) and Right frontoparietal network (IC 60) correspond to the cingulo-opercular               
(COn) and RFPn, respectively, of the present study. Slow-5: 0.01-0.027 Hz; Slow-4: 0.027-0.073 Hz;              
Slow-3: 0.073-0.198 Hz; Slow-2: 0.198-0.4 Hz. Vis: visual networks. 
 

Inter-FC between COn, RFPn, and visual networks 

19 

Network 

template 

Frequency bin 

 Slow-5 Slow-4 Slow-3 Slow-2 Global 

COn IC20 (0.63) 

IC15 (0.24) 

IC32 (0.52) 

IC35 (0.41) 

IC32 (0.38) 

IC42 (0.31) 

IC51 (0.27) 

IC23 (0.24) 

IC27 (0.39) 

IC44 (0.36) 

 

RFPn IC7 (0.64) 

IC14 (0.25) 

IC4 (0.70) 

IC18 (0.21) 

IC2 (0.72) 

IC33 (0.27) 

IC61 (0.43) 

IC58 (0.26) 

IC3 (0.69) 

IC15 (0.33) 

 

Vis-39 IC11 (0.49) 

IC14 (0.28) 

IC20 (0.43) 

IC40 (0.43) 

IC3 (0.44) 

IC33 (0.35) 

IC52 (0.28) 

IC40 (0.22) 

IC4 (0.49) 

IC15 (0.28) 

 

Vis-46 IC2 (0.49) 

IC1 (0.35) 

IC8 (0.58) 

IC2 (0.36) 

IC5 (0.47) 

IC10 (0.39) 

IC11 (0.47) 

IC10 (0.31) 

IC5 (0.46) 

IC11 (0.44) 

 

Vis-59 IC1 (0.51) 

IC32 (0.32) 

IC6 (0.47) 

IC17 (0.39) 

IC4 (0.54) 

IC63 (0.29) 

IC2 (0.51) 

IC3 (0.25) 

IC1 (0.52) 

IC28 (0.33) 

 

Vis-64 IC5 (0.55) 

IC2 (0.44) 

IC1 (0.64) 

IC6 (0.35) 

IC5 (0.51) 

IC4 (0.41) 

IC8 (0.49) 

IC10 (0.37) 

IC5 (0.48) 

IC14 (0.45) 

 

Vis-67 IC18 (0.47) 

IC43 (0.33) 

IC2 (0.48) 

IC39 (0.36) 

IC40 (0.48) 

IC10 (0.30) 

IC44 (0.44) 

IC8 (0.31) 

IC38 (0.44) 

IC14 (0.38) 
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The group average correlation matrix, per frequency bin, between COn, RFPn, and            

visual networks is depicted in Figure 3, and the corresponding statistical comparison            

across frequency bins, for COn, RFPn, and visual network pairs is shown in Figure              

4. COn exhibited significant inter-FC with three visual networks (Vis-39, Vis-59, and            

Vis-67) in three frequency bins: Slow-4, Slow-3, and Slow-2. The inter-FC with            

Vis-39 was negative in both Slow-4 ( Z = -0.28, p < .001) and Slow-2 ( Z = -0.09 , p =                    

0.004). The inter-FC with Vis-59 was negative in Slow-4 ( Z = -0.16 , p < 0.001) and                 

positive in Slow-3 (ACC-subcomponent: Z = 0.08, p = 0.011; insula-subcomponent:           

Z = 0.14, p < 0.001). Finally, the inter-FC with Vis-67 was also negative in Slow-4 ( Z                 

= -0.12, p = 0.004) and positive in Slow-3 (insula-subcomponent: Z = 0.12, p <               

0.001). As a reference, when all frequencies were considered together (i.e., Global),            

COn exhibited significant negative inter-FC with Vis-39 ( Z = -0.12, p < 0.0001) and              

Vis-59 ( Z = -0.10, p < 0.0001) and positive with Vis-46 ( Z = 0.07, p = 0.004). When                  

comparing across frequency bins (Figure 4A), we found the magnitude of the            

inter-FC between COn and visual networks to differ significantly [F(3.38, 812.6) =            

33.67, p < 0.001, η 2 = 0.09]. In particular, the (positive) inter-FC between COn’s              

insula-subcomponent and visual networks in Slow-3 was significantly stronger         

compared to the inter-FC between (single component) COn and visual networks in            

all other frequency bins (all Bonferroni-corrected p-values < 0.001). 
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Figure 3. Group average correlation matrices between visual processing speed          

(VPS) relevant networks. Correlation matrices representing functional connectivity        

( Z-values) between higher-order networks previously shown relevant for VPS         

(cingulo-opercular network, COn, and right frontoparietal network, RFPn) and visual          

networks (Vis) across frequency bins (Slow-5 to Slow-2) and Global (frequencies           

altogether), for reference. Red indicates positive correlations, whereas blue and          

white indicate, respectively, negative and around-zero correlations. FDR-corrected ( q         
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< 0.05) significant values are marked with a ‘*’. See text for specific frequency              

ranges included in each bin. 

 

 

Figure 4. Mean inter-FC between cingulo-opercular, right frontoparietal, and         

visual networks across frequency bins. (A) The mean Z-value of the inter-FC            

between the cingulo-opercular (COn) and all visual networks was positive and           

strongest in Slow-3 with the COn’s insula-subcomponent (Slow3_Ins). (B) The mean           

Z -value of the inter-FC between the right frontoparietal network (RFPn) and all visual             

networks was negative and strongest in Slow-5 and Slow-4. (C) The mean Z-value of              

the inter-FC between COn and RFPn was positive and strongest in Slow-4 and             

Slow-3 with the COn’s ACC-subcomponent (Slow-3_ACC). (D) The mean Z-value of           
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the inter-FC among visual networks was positive and strongest in Slow-5.           

Significance was determined at Bonferroni-corrected p0.05/6 = 0.008 (for A and C,            

where COn was subdivided into two subcomponents) and p0.05/3 = 0.017 (for B and              

D). Bars represent 95% confidence intervals. 

 

The RFPn exhibited significant negative inter-FC with the same three visual           

networks as COn (Vis-39, Vis-59, and Vis-67) in all frequency bins (Figure 3; e.g.,              

Vis-59: Z = -0.38 in Slow-5; Vis-39: Z = -0.35 in Slow-4; Vis-67: Z = -0.10 in Slow-3;                  

all p -values < 0.001) but Slow-2, in which the only significant inter-FC was observed              

with Vis-46 ( Z = -0.07, p = 0.021). As a reference, in Global, RFPn showed               

significant negative inter-FC with all visual networks ( Z-values’ range: -0.37 to -0.19;            

all p -values < 0.0001). When comparing across frequency bins (Figure 4B), we again             

found the inter-FC between RFPn and visual networks to differ significantly [F(2.28,            

544.92) = 50.94, p < 0.001, η² = 0.11]. In particular, the mean inter-FC was               

decreasingly less negative with increasing frequency, indicating that correlations         

were stronger and more negative in slower than in faster frequency bins.            

Bonferroni-corrected post-hoc tests revealed that inter-FC between RFPn and visual          

networks was equally strong in Slow-5 (mean Z = -0.25) and Slow-4 (mean Z =               

-0.23), but decreased in magnitude in Slow-3 (mean Z = -0.12, p < 0.0001, in               

comparison to all other bins) and Slow-2 (mean Z = -0.02, p < 0.001, in comparison                

to all other bins). 

COn showed significant inter-FC with RFPn in the following frequency bins           

(Figure 3): positive in Slow-4 ( Z = 0.19, p < 0.0001) and Slow-3             

(ACC-subcomponent: Z = 0.15, p < 0.0001), and negative in Slow-2 (Z = -0.13, p <                

0.001). In Slow-5, inter-FC with RFPn was non-significant ( Z = -0.08, p = 0.065). As               
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a reference, in Global, the inter-FC between these two networks was positive ( Z =              

0.08, p < 0.001). Comparison across frequency bins (Figure 4C) revealed the            

inter-FC between RFPn and COn to differ significantly [F(2.90, 136.49) = 18.30, p <              

0.001, η ² = 0.24]. Bonferroni-corrected post-hoc tests showed that the inter-FC           

between RFPn and COn was significantly more positive in Slow-4 and Slow-3            

(ACC-subcomponent only) than in the other frequency bins or the          

insula-subcomponent in Slow-3 (all p -values < 0.001; Figure 4C). 

Finally, for all visual networks, there was positive inter-FC throughout the           

entire frequency range (range: Z = 0.84 in Slow-5 to 0.06 in Slow-2; Figure 3). As a                 

reference, in Global, the inter-FC among all visual networks was significantly           

positive, too [Z-values’ range: -0.75 (Vis-59 and Vis-48) to -0.12 (Vis-39 and Vis-67)].             

When comparing across frequency bins (Figure 4D), although always positive, the           

inter-FC between visual network pairs differed significantly [F(3.38, 812.6) = 33.67, p            

< 0.001, η ² = 0.09]. Specifically, inter-FC decreased in strength with increasing            

frequency (Figure 4D). For example, the inter-FC between Vis-39 and Vis-59 was of             

0.83 ( p < 0.0001) in Slow-5, 0.59 ( p < 0.0001) in Slow-4, 0.54 ( p < 0.0001) in Slow-3,                  

but only of 0.06 in Slow-2 (p = 0.037, n.s. after FDR correction). 

In summary, we found that the mean inter-FC of COn with visual networks             

was positive and strongest in Slow-3 (insula-subcomponent); the mean inter-FC of           

RFPn with visual networks was negative and strongest in Slow-5 and Slow-4; the             

mean inter-FC between COn and RFPn was positive and strongest in Slow-4 and             

Slow-3 (ACC-subcomponent); and the mean inter-FC between visual networks was          

positive and strongest in Slow-5. Next, we investigated whether there is an            

association of VPS C with the inter-FC between these networks and, further, whether             

this association is frequency-specific. 
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Association of VPS parameter C with the inter-FC between COn, RFPn, and visual 

networks 

Values for VPS parameter C ranged from 10.34 to 47.01 letters/s (mean = 22.90 ±               

7.70). We conducted five linear regressions (one for each visual network: Vis-39,            

Vis-46, Vis-59, Vis-64, and Vis-67) to examine the associations between VPS           

parameter C values and the inter-FC of COn and RFPn with visual networks across              

frequency bins and Global, controlling for age and head motion. 

Figure 5 depicts the predictors’ beta coefficients (and their corresponding 95%           

confidence intervals) of inter-FC of COn (A) and RFPn (B) with each visual network              

across frequency bins (depicted in different colors and geometrical shapes).          

Significant associations with parameter C were found only for the inter-FC of RFPn             

with two of the five visual networks (Vis-59 and Vis-64) (confidence intervals not             

including zero; Figure 5B). Specifically, more negative inter-FCs of RFPn with Vis-59            

(Slow-5: β = -0.56, SE = 0.22, p = 0.014) and Vis-64 (Slow-5: β = -0.56, SE = 0.22, p                    

= 0.015; Slow-2: β = -0.35, SE = 0.16, p = 0.034) were significantly associated with                

higher VPS parameter C. No further significant associations were observed (all           

p -values > 0.060). 

To determine possible frequency specificity for the frequency bins that proved           

significant (i.e., inter-FC of RFPn and Vis-59 in Slow-5 and inter-FC of RFPn and              

Vis-64 in Slow-5 and Slow-2), we calculated post-hoc linear contrasts of the beta             

coefficients (i.e., Slow-5 > Slow-4; Slow-5 > Slow-3; Slow-5 > Slow-2; Slow-2 >             

Slow-4; and Slow-2 > Slow-3). In the regression model of inter-FC between Vis-59             

and RFPn (green diamond in Figure 5B), contrasts indicated that the association            

was significantly different between Slow-5 and Slow-4 ( z = -2.77, p = 0.016),             
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marginally different between Slow-5 and Slow-3 ( z = -2.24, p = 0.065), and not              

different between Slow-5 and Slow-2 ( p = 0.685). Similarly, in the model of inter-FC              

of RFPn with Vis-64 (ocher upward triangle in Figure 5B), the association was             

significantly different between Slow-5 and Slow-4 ( z = -3.43, p = 0.002) and Slow-2              

and Slow-4 ( z = -2.53, p = 0.022), but not between Slow-5 and Slow-3 ( p = 0.102),                 

Slow-5 and Slow-2 ( p = 0.751), or Slow-2 and Slow-3 ( p = 0.249). Thus, the               

association with VPS parameter C observed in Slow-5 for the inter-FC between            

RFPn and Vis-59 and Vis-64 appears to be also present (although less marked) in              

Slow-3 and Slow-2, arguing that it is not frequency-specific. 

 

 

Figure 5. Estimates of linear regressions of visual processing speed (VPS)           

parameter C on inter-FC of cingulo-opercular network (COn) and right          

frontoparietal network (RFPn) with visual networks. The standardized        

coefficients (and their respective 95% confidence intervals) of five multiple          

regression models of VPS C on the inter-FC of COn (A) and the RFPn (B) with each                 

visual network (Vis-), are depicted in five different colors and geometrical shapes. All             

models included as predictors the inter-FC of both COn and RFPn with one of the               

five visual networks, respectively (hence five regression models), across frequency          

bins and Global, age, and head motion. For clarity, inter-FC predictors are clustered             
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on the y -axis and presented separately for COn (A) and RFPn (B). Estimates of age               

and head motion, as well as the of intercept, were omitted from the figure for               

simplicity. Significant estimates are those whose confidence interval does not cross           

the middle vertical (black dashed) line. Conventions for the regression models:           

Vis-39: purple, circle; Vis-46: blue, square; Vis-59: green, diamond; Vis-64: ocher,           

upward triangle; Vis-67: red, downward triangle. 

 

Surprisingly, the inter-FC of COn and visual networks was not significantly           

associated with VPS parameter C in any of the frequency bins and in any of the                

models (all p -values > 0.129; Figure 5A). We also found no significant results for the               

inter-FC of RFPn or COn with visual networks in Global in any of the models (all                

p-values > 0.158). None of the control variables showed significant associations with            

VPS parameter C in any of the models (age: all p-values > 0.255; head motion: all                

p -values > 0.400). 

For completeness, we additionally examined the potential link between VPS          

parameter C and the inter-FC between COn and RFPn. We observed a significant             

association between the inter-FC of COn’s ACC-subcomponent and RFPn in Slow-3           

only (β = -0.34, SE = 0.16, p = 0.043; p-values of all other frequency bins and Global                  

> 0.269). 

In summary, we found higher VPS parameter C to be significantly associated 

with a more negative inter-FC between RFPn and visual networks in Slow-5 (Vis-59 

and Vis-64) and Slow-2 (Vis-64) only. However, contrary to our expectations, we did 

not find a significant association between VPS parameter C and the inter-FC of COn 

with visual networks for any frequency bin or Global. 

 

27 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2020. ; https://doi.org/10.1101/2020.11.11.378406doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.11.378406
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Discussion 

In this study, we used theory of visual attention modeling and a frequency-based             

approach to examine whether the between-network functional connectivity (inter-FC)         

of the cingulo-opercular network (COn) and the right frontoparietal network (RFPn)           

with visual networks is associated with visual processing speed (VPS). We found            

that inter-FC of RFPn, but not that of COn, with visual networks was linked with VPS,                

and that this link was also observed beyond the typically analyzed frequency range.             

Filtering rs-fMRI data into four frequency bins (Slow-5: 0.01-0.027 Hz, Slow-4:           

0.027-0.073 Hz, Slow-3: 0.073-0.198 Hz, and Slow-2: 0.198-0.4 Hz) revealed a           

functional subdivision for COn in Slow-3, with the strongest inter-FC with visual            

networks for COn’s insula-subcomponent and the strongest inter-FC with RFPn for           

COn’s anterior cingulate cortex (ACC)-subcomponent. Further, our approach        

revealed the strongest inter-FC between RFPn and visual networks in the slowest            

bins (Slow-5 and Slow-4). Our results are indicative of a frequency-specific inter-FC            

between higher-order and primary resting-state networks relevant for VPS and          

provide the first empirical evidence for a link between a latent VPS parameter and              

the intrinsic inter-FC between right frontoparietal (but not frontoinsular) and occipital           

regions. 

 

Inter-FC between RFPn and visual networks links with VPS 

We found that the inter-FC between RFPn and visual networks, but not between             

COn and visual networks, was associated with the VPS parameter (Figure 5). This             

association was observed not only in the typically analyzed frequency range (Slow-5)            

but, notably, also in frequencies beyond this range (Slow-2 and, less strongly,            

Slow-3). The association with VPS was found for the inter-FC between RFPn and             
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Vis-59 and Vis-64, i.e., networks that include, respectively, dorsal (adjoining parietal           

cortex) and primary visual areas (Allen et al., 2011). This finding is in accordance              

with well-established evidence that attentional control signals from (fronto)parietal         

regions of RFPn modulate sensory processing in visual cortices (Green and           

McDonald, 2008; Gilbert and Li, 2013; Scolari et al., 2015; Riedl et al., 2016) and               

that more right-hemispheric lateralization of the inferior fronto-occipital fasciculus         

associates with higher VPS (Chechlacz et al., 2015). In the present study, inter-FC             

was measured at rest and the VPS parameter C was obtained independently (i.e.,             

from modeling accuracy in a whole-report task performed on a different day).            

Accordingly, this association would imply that the intrinsic inter-FC reflects the           

individual potential of the visual system to process information in an efficient manner,             

as the parameter C represents a latent-level measure of VPS (e.g., Finke et al.,              

2005). 

Higher VPS parameter C was associated with lower (negative) inter-FC          

between RFPn and visual networks (Figure 3). Theoretically, VPS is determined by            

categorizations, i.e., selection of visual features ( “object x has feature i”; Bundesen,            

1990). In neural terms, such selection increases the firing rate of the cortical neurons              

coding for a particular feature (and, correspondingly, decreases the firing rate of            

neurons coding for other features) (Bundesen et al., 2005). Functional connectivity           

has been proposed to reflect fluctuations in cortical excitability (Raichle, 2011).           

Moreover, spontaneous, infra-slow neuronal fluctuations have been shown to         

underlie functional connectivity (Matsui et al., 2016). Thus, negative inter-FC          

between RFPn and visual networks suggests a neural implementation of the           

selection mechanism—a visual categorization would increase the activity of,         

specifically, the visual areas coding for a particular feature, but not of all visual areas               
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(coding other features and where activity would decrease), thereby translating into a            

net decrease. 

Contrary to what we expected, and unlike RFPn, the inter-FC between COn            

and visual networks was not associated with VPS parameter C. One possibility for             

this null finding may be that COn’s functional role in sustained cognitive control (see              

below) is not limited solely to visual processing and requires more interaction with             

higher-order networks ( e.g., to control switching between default mode and central           

executive networks; Sridharan et al., 2008) than with unimodal networks. This           

possibility is further supported by our finding of an association of the inter-FC             

between COn and RFPn with VPS. COn and RFPn are two functionally well coupled              

but distinct networks associated with cognitive control (e.g., Dosenbach et al., 2007;            

Crittenden et al., 2016). Whereas COn has been suggested to be involved in             

cognitive control across longer periods of time, RFPn appears to adjust control more             

rapidly and dynamically (Dosenbach et al., 2008; Sadaghiani et al., 2012). The            

functional connectivity within COn and its inter-FC with RFPn have previously been            

shown relevant for the VPS parameter C (e.g., Ruiz-Rizzo et al., 2018). In light of the                

previous evidence, the current results suggest a possible hierarchical structure for           

the functional-connectivity-based correlates of the complex individual trait underlying         

VPS. This functional hierarchy would imply that COn might trigger sustained           

cognitive control, RFPn might then be stimulated to enhance the phasic response to             

incoming stimuli and thereby gate stimulus processing in visual (primary and dorsal            

occipital) regions. Assessing effective (i.e., directional) FC could provide further          

empirical support to this proposal. 

 

Inter-FC between VPS relevant networks is frequency-specific 
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Previous studies showed that resting-state networks can be observed at frequencies           

beyond the traditionally examined frequency range (0.01 - 0.1 Hz) and that filtering             

data to this range discards potential differences in functional connectivity (Zuo et al.,             

2010; Kalcher et al., 2014; Gohel and Biswal, 2015; Wang et al., 2018). Accordingly,              

we followed a frequency-based approach, which yielded two main insights. First,           

there was a meaningful subdivision of COn in Slow-3 into its two core regions (e.g.,               

Seeley et al., 2007), the insula and the ACC. This subdivision showed a particular              

inter-FC pattern, with significant inter-FC of the insula-subcomponent with visual          

networks and significant inter-FC of the ACC-subcomponent with RFPn. Of note, this            

subdivision only occurred in Slow-3 (also see Salvador et al., 2008), which includes             

frequencies typically filtered out (e.g., > 0.1), and is in agreement with task-fMRI             

evidence of a functional dissociation between the insula (alerting) and the ACC (set             

switching) (Han et al., 2019) and previous rs-fMRI evidence of the intrinsic            

connectivity of the (posterior dorsal) insula with visual brain areas (Cauda et al.,             

2011). 

Second, the inter-FC of COn, RFPn, and visual networks appears stronger in            

some frequencies (Figure 4), though it is present across all frequency bins (Figure 3)              

(see also, Gohel and Biswal, 2015). For COn, the strongest inter-FC with visual             

networks was found in Slow-3 (faster than the typically analyzed rs-fMRI BOLD            

signal frequency range), whereas for RFPn, the strongest inter-FC with visual           

networks was found in Slow-5 and Slow-4 (the typically analyzed frequency range),            

aligning well with previous evidence on brain-regional differences in frequency power           

(e.g., Baria et al., 2011). The strongest inter-FC between visual network pairs was             

found in Slow-5, in accordance with previous documentations that the fMRI-BOLD           

signal in occipital networks mostly concentrates in infra-slow frequencies ( i.e.,          
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0.01-0.06 Hz; Wu et al., 2008; Baria et al., 2011) and correlates positively with              

lower-frequency electroencephalographic amplitude ( i.e., delta and theta rhythms;        

~1.0–8.2 Hz; Jann et al., 2010). From a methods perspective, these results, along             

with the found association between the inter-FC of RFPn with visual networks in             

Slow-2 and VPS parameter C, provide supportive evidence that a frequency-binned           

approach can yield additional, valuable insights into the rs-fMRI BOLD signal. 

In interpreting our results, some limitations should be considered. First, the           

two COn subcomponents were identified only in Slow-3. Future studies should           

determine whether this separation is specific to Slow-3. Further, the results on the             

strongest inter-FC in specific frequency bins do not directly imply ‘communication’           

preferences between the neuronal populations of those networks. Rather, inter-FC          

was observed across the entire spectrum measured with BOLD-fMRI, which is in line             

with electrophysiological evidence showing that the oscillations that characterize         

functional networks span multiple frequency bands (Mantini et al., 2007). Finally,           

task-based fMRI studies investigating VPS variability within an individual could help           

elucidate the meaning and relevance of the observed negative association between           

inter-FC (of RFPn and visual networks) and VPS. Despite its limitations, our study             

underscores the usefulness of a frequency-based approach for better understanding          

the spontaneous fMRI-BOLD activity and how it links to behavior (Wu et al., 2008;              

Kalcher et al., 2014; Sasai et al., 2014). 

 

Conclusion 

Our study provides first empirical evidence that the intrinsic inter-FC between RFPn            

and visual networks links to VPS. Albeit expected, we did not find such a link for                

COn. Our frequency-based approach revealed that the inter-FC between functional          
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networks relevant for VPS and their link to VPS are also observed in frequencies              

above 0.1 Hz. 
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Figure Legends 

Figure 1. Whole-report task used to estimate the visual processing speed           

parameter C. Participants are asked to report all letters they are fairly certain they              

have seen, placing emphasis on accuracy, and not speed, of verbal report. 

Figure 2. Networks of interest identified for each frequency bin. Independent           

components (IC) representative of the cingulo-opercular and right frontoparietal         

networks (A) and visual networks (B) (following Allen et al., 2011) in each frequency              

bin (Slow-5 to Slow-2) and Global, for comparison. Montreal Neurological Institute           

coordinates (x, y, z, in mm) correspond to the slices shown for each network. Slow-5:               

0.01-0.027 Hz; Slow-4: 0.027-0.073 Hz; Slow-3: 0.073-0.198 Hz; Slow-2: 0.198-0.4          

Hz. 

Figure 3. Group average correlation matrices between visual processing speed          

(VPS) relevant networks. Correlation matrices representing functional connectivity        

( Z-values) between higher-order networks previously shown relevant for VPS         

(cingulo-opercular network, COn, and right frontoparietal network, RFPn) and visual          

networks (Vis) across frequency bins (Slow-5 to Slow-2) and Global (frequencies           

altogether), for reference. Red indicates positive correlations, whereas blue and          

white indicate, respectively, negative and around-zero correlations. FDR-corrected ( q         

< 0.05) significant values are marked with a ‘*’. See text for specific frequency              

ranges included in each bin. 

Figure 4. Mean inter-FC between cingulo-opercular, right frontoparietal, and         

visual networks across frequency bins. (A) The mean Z-value of the inter-FC            

between the cingulo-opercular (COn) and all visual networks was positive and           

strongest in Slow-3 with the COn’s insula-subcomponent (Slow3_Ins). (B) The mean           

Z -value of the inter-FC between the right frontoparietal network (RFPn) and all visual             
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networks was negative and strongest in Slow-5 and Slow-4. (C) The mean Z-value of              

the inter-FC between COn and RFPn was positive and strongest in Slow-4 and             

Slow-3 with the COn’s ACC-subcomponent (Slow-3_ACC). (D) The mean Z-value of           

the inter-FC among visual networks was positive and strongest in Slow-5.           

Significance was determined at Bonferroni-corrected p 0.05/6 = 0.008 (for A and C,            

where COn was subdivided into two subcomponents) and p0.05/3 = 0.017 (for B and              

D). Bars represent 95% confidence intervals. 

Figure 5. Estimates of linear regressions of visual processing speed (VPS)           

parameter C on inter-FC of cingulo-opercular network (COn) and right          

frontoparietal network (RFPn) with visual networks. The standardized        

coefficients (and their respective 95% confidence intervals) of five multiple          

regression models of VPS C on the inter-FC of COn (A) and the RFPn (B) with each                 

visual network (Vis-), are depicted in five different colors and geometrical shapes. All             

models included as predictors the inter-FC of both COn and RFPn with one of the               

five visual networks, respectively (hence five regression models), across frequency          

bins and Global, age, and head motion. For clarity, inter-FC predictors are clustered             

on the y -axis and presented separately for COn (A) and RFPn (B). Estimates of age               

and head motion, as well as the of intercept, were omitted from the figure for               

simplicity. Significant estimates are those whose confidence interval does not cross           

the middle vertical (black dashed) line. Conventions for the regression models:           

Vis-39: purple, circle; Vis-46: blue, square; Vis-59: green, diamond; Vis-64: ocher,           

upward triangle; Vis-67: red, downward triangle. 
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Tables 

Table 1. Demographic variables 

Notes. BDI: Beck Depression Inventory (Beck et al., 1996); SD: Standard           
deviation; TMT-A: Trail-Making Test part A. Handedness: 1: completely right          
handed; -1: completely left-handed; BDI cutoff: 19. TMT-A mean and SD           
correspond with those reported in (Tombaugh, 2004). 
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Variable ( N = 48) Mean ± SD 

Age (years) 32.96 ± 9.58 

Sex (female/male) 27/21 

Education (years) 12.21 ± 1.07 

Intelligence (IQ) 110.30 ± 14.05 

Depression (BDI score) 4.96  ± 4.80 

Handedness 0.71 ± 0.55 

TMT-A (time in s) 25.53 ± 10.71 
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Table 2. ICs with highest correlation coefficients with network templates across 

frequency bins (and Global, for comparison) 

Note. Correlation coefficients between Allen et al. (2011)’s templates and the two independent             
components (ICs) with the highest values are shown separately for networks of interest and frequency               
bins. Selected ICs (based on correlation coefficients and visual inspection) are marked in bold. Allen               
et al.’s Salience (IC 55) and Right frontoparietal network (IC 60) correspond to the cingulo-opercular               
(COn) and RFPn, respectively, of the present study. Slow-5: 0.01-0.027 Hz; Slow-4: 0.027-0.073 Hz;              
Slow-3: 0.073-0.198 Hz; Slow-2: 0.198-0.4 Hz. Vis: visual networks. 
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Network 

template 

Frequency bin 

 Slow-5 Slow-4 Slow-3 Slow-2 Global 

COn IC20 (0.63) 

IC15 (0.24) 

IC32 (0.52) 

IC35 (0.41) 

IC32 (0.38) 

IC42 (0.31) 

IC51 (0.27) 

IC23 (0.24) 

IC27 (0.39) 

IC44 (0.36) 

 

RFPn IC7 (0.64) 

IC14 (0.25) 

IC4 (0.70) 

IC18 (0.21) 

IC2 (0.72) 

IC33 (0.27) 

IC61 (0.43) 

IC58 (0.26) 

IC3 (0.69) 

IC15 (0.33) 

 

Vis-39 IC11 (0.49) 

IC14 (0.28) 

IC20 (0.43) 

IC40 (0.43) 

IC3 (0.44) 

IC33 (0.35) 

IC52 (0.28) 

IC40 (0.22) 

IC4 (0.49) 

IC15 (0.28) 

 

Vis-46 IC2 (0.49) 

IC1 (0.35) 

IC8 (0.58) 

IC2 (0.36) 

IC5 (0.47) 

IC10 (0.39) 

IC11 (0.47) 

IC10 (0.31) 

IC5 (0.46) 

IC11 (0.44) 

 

Vis-59 IC1 (0.51) 

IC32 (0.32) 

IC6 (0.47) 

IC17 (0.39) 

IC4 (0.54) 

IC63 (0.29) 

IC2 (0.51) 

IC3 (0.25) 

IC1 (0.52) 

IC28 (0.33) 

 

Vis-64 IC5 (0.55) 

IC2 (0.44) 

IC1 (0.64) 

IC6 (0.35) 

IC5 (0.51) 

IC4 (0.41) 

IC8 (0.49) 

IC10 (0.37) 

IC5 (0.48) 

IC14 (0.45) 

 

Vis-67 IC18 (0.47) 

IC43 (0.33) 

IC2 (0.48) 

IC39 (0.36) 

IC40 (0.48) 

IC10 (0.30) 

IC44 (0.44) 

IC8 (0.31) 

IC38 (0.44) 

IC14 (0.38) 
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