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Abstract 

Sexual stimuli processing is a key element in the repertoire of human affective and 

motivational states. Previous neuroimaging studies of sexual stimulus processing have 

revealed a complicated mosaic of activated regions, leaving unresolved questions about their 

sensitivity and specificity to sexual stimuli per se, generalizability across individuals, and 

potential utility as neuromarkers for sexual stimulus processing. In this study, data on sexual, 

negative, non-sexual positive, and neutral images from Wehrum et al. (2013) (N = 100) were 

re-analyzed with multivariate Support Vector Machine models to create the Brain Activation-

based Sexual Image Classifier (BASIC) model. This model was tested for sensitivity, 

specificity, and generalizability in cross-validation (N = 100) and an independent test cohort 

(N = 18; Kragel et al. 2019). The BASIC model showed highly accurate performance (94-

100%) in classifying sexual versus neutral or nonsexual affective images in both datasets. 

Virtual lesions and test of individual large-scale networks (e.g., ‘visual’ or ‘attention’ 

networks) show that these individual networks are neither necessary nor sufficient to capture 

sexual stimulus processing. These findings suggest that brain responses to sexual stimuli 

constitute a category of mental event that is distinct from general affect and involves multiple 

brain networks. It is, however, largely conserved across individuals, permitting the 

development of neuromarkers for sexual processing in individual persons. Future studies 

could assess performance of BASIC to a broader array of affective/motivational stimuli and 

link brain responses with physiological and subjective measures of sexual arousal. 

Keywords: Sexual stimuli processing, erotic images, support vector machine classification, 

machine learning prediction model, multivariate analysis, neuroimaging, sexual brain, 

neuromarker 
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The Brain Activation-based Sexual Image Classifier (BASIC): A sensitive and specific fMRI 

activity pattern for sexual images 

Sexual stimulus processing is a fundamental part of human affective and motivational 

systems. Previous studies have predominantly compared brain activation during sexual and 

neutral visual stimuli with univariate neuroimaging analysis methods. They have 

demonstrated varying distributed brain activation patterns for sexual stimuli processing (for 

meta-analysis, see Stoléru, Fonteille, Cornélis, Joyal, & Moulier, 2012). The results thus 

demonstrate that there is not one ‘sex nucleus’, but that a distributed network of different 

areas is involved in sexual stimulus processing. Differences between sexual and neutral 

stimuli, however, can be driven not only by sexual stimulus processing per se but also other, 

more general types of positive and negative affect. Only two studies (Walter, Bermpohl, et 

al., 2008; Wehrum et al., 2013) have compared brain activation for sexual and nonsexual 

affective stimuli. These studies also demonstrate differences in brain activation in many 

different areas, suggesting that sexual stimuli activate a complicated mosaic of brain regions 

distinct from more general affective activation patterns. 

While they lay an important foundation for understanding brain processing of sexual 

stimuli, several important questions remain unanswered. Is the pattern of sex-related activity 

unique to sexual stimuli, or can it be explained by differences in the degree of engagement of 

lower-level processes, such as visual features or attention levels? Is this putatively unique 

pattern sufficiently generalizable across individuals that it could serve as a neuromarker for 

sexual stimulus processing?  

To address these questions, we adopt a multivariate brain modeling perspective 

(Wager & Lindquist, 2015). Predictive models have been created for many different complex 

psychological processes, including emotions (Kragel & LaBar, 2014; Saarimäki et al., 2016; 

Wager et al., 2015), pain (Marquand et al., 2010; Wager et al., 2013), memory (Harrison & 
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Tong, 2009; Norman, Polyn, Detre, & Haxby, 2006), attention (Rosenberg et al., 2015), and 

neurological and psychiatric disorders (for reviews, see Arbabshirani, Plis, Sui, & Calhoun, 

2017; Woo, Chang, Lindquist, & Wager, 2017). While standard univariate approaches have 

often led to structure-centric theories of complex mental processes (e.g., amygdala is critical 

for fear, anterior cingulate cortex (ACC) for pain), meta-analyses have revealed that a 

structure-centric view is insufficient, as virtually every gross anatomical structure is involved 

in a wide array of different cognitive functions (Yarkoni, Poldrack, Nichols, Van Essen, & 

Wager, 2011). Multivariate approaches respect the many-to-one mapping between brain 

structures and mental states, allowing that populations of neurons within and across brain 

regions work together to create neural representations of mental states (Norman et al., 2006), 

in line with a long and growing literature on population coding in neuroscience (for a brief 

review, see Kragel, Koban, Barrett, & Wager, 2018; Pouget, Peter, Dayan, & Zemel, 2000). 

Multivariate models can be tested for utility as neuromarkers, indicators of the presence of a 

particular mental state or event, by testing their sensitivity, specificity, and other 

measurement properties. If specificity is tested, this approach can also inform on the many-

to-many mapping between brain regions and categories of mental events, shedding light on 

whether mental constructs (here, sexual stimulus processing, general negative and positive 

affect, and general arousal) can be empirically dissociated based on different multivariate 

brain patterns, which is one of the goals of the present study. 

We aimed to test whether a multivariate classification model is capable of 

distinguishing between sexual and other types of affective stimuli in a manner generalizable 

across participants. For this purpose, we first re-analyzed brain responses to sexual, negative, 

non-sexual positive, and neutral images from Wehrum et al. (2013; N = 100) with 

multivariate Support Vector Machine (SVM) models to create the Brain Activation-based 

Sexual Image Classifier (BASIC) model. The performance of the BASIC model in 
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classifying sexual versus nonsexual images was tested for sensitivity and specificity in cross-

validated analyses on the Wehrum et al. (2013) dataset (applied to new individuals whose 

data were not used in model training) and validated in a new, independent cohort (N = 18; 

Kragel et al. 2019). Additionally, after finding that the BASIC has strong sensitivity and 

specificity for sexual stimulus processing, showing potential as a neuromarker, we investigate 

the brain areas that contribute to the model and the large-scale networks to which they 

belong. These analyses show that the brain key features contributing to sexual stimulus 

processing are distributed across large-scale networks, distinct from general affective 

processes.  
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Method 

Data from Study 1, published in Wehrum-Osinsky et al., (2014) and Wehrum et al. (2013), 

were re-analyzed. During the experiment, 50 women and 50 men (Mage = 25.4 years, STD = 

4.8 years) were presented with 30 pictures belonging to 4 categories: sexual, positive affect, 

negative affect, and neutral, in an fMRI scanner. The pictures were assigned randomly to six 

blocks of five pictures each. Each picture was presented for 3 seconds and the blocks were 

presented in pseudorandomized order. The functional and anatomical images were acquired 

with a 1.5 Tesla whole-body MR tomography (Siemens Symphony with quantum gradient 

system, Siemens Medical Systems, Erlangen, Germany). More specific information about the 

participants, experimental design, and image acquisition can be found in Supplementary 

Information 1 and the corresponding papers. 

 

 

Preprocessing 

Preprocessing and first-level analyses were carried out using Statistical Parametric 

Mapping (SPM8, Welcome Department of Cognitive Neurology, London, UK; 2008) 

implemented in Matlab 2007b (Mathworks Inc., Sherborn, MA, USA). Preprocessing  

included unwarping and realignment to the first volume (b-spline interpolation), slice time 

correction, co-registration of functional data to each participant’s anatomical image, 

normalization to the standard brain of the Montreal Neurological Institute, and smoothing 

with an isotropic three-dimensional Gaussian kernel with a full width at half maximum of 9 

mm. Two male participants were excluded from further analyses due to excessive head 

movements, as described in Wehrum et al. (2013).  
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First-level Analyses 

Subject level models were analyzed using the general linear model (GLM), which is 

equivalent for SPM8 and later versions to date (e.g., SPM12). Voxel time series were 

modeled using onsets and durations of the four experimental conditions: sexual, positive, 

negative, and neutral image blocks. Rating phases as well as the six movement parameters 

obtained from the realignment procedure were also included in the general linear model as 

covariates of no interest. Regressors were convolved with the canonical SPM double-gamma 

hemodynamic response function and a high pass filter (256 sec cutoff) was applied to the data 

and design. Serial correlation was modeled using SPM’s approximation to the AR(1) model. 

Functional data were screened for outlier volumes using a distribution free approach with 

thresholding for skewed data (Schweckendiek et al., 2013). Each resulting outlier volume 

was later modeled within the general linear model as a regressor of no interest. Custom code, 

written in MATLAB (2018b, The MathWorks, Inc., Natick, MA) and available from the 

authors’ website (https://canlab.github.io), was used to visually inspect the pre-processed 

first-level activation parameter estimate (beta) images for potential artifacts and calculate 

Mahalanobis distance, a measure of multivariate distance of each first-level image from the 

group that can indicate outliers. Data of one male participant exceeded the threshold for 

Mahalanobis distance (p < .05, Bonferroni corrected), and was therefore determined to be a 

multivariate outlier and excluded from further analyses. 

Predictive Model Development 

Custom Matlab (MATLAB 2018b, The MathWorks, Inc., Natick, MA) code available 

from the authors’ website (https://canlab.github.io) was used for the second-level analysis, 

which consisted of multivariate predictive modeling applied to first-level beta images. For the 

development and testing of the model, we used whole-brain Support Vector Machines (SVM) 

(Gramfort, Thirion, & Varoquaux, 2013) trained to predict sexual versus each other condition 
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(negative, positive, and neutral), and tested using 5-fold leave-whole-participant-out cross-

validation as well as an independent test cohort. To interpret the models and help evaluate 

their neuroscientific plausibility, we followed a recently published protocol for interpreting 

machine learning models (Kohoutová et al., 2020). We included analysis steps for model 

development, feature-level assessment, and model- and neurobiological assessment. The 

training and validation are described further below. 

We also considered models predicting self-reported sexual arousal ratings as a 

continuous outcome, as participants rated their sexual arousal levels after each block of 5 

pictures. However, this study did not manipulate intensity of the sexual stimuli and was hence 

not designed to create within-person variability. Accordingly, these ratings had little 

variability (mean within-subject variance was 1.05 points on a scale of 9 points). Therefore, it 

was not feasible to predict continuous ratings using a regression model. 

Support vector machines and brain activation-based sexual image classifier. 

Where univariate analyses take the brain response in every voxel as the outcome of interest, 

multivariate analyses use the sensory experience, mental events, or behaviors as an outcome. 

Here, linear SVM classifiers identified multivariate patterns of brain activity discriminating 

sexual from neutral and non-sexual affective conditions. We trained three separate classifiers, 

one discriminating between sexual and neutral, the second between sexual and positive 

affective, and the third between sexual and negative affective conditions. To estimate the 

predictive accuracy for each model in Study 1, we used 5-fold cross-validation blocked by 

participant (i.e., leaving out all images from a particular participant together), which produces 

an unbiased estimate of the models’ performance. The classifiers were trained on whole-brain 

data masked with a gray matter mask. Each SVM model includes a linear pattern of weights 

across voxels and an intercept (offset) value.  
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Each of the three SVM classifiers resulted in a predictive weight map. We combined 

them to create the Brain Activation-based Sexual Image Classifier (BASIC), a model with a 

restricted set of brain features that differentiate sexual images from each of the three 

comparison conditions. We used bootstrap resampling (with 5,000 bootstrap samples; e.g., 

Wager et al., 2013) to estimate voxel-wise P-values for each SVM map. We then thresholded 

each SVM map at p < .05 uncorrected and took the intersection of all three classifier maps. 

The weights for sexual vs. neutral conditions masked by the overlap (p < .05 uncorrected) 

constituted the final BASIC model. Note that this threshold is not intended to provide strong 

inferences about individual voxels, but to select features likely to capture selectivity to sexual 

stimuli relative to multiple other conditions, and to increase the interpretability of the final 

model. The intersection maps for all three SVM classifiers at q < .05 FDR-corrected is shown 

in Supplementary Figure 1 and includes many of the same regions. Performance of the final 

BASIC model was validated on data from Study 2 (see below). 

To validate the model and assess relationships with other variables, we calculated 

model scores for each image type (sexual, negative, etc.) for each individual participant. We 

calculated these scores using the cosine similarity metric, which calculates the weighted 

average (the dot product) over a test data image from one participant (where the SVM model 

constitutes the weights) normalized by the product of the norms of the SVM pattern and the 

data image. For vectorized v-length SVM weight image w and v-length data image d, where v 

is the number of voxels in each image, cos(𝑤, 𝑑) = 〈𝑤, 𝑑〉/‖𝑤‖‖𝑑‖. 〈 〉 indicates the dot 

product and ‖ ‖ the L2-norm. Cosine similarity is thus equivalent to the spatial correlation 

between the SVM pattern and the data images, but without the mean-centering operator 

included in the correlation. This allows overall activation intensity to contribute to the 

classification but normalizes the scale of each test data image.  
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Analysis of confounds. In order to examine if the brain model responses are 

independent of sex and age, SVM model scores for all three classifiers were regressed on sex 

and age. In addition, average values for gray matter (GM), white matter (WM), and 

cerebrospinal fluid (CSF) were extracted from an eroded anatomical tissue segmentation 

mask, and SVM model scores were regressed on GM, WM, and CSF signals. We also tested 

the classification performance of each of the three models after CSF and WM were regressed 

out; it was not meaningfully affected by controlling for these covariates. 

Model-level Assessment: Classification Performance 

To examine the sensitivity, specificity, and generalizability of the BASIC model, both 

forced-choice and single-interval classification performance were assessed on cross-validated 

model scores for Study 1, and on Study 2. In forced-choice classification, the BASIC scores 

for two images (e.g., one sexual and one aversive) from an individual person are compared, 

and the one with the higher the BASIC score is labeled as ‘sexual’. Classification accuracy is 

the percentage of individuals for which the BASIC model yields the correct decision. In 

single-interval classification, the score for a single image is compared with a threshold value 

(e.g., BASIC response > .2), and scores above threshold are classified as ‘sexual’. Forced-

choice classification generally yields higher accuracy, as comparing two images from the 

same person matches on many sources of between-person variability (e.g., between-person 

differences in vasculature and brain morphometry). Single-interval classification is affected 

by these sources of variability. As in our previous work (e.g. Wager et al., 2013), we report 

both measures, and report accuracy, specificity, sensitivity, and effect sizes for all three 

classifiers. 

For validation within Study 1, we applied whole-brain SVM models obtained during 

training folds to held-out participants’ data (5-fold cross-validated scores). We calculated the 

cosine similarity between the BASIC and brain images obtained under sexual and control 
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conditions for each of the three SVM models. Single-interval classification requires 

comparing scores with a specified threshold; typically, SVM scores > 0 are classified as 

‘sexual’ and scores < 0 classified as ‘control’. Here, to obtain a single threshold for sexual vs. 

negative, positive, and neutral conditions, we calculated the cosine similarity threshold with 

the optimal balanced error rate, balancing sensitivity and specificity, for each of the three 

comparisons, and used the highest of these three (the one most favorable to specificity) as the 

cosine similarity threshold for labeling a brain image as ‘sexual’. We use this threshold for 

Study 1.  

For prospective validation of the BASIC, we included a second dataset (Study 2) in 

the analysis, independent from Study 1. This dataset consisted of neuroimaging data of 18 

participants (10 females, Mage= 25) presented with sexual, positive, and negative affective 

images from the International Affective Picture System (IAPS) (Lang, Bradley, & Cuthbert, 

2005) and Geneva Affective Picture Database (GAPED) (Dan-Glauser & Scherer, 2011). 

Aspects of this dataset were published previously (Kragel, Reddan, LaBar, & Wager, 2019), 

but with a substantially different analysis goal. The images were presented for 4 seconds, 

with a jittered intertrial interval of 3 to 8 seconds presented in randomized order. All 

corresponding IAPS and GAPED picture numbers are presented in Supplementary Table 1 

for both studies. Study 2 used two of the same pictures in the positive condition, and four of 

the same pictures in the negative condition (out of the 30 pictures per condition in Study 1 

and 28 in Study 2). There was no overlap between sexual images used in both studies. The 

images in this study were milder in their sexual content than those in Study 1. More specific 

information about the participants, experimental design, and image acquisition can be found 

in Kragel et al. (2019).  

 We calculated cosine similarity scores for the BASIC model applied to sexual, 

positive, and negative conditions from Study 2. We used these scores to estimate the 
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accuracy, specificity, sensitivity, and effect size for both forced-choice and single-interval 

classification for [sexual vs. positive] and [sexual vs. negative] comparisons to assess the 

classification performance of the BASIC. While the threshold for sexual image classification 

developed in Study 1 would ideally be applied to Study 2, empirically the response in Study 2 

was not as high as in Study 1 (see Discussion of inter-study differences below), so application 

of the same threshold was not practical in this case. We thus validated the BASIC only for 

within-study comparisons, not for absolute comparisons across studies. 

Feature-level Assessment: Large-scale Networks 

One could argue that classification between sexual and neutral/affective conditions is 

driven solely by, for example, differences in visual features or in attention levels. To examine 

if the classifications were driven by one particular large-scale network, we applied a ‘virtual 

lesion’ approach. We re-trained each of the three SVM classifiers in Study 1 ([sexual vs. 

neutral], [sexual vs. positive], and [sexual vs. negative]) seven times, each time excluding 

voxels in one large scale network from the training and test images. We used seven large-

scale cortical networks defined based on resting-state activity in 1,000 participants, including 

‘visual,’ ‘somatomotor’, ‘dorsal attention’, ‘ventral attention’, ‘limbic’, ‘frontoparietal’, and 

‘default mode’, based on Yeo et al. (2011).  

In addition, we evaluated the spatial scale of information coding by constructing 

predictive models using signal averaged within each of 489 pre-defined ‘parcels’, or macro-

scale regions, that covered the entire brain (the ‘canlab_2018 2mm’ atlas; see 

https://github.com/canlab/Neuroimaging_Pattern_Masks). The regions comprising the atlas 

are defined based on published papers considered to be high-quality parcellations of specific 

large-scale zones of the brain or anatomically defined nuclei, including parcellations of the 

cortex (Glasser et al., 2016), basal ganglia (Pauli, O’Reilly, Yarkoni, & Wager, 2016), 

thalamus (Jakab, Blanc, Berényi, & Székely, 2012; Krauth et al., 2010; Morel, Magnin, & 
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Jeanmonod, 1997), subcortical forebrain (Pauli, Nili, & Tyszka, 2018), amygdala and 

hippocampus (Amunts et al., 2005), specific brainstem regions (Bär et al., 2016; Beliveau et 

al., 2015; Brooks, Davies, & Pickering, 2017; Fairhurst, Wiech, Dunckley, & Tracey, 2007; 

Keren, Lozar, Harris, Morgan, & Eckert, 2009; Nash, Macefield, Klineberg, Murray, & 

Henderson, 2009; Sclocco et al., 2016; Zambreanu, Wise, Brooks, Iannetti, & Tracey, 2005), 

cerebellum (Diedrichsen, Balsters, Flavell, Cussans, & Ramnani, 2009) and brainstem areas 

not otherwise covered by named parcels (Shen, Tokoglu, Papademetris, & Constable, 

2013). The atlas regions do not contain fine-grained pattern information but do still allow 

classification based on the relative activation across the 489 constituent regions.  

Overall, we compared classification accuracy for SVMs trained on (a) whole-brain 

voxel-wise patterns, (b) whole-brain patterns across parcel averages, (c) the voxel-wise 

pattern within the most predictive single region in the brain. This allowed us to test whether 

the information required for classification was contained at whole-brain scale (across 

multiple large-scale networks), within individual networks, or within a single local region. 

Additionally, we tested whether fine-grained voxel-wise patterns were necessary or whether 

parcel-wise averages were sufficient.  

Biology-level Assessment  

The neurobiological plausibility and validity of a model should be regarded as an 

open-ended investigation that requires long-term, collaborative efforts, multi-modal, and 

multi-level approaches (Kohoutová et al., 2020). To start this evaluation, we summarized the 

BASIC pattern weights as a function of 17 resting-state networks by Schaefer et al. (2018) in 

a wedge plot. The pattern weights in each local network was calculated with ‘pattern energy’, 

related to the absolute magnitude of predictive weights:  

𝐸! =
√𝑤"𝑤
𝑉 + 1 	 
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Er is the root-mean-square of weights in the network mask r per cubic cm of brain 

tissue, w denotes the vector of weights for in-region voxels and V is the volume of the region 

in cm3. As the variance of Er varies inversely with network volume, the constant 1 is added to 

regularize the volume and thus avoid noise-driven, large magnitude estimates for small 

regions.  

In addition, the classification performance of the BASIC was compared to 

performance of an automated meta-analysis of previous studies investigating sexual stimuli 

processing using neurosynth.org (Wager, Atlas, Leotti, & Rilling, 2011; Yarkoni et al., 2011). 

An association test map, which displays brain regions that are preferentially related to the 

term sexual based on an automated meta-analysis of 81 studies, was downloaded from 

neurosynth.org. Brain regions that were consistently reported in tables of those studies were 

included in this meta-analysis and maps were corrected for multiple comparisons using a 

false discovery rate of .01 (for the meta-analytic map see Supplementary Figure 2). Note that 

both activations and deactivations are included in this map, as they are not separated by 

Neurosynth. The voxels in the brain map were used as features in an SVM classification 

between the sexual versus nonsexual conditions in both Study 1 and Study 2. Classification 

performance of this neurosynth ‘sexual’ brain map was assessed by calculating accuracy, 

sensitivity, and specificity using both forced choice and single interval methods.  

Self-reported Data 

 Differences between conditions in self-reported valence, arousal, and sexual arousal 

were calculated with One-way Repeated Measures ANOVA in R studio 2018 (RStudio 

Team, Boston, MA, USA) for all participants. 
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Results 

Model Development 

Support vector machines and brain activation-based sexual image classifier. Using 

forced choice classification, all three classifiers performed with 100% accuracy, meaning that 

the cross-validated SVM scores were higher for sexual than other image types (negative, non-

sexual positive, and neutral) images for all 100 individuals in Study 1. Using single-interval 

classification, the sexual versus neutral performed with 98% accuracy, sexual versus positive 

with 96%, and sexual versus negative with 95%. Specificity, sensitivity, effect size, and 

accuracy for both forced choice and single-interval methods are presented in Table 1.  

 

Table 1 

Classification performance for sexual versus neutral/affective conditions for Study 1. 

Condition Method Accuracy 
(%) 

Specificity (%) Sensitivity (%) Effect Size 

   SE  CI  CI  
Sex vs. Neu FC 100 0.0 100 100-100 100 100-100 3.29 

SI 98 1.0 97 93-100 99 97-100 3.06 
Sex vs. Pos FC 100 0.0 100 100-100 100 100-100 4.03 

SI 96 1.3 97 93-100 96 92-99 2.61 
Sex vs. Neg FC 100 0.0 100 100-100 100 100-100 3.25 

SI 95 1.5 96 92-99 95 90-99 2.22 

Note: The accuracy with standard error (SE), specificity, and sensitivity with confidence 
interval (CI) are presented to demonstrate the performance of the three cross-validated and 
bootstrapped (5,000 iterations) SVM classifications of Study 1 for both forced choice (FC) 
and single interval (SI) classification methods. Effect size indicates Cohen’s d. Condition 
abbreviations: sex = sexual, neu = neutral, pos = positive, neg = negative. 
 

Corrected and uncorrected predictive weight maps of all three classifiers are presented 

in Supplementary Figure 1. Accuracy was significantly above chance (50%), as assessed with 

a binomial test, p < .0001 for all models.  The intersection of the three thresholded predictive 

weight maps (p < .05) was used to create the BASIC, with weights from the sexual vs. neutral 
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classifier retained only for voxels significant in all three models. The BASIC is presented in 

Figure 1 and a table of brain regions can be found in Supplementary Table 3.  

 

 

 

 
 
 
 
 
 
 

 
 
Figure 1. Predictive weight maps of the BASIC model. These brain maps represent the 
contribution of each voxel for the classification between sexual or neutral/affective 
conditions. The color bar thus represents the predictive weight value. The MNI-space 
anatomical underlay is adapted from Keuken et al. (2014). (A) Whole-brain map with a red 
circle around the basal ganglia and amygdala brain group. (B) Whole-brain coronal slices. 
(C) External representation of basal ganglia group and the amygdala. (D) Representation of 
deeper structures within the basal ganglia group. (E) Montage of whole-brain horizontal 
slices. 
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Model-level Assessment 

The BASIC was assessed by examining the classification performance between sexual 

and nonsexual conditions in Study 1 and Study 2. Cosine similarities between the BASIC and  

the sexual (M = .34, SD = .0059, p < .001, d = 5.84), neutral (M = -.043, SD = .0093, p < 

.001, d = -.47), positive (M = .00020, SD = .0095, p = .98, d = .0021), and negative (M = .12, 

SD = .0071, p < .001, d = 1.75) conditions from Study 1 are presented in Figure 2A.  

 

   
 
Figure 2. Cosine similarity between the BASIC and all conditions of Study 1 (A) and Study 2 
(B). The threshold calculated with optimal balanced error rate was 0.25 for Study 1 and 0.06 
for Study 2. ** = p<.01, *** = q<.05 FDR. 
 
 

The classification accuracies for sexual versus positive, negative, and neutral 

conditions were significant (p < .001) for both forced choice and single interval methods. 

Accuracy, specificity, and sensitivity for these classifications are presented in Table 2. The 

performance of the BASIC on the sexual versus positive and sexual versus negative 

classification of Study 1 is presented in ROC plots in Figure 3A. 
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Table 2 

Performance of BASIC between sexual versus nonsexual conditions in two datasets. 

Dataset Condition Method Accuracy (%) Specificity (%) Sensitivity (%) 
    SE  CI  CI 
Study 1 Sex vs. Neu FC 100 0.0 100 100-100 100 100-100 

SI 100 0.0 100 100-100 100 100-100 
Sex vs. Pos FC 100 0.0 100 100-100 100 100-100 

SI 99 0.7 99 97-100 99 97-100 
Sex vs. Neg FC 100 0.0 100 100-100 100 100-100 

SI 97 1.2 97 93-100 97 93-100 
Study 2 Sex vs. Pos FC 94 5.4 94 81-100 94 82-100 

SI 78 6.9 78 58-95 78 55-95 
Sex vs. Neg FC 100 0.0 100 100-100 100 100-100 

SI 78 6.9 78 56-95 78 58-95 

Note: The accuracy with standard error (SE), specificity and sensitivity with confidence 
interval (CI) are presented to demonstrate the performance of the BASIC for both forced 
choice (FC) and single interval (SI) classification methods. Condition abbreviations: sex = 
sexual, neu = neutral, pos = positive, neg = negative. 

 

 

 

Figure 3. ROC plot for the BASIC performance on sexual-positive (A) and sexual-negative 
(B) classification of data from Studies 1 and 2, both forced choice (FC) as well as single 
interval (SI) classification methods.  
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The highest threshold calculated with the optimal balanced error rate was 0.25 for the 

classification of sexual and negative images of Study 1. The threshold for the classification of 

both [sexual vs. positive] and [sexual vs. negative] images in Study 2 was 0.06 and did 

therefore not exceed the threshold from Study 1. Cosine similarities between the BASIC and 

sexual (M = .11, SD = .15, p < .001, d = 1.87), positive (M = .0093, SD = .014, p = .50, d 

= .16), and negative (M = .0092, SD = .014, p = .52, d = .16) conditions in Study 2 are 

presented in Figure 2B.  

The classifications of both [sexual vs. positive], and [sexual vs. negative] conditions 

from Study 2, for both forced choice as well as the single interval method, were significant (p 

< .001) and results are presented in Table 2. The performance of the BASIC on the sexual 

versus positive and sexual versus negative classification of Study 2 is presented in ROC plots 

in Figure 3B. 

Analysis of sex differences, age, and global signal confounds. No significant 

correlations between the three classifiers and age (sexual-neutral r = -.00, sexual-positive r 

= .00, sexual-negative r = .00) or gender (sexual-neutral r = -.05, sexual-positive r = .04, 

sexual-negative r = -.22) were found.  

For all four conditions and all three contrasts, there was significant global activation 

in both CSF space/ventricles and in white matter, indicating potential global signal increases 

for sexual vs. other image types. In each of the three models, SVM model scores with CSF 

and WM regressed out showed classification performance similar to that of the SVM models 

without nuisance regression (for forced choice: 100% accuracy, specificity, and sensitivity, 

effect size sexual versus neutral d = 4.55, sexual versus positive d = 4.10, sexual versus 

negative d = 3.64). The global signal thus did not contribute in the classification process and 

is therefore unlikely to be a confound. 
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Feature-level Assessment: Large-scale Networks 

Feature-level assessments included (a) ‘virtual lesion’ analyses that re-trained 

classifiers omitting voxels in a single large-scale network, and (b) tests of information coding 

at multiple spatial scales using re-trained models and comparison of accuracy using randomly 

selected voxels in each single network, all voxels in each single network, all voxels averaged 

within parcels (see Methods), and all voxels. The latter evaluated information encoded at 

multiple spatial scales (see Figure 4) and shows the highest model performance for all voxels 

across the whole brain (the original model). A whole-brain model averaging within parcels 

(‘All Parcels’ in Figure 4) performed equally well, indicating that information was 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Spatial scale evaluation for classification between sexual and neutral conditions 
(for [sexual vs. positive] and [sexual vs. negative] see Supplementary Figure 3) from Study 1 
on whole-brain, all parcels, and individual parcel levels, based on large scale networks 
(Buckner, Krienen, Castellanos, Diaz, & Yeo, 2011). This reveals that whole-brain models 
performed better than single-network models. In addition, the model based on brain-wide 
within-parcel (region) averages performed as well as the model based on voxel-level patterns, 
indicating that fine spatial scale pattern information is not needed for accurate performance. 
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likely coded in the pattern of activation across gross anatomical regions (parcels) rather than 

fine-grained pattern information. These results were consistent across classification of sexual 

vs. neutral, positive, and negative conditions (see Supplementary Figure 3). 

For the ‘virtual lesion’ of each of the seven Buckner Lab large-scale cortical networks 

(dorsal attention, default, frontoparietal, limbic, somatomotor, ventral attention, visual), the 

forced-choice classification between sexual and nonsexual conditions from Study 1 were 

significant (p < .001), with perfect or near-perfect cross-validated accuracy in each case (see 

Supplementary Table 4 for accuracy, specificity, and sensitivity). This indicates that accurate 

classification did not depend on voxels in any single large-scale network. 

 

 

 

  

 

 

 

 

 

 

 

 

  
 
Figure 5.  Cortical network profile for BASIC. Pattern energy in resting-state cortical 
networks by Schaefer et al. (2018) are distributed unevenly. Wedges represent positive (pink) 
and negative (purple) weights and corresponding networks are presented for the networks 
with the highest and lowest average weights.  
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Biology-level Assessment 

Examining weights in established large-scale networks yielded selective profile across 

networks, with weights concentrated in a few networks (see Figure 5). BASIC predictive 

weights were positive in ‘default A’, ‘dorsal attention A & B’, and ‘ventral attention A & B’ 

networks (pink wedges in Figure 5), and negative in ‘somatomotor A & B’, ‘visual peripheral 

B’, ‘default C’, and ‘tempo-parietal’ networks (purple wedges in Figure 5).  

Performance of the neurosynth ‘sexual’ map was better in classifying between sexual 

and the nonsexual conditions in Study 1 (forced choice accuracy for [sexual vs. positive] is 

77%, p < .001, [sexual vs. negative] is 57%, p = .22, and [sexual vs. neutral] is 84%, p < 

.001) than Study 2 (forced choice accuracy for [sexual vs. positive] is 50%, p = 1.00, and 

[sexual vs. negative] is 56%, p = 0.81, with chance at 50%). For detailed accuracy, 

sensitivity, and specificity see Supplementary Table 2. The BASIC thus outperformed the 

neurosynth ‘sexual’ map in classifying between all contrasts in Study 1 and Study 2. 

Self-Reported Data 

 For an overview of means and standard deviations of self-reported valence, arousal, 

and sexual arousal levels, see Wehrum-Osinsky et al. (2014). Omnibus tests for the ANOVA 

show general arousal levels were significantly different between all four conditions (p 

< .001), with the highest score for the negative condition. Valence levels between all four 

conditions, except sexual versus neutral, were significant (p < .001). Sexual arousal levels 

were only significant between sexual and other conditions (p < .001). 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.10.366567doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.10.366567
http://creativecommons.org/licenses/by-nc-nd/4.0/


BRAIN ACTIVATION-BASED SEXUAL IMAGE CLASSIFIER 23 

 

Discussion 

Sexual stimulus processing is a core component of human affective and motivational 

systems, and part of a fundamental repertoire of motivations conserved across nearly all 

animal species. Previous work using sexual stimuli have made important advances (e.g., 

Abler et al., 2013; Borg, de Jong, & Georgiadis, 2014; Janniko R. Georgiadis et al., 2006; 

Stark et al., 2019; Walter, Stadler, Tempelmann, Speck, & Northoff, 2008), but they have 

generally included small sample sizes and have focused on characterizing responses in 

individual brain regions using standard brain-mapping approaches. Findings have been 

variable across studies (for meta-analyses see Poeppl et al., 2016; Stoléru et al., 2012), and it 

remains unclear whether brain responses to sexual stimuli are robustly and reproducibly 

different from control conditions (e.g., general positive or affective stimuli). 

Correspondingly, it is also unclear whether there is a pattern of brain responses that is 

relatively unique (i.e., specific) to sexual stimuli, or whether fMRI measures are picking up 

on a more general affective process.  

Here, we employed a multivariate predictive model grounded in population-coding 

concepts in neuroscience (Kragel et al., 2018; Pouget et al., 2000; Shadlen & Kiani, 2007) 

and systems-level characterization, based on growing evidence that processes from object 

recognition to memory to affect and motivation are processed in distributed networks rather 

than local regions or isolated circuits (Arbabshirani et al., 2017; Kamitani & Tong, 2005; 

Kuhl, Rissman, & Wagner, 2012). We identified a generalizable pattern of brain responses to 

sexual stimuli whose organization is conserved across individual participants, but which is 

distinct from responses to other conceptually related affective images. We used cross-

validated machine learning analyses to identify a brain model, which we termed the BASIC 

(for purposes of sharing and reuse), that can classify sexual from neutral, positive, and 

negative affective images with nearly perfect accuracy in forced-choice tests, including an 
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independent validation cohort tested on a different population (U.S. vs. Europe), scanner, and 

stimulus set from those used to develop the model. Together with previous smaller-sample 

analyses that differentiate multivariate brain responses to romantic or sexual stimuli from 

responses to other types of affective and emotional events (e.g., Kassam, Markey, 

Cherkassky, Loewenstein, & Just, 2013; Kragel et al., 2019), our results suggest that sexual 

processes are represented by a relatively unique brain ‘signature’ that is not shared by other 

types of affect.  

Furthermore, our virtual lesion analysis suggests that the classifications of sexual 

versus neutral/affective conditions are not solely due to differences in visual or attention 

processing, as predictions are intact even leaving out large-scale cortical networks devoted to 

attention and vision. In addition, the spatial scale evaluation demonstrates that classification 

on whole-brain levels and using all parcels show the highest model performance compared to 

individual large-scale network parcels. No single large-scale network is thus necessary or 

sufficient to capture sexual stimulus processing, supporting the notion that sexual stimuli are 

processed on a macro-scale rather in fine-grained patterns. The BASIC shows effects not only 

in subcortical but also cortical areas, in line with previous human (for meta-analyses see 

Poeppl et al., 2016; Stoléru et al., 2012) and animal research (meta-analysis see Pfaus, 2009). 

Even though this shows strong evidence for large cortical involvement, there still seems to be 

a bias in picking brain areas for region of interest (ROI) analyses towards subcortical regions. 

This is reflected in the neurosynth ‘sexual’ brain map, based on an automated meta-analysis, 

that includes coordinates from a priori ROI analyses. For example, the study with the highest 

loading on the term ’sexual’ in neurosynth (Strahler, Kruse, Wehrum-Osinsky, Klucken, & 

Stark, 2018) used ROI analyses that included almost exclusively subcortical areas.  

Together, these findings indicate that the BASIC has the potential to serve as a 

neuromarker for a component of responding to sexual stimuli—i.e., a measure that can be 
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extracted in new individual participants and related to psychological states, individual 

differences, clinical conditions, and more—and is a robust target for further development and 

validation. For any neuromarker or brain pattern designed for reuse, multiple types of 

validation are desirable, including tests of independence from basic confounds, measurement 

properties, generalization across populations, potential subtypes with differential responses 

(e.g., in women vs. men), associations with symptoms, feelings, and behaviors, associations 

with clinical conditions, responses to treatments, and more. This must necessarily unfold 

across many studies, and we have advocated for an open-ended process of pursuing 

additional validation of markers in proportion to their demonstrated promise, including strong 

preliminary results with large effect sizes (Kohoutová et al., 2020; Woo et al., 2017). A 

desirable feature of a population-level pattern such as the one we present here, which was 

tested for accuracy on new individual persons not used in model development, is that the 

model can be subsequently validated in an open-ended way in future studies. 

Many types of validation are beyond the scope of this study, but we were able to 

provide validation of several key elements. First is application to a new cohort with different 

population characteristics, equipment, and paradigm details, with large effect sizes for sexual 

vs. non-sexual affective images. Second, we investigated the effects of globally distributed 

signal in white matter and ventricle spaces, which can capture complex effects of head 

movement and task-correlated physiological noise and have been found to drive some 

multivariate predictive models in the past. Lack of relationships with these non-gray matter 

areas, along with significant contributions to the model in known affective/motivational 

systems, increases confidence that the model is driven by neuroscientific relevant systems. 

Third, we investigated whether the model showed differential effects for male vs. female 

subgroups or varied with age. It did not, supporting the notion that despite individual 
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differences there is a generalizable brain response across individuals (note, this study did not 

include non-heterosexual, non-cis individuals, and individuals of different age groups).  

We were also able to gain some insight into whether the BASIC captures a general 

process, such as general arousal. BASIC responses were substantially higher for sexual than 

either negative or positive non-sexual images in both studies. However, self-report data 

showed a higher general arousal for negative than sexual images. Thus, it is implausible that 

the BASIC captures general arousal given the data. In addition, the strong classification 

performance was replicated in both Study 1 and 2 despite differences in the content of sexual 

images and likely general arousal levels. Thus, our results supports the notion that the BASIC 

not solely picks up a difference in general arousal levels, in line with a previous study by 

Walter et al. (2008) demonstrating differences in brain activation between sexual and 

nonsexual affective stimuli using univariate analyses.  

There are many avenues open for future validation and further development. Besides 

visual, attentional, and affective processing during the presentation of sexual stimuli, other 

processes might be activated as well. An interesting next step would for example be to test 

BASIC on a different set of rewarding stimuli. There is an important role for motivation and 

reward during sexual stimuli processing (see the Neurophenomenological Model of Sexual 

Arousal by Stoléru et al., 2012).  A meta-analysis of univariate fMRI studies by Sescousse, 

Redouté, & Dreher, (2010) shows both overlap and differences between sexual and other 

types of rewarding stimuli univariate fMRI studies. To assess if sexual stimulus processing is 

distinct from reward processes, future studies should assess the BASIC classification 

performance of sexual versus other related stimuli, such as nonsexual rewarding stimuli. 

In addition, to examine if sexual arousal is elicited during sexual image presentation, 

and to identify the brain processes generating it, multivariate analysis could be used to predict 

sexual arousal ratings based on brain data collected during sexual image presentation. In our 
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study, this was not possible due to a lack of within-subject variability in the sexual arousal 

ratings during the sexual image blocks. For future studies, it would be interesting to present 

participants with sexual stimuli of different intensities, for which different types of sexual 

stimuli (e.g., videos or tactile stimulation) might be useful. With enough variance, a similar 

model might be able to predict participants’ sexual arousal ratings based on their brain 

responses. Genital arousal levels could in addition be assessed during the fMRI scan (Arnow 

et al., 2009) and brain response patterns predicting genital arousal levels and self-reported 

sexual arousal could be compared. This type of study design would allow for a mediation 

analysis, which could give more insight in the brain organization by examining the 

distributed, network-level patterns that mediate the stimulus intensity effects on sexual 

arousal (Geuter et al., 2020).  

 Overall, our results show that many areas, both cortical and subcortical, are involved 

in sexual stimuli processing. Brain areas included in the BASIC are also present in the most 

recent model of brain response to sexual stimuli (Stoléru et al., 2012), although the BASIC 

presents an even more complex pattern with precisely specified hypotheses about which 

voxels, with which precise relative activity pattern across them, to test and validate in future 

studies. In terms of resting-state networks (see Figure 5), we see interesting positive and 

negative weight effects emerge: negative weights (relative decreases in activity associated 

with sexual image processing) in somatomotor networks and positive weights (relative 

increases) in dorsal and ventral attention networks. In addition, the BASIC is an interesting 

pattern, as we find that weights in the default mode network (DMN) are near-zero when 

averaging across the entire DMN. However, when looking at default mode subnetworks, 

DMN A (ventral medial PFC and posterior cingulate areas) show strong positive weights, 

whereas DMN C (hippocampal and more posterior occipital areas) show strong negative 

weights.  
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The pattern of findings that constitute the BASIC relate to previous research linking 

DMN to drug and food craving and their regulation, which generally involve DMN A 

regions, and the vmPFC in particular (Aronson Fischell, Ross, Deng, Salmeron, & Stein, 

2020; Hare, Camerer, & Rangel, 2009; Kearney-Ramos et al., 2018; Kober et al., 2010). 

Multiple studies have identified the vmPFC and nucleus accumbens (NAc) as involved in 

reactivity to drug and gambling cues (Hare et al., 2009; Hutcherson, Plassmann, Gross, & 

Rangel, 2012; Kober et al., 2016). For example, Demos, Heatherton, & Kelley (2012) found 

that activation of these areas to food and sex cues predicts subsequent weight gain and risky 

sexual behavior. These areas are downregulated by reappraisal techniques that reduce craving 

(Kober et al., 2010). Both vmPFC and NAc are included in the BASIC.  

Another region of particular interest in previous studies of food and drug craving is 

the anterior insula, which has been linked to food and drug craving in previous studies 

(Murdaugh, Cox, Cook, & Weller, 2012; Pelchat, Johnson, Chan, Valdez, & Ragland, 2004; 

Tang, Fellows, Small, & Dagher, 2012; Yokum, Ng, & Stice, 2011). The BASIC, however, 

does not substantially involve the anterior insula. It therefore seems that the insular aspect of 

craving is not shared in the BASIC. This overlap of areas in BASIC with some drug- and 

food-cue reactivity studies, but not others, suggests that different types of appetitive stimuli 

and responses may activate dissociable systems in some cases. Exploring these differences in 

depth is beyond the scope of this study but very interesting for future studies.  

One limitation of this study is that although the BASIC can accurately classify sexual 

and nonsexual images with forced choice tests, we did not identify one absolute threshold 

that could be used as a quantitative measure across studies. Future studies thus have to 

establish a threshold in a study-specific manner and make relative comparisons across 

conditions within-study, which is a limitation. However, we do show that the BASIC can be 

generalized to individuals in other research centers with forced choice tests, though the 
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absolute scale of the response is likely to vary across studies as a function of scanner field 

strength, signal-to-noise ratio, and other signal properties. Although there are significant 

theoretical and practical challenges to the translational implementation of pattern classifiers 

(Orrù, Pettersson-Yeo, Marquand, Sartori, & Mechelli, 2012), the BASIC allows for 

inferences to be made at an individual level and could possibly be used to inform treatment 

decision in individual cases of sexual dysfunctions.  

To summarize, in this study, we applied multivariate neuroimaging analyses to 

investigate sexual stimulus processing in the brain. This approach allowed for the 

development of the BASIC model, which can accurately classify sexual versus neutral and 

positive and negative affective images in two separate datasets. The BASIC includes a 

precisely specified pattern of cortical and subcortical areas, some of which have received 

relatively little attention in the literature on human sexual responses (e.g., cortical networks).  

Some may be shared across other appetitive responses (e.g., vmPFC and NAc for drug cues), 

but the BASIC may also diverge from studies of other appetitive responses as well (e.g., in 

the insula). The work gives insight into the complex processing of sexual stimuli and 

supports the notion that processing sexual stimuli is a neurologically complex, potentially 

unique mental event that involves multiple networks distributed in the brain. We show a 

classifier model generalizable to an independent dataset, demonstrating that sexual stimuli 

processing is largely conserved across individuals, permitting the development of 

neuromarkers that can identify sexual processing in individual persons.  
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Supplementary Information 1: Extra information about participants, experimental 

design and image acquisition Study 1 

Participants 

100 heterosexual right-handed participants (50 women, 50 men, Mage = 25.4 years, 

STD = 4.8 years) with normal or corrected-to-normal vision were recruited to participate in 

the fMRI study. Participants with a history of psychiatric or neurological disorders, current 

psychotropic medication use, sexual dysfunctions, or medication influencing attention or 

sexual appetence were excluded. Twenty-six women were using oral hormonal and one was 

using vaginal hormonal contraception. Of women without hormonal contraception, eleven 

were in the follicular phase, eleven in the luteal phase and one woman had an irregular cycle 

and therefore her phase couldn’t be assessed.  

Experimental Design 

Stimuli 

A total of 120 images were selected, with 30 pictures for each condition: sexual, 

positive, negative, and neutral. Sexual and neutral pictures were selected from the internet 

(for an elaborate explanation of selection procedure; see Wehrum et al., 2013) and positive 

and negative pictures were taken from the International Affective Picture System (Lang, 

Bradley, & Cuthbert, 2005). For corresponding IAPS picture numbers see Supplementary 

Information 2. Sexual pictures depicted scenes with couples (always one man and one 

woman) practicing vaginal intercourse, oral or manual stimulation (16 pictures explicitly 

depicted genitals). Neutral pictures depicted men and women in nonsexual interactions (e.g., 

during a conversation). Positive pictures showed nonsexual scenes typically rated as highly 

positively valent and medium arousing (e.g., sport scenes, people in funfairs). Negative 

pictures showed scenes typically rated as highly arousing and highly negative (e.g., mutilated 

bodies).  
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Experimental Design 

For each participant, 30 pictures per condition were assigned randomly to six blocks 

of five pictures each. Each picture was presented for 3 seconds and the blocks were presented 

in pseudorandomized order. After each block, the participant rated valence, arousal and 

sexual arousal on a three-button keypad attached to the MRI Table. The Self-Assessment 

Manikin (Bradley & Lang, 1994) was used as scale for the valence and arousal 

measurements, and a nine-point Likert type scale was used as a scale for sexual arousal. The 

scales were presented for a maximum of 4 seconds, followed by a fixation cross until the next 

block.  

Image acquisition 

The functional and anatomical images were acquired with a 1.5 tesla whole-body MR 

tomography (Siemens Symphony with quantum gradient system, Siemens Medical Systems, 

Erlangen, Germany) with a standard head coil. Structural image acquisition was conducted 

prior to the functional session and consisted of 160 T1-weighted sagittal images (1 mm slice 

thickness). Also prior to the functional image acquisition, a gradient echo field map sequence 

was acquired to obtain information for unwarping B0 distortions. For functional imaging a 

total of 370 volumes were recorded using a T2*-weighted gradient echoplanar imaging 

sequence (EPI) with 25 axial slices covering the whole-brain (slice thickness = 5 mm; gap = 

1 mm; descending slice order; TA = 100 milliseconds; TE = 55 milliseconds; TR = 2.5 

seconds; flip angle = 90°; field of view = 192 x 192 mm; 64 by 64 matrix). The orientation of 

the axial slices was paralleled to the OFC tissue– bone transition to keep susceptibility 

artifacts to a minimum. In order to minimize head movement artifacts, participants’ heads 

were firmly fixated using the lateral clamp motion suppression system (provided by Siemens 

for head imaging). The first three volumes of the EPI sequence were discarded to allow for 

T1 equilibration effects.  
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Supplementary Figure 1: Overlap predictive weight maps three classifiers 

 

 

 

Figure S1. (A) Uncorrected (p < .05), and (B) .05 FDR corrected (q < .05) predictive weight 
maps of SVM sexual versus neutral, sexual versus positive, and sexual versus negative. 
  

= Sex vs. Neu = Sex vs. Pos = Sex vs. Neg  

A 

B 
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Supplementary Table 1. Corresponding IAPS and GAPED picture numbers per 

condition 

Table S1 

Corresponding IAPS and GAPED picture numbers per condition for both studies. 

 Study 1: Wehrum et al. 2013 Study 2: Kragel et al. 2019 

Picture 
Database Sexual Neutral Positive Negative Sexual Positive Negative 

IAPS  2393 1710 2703 4002 1440 3005 
  2396 2045 3001 4141 1441 3015 
   2075 3030 4180 1463 3051 
   2160 3064 4225 1710 3063 
   2345 3100 4232 2057 3150 
   2347 3103 4250 2070 3181 
   2352 3180 4311 2091 9040 
   5260 3195 4460 2154 9252 
   5470 3220 4542 2224 9253 
   5480 3225 4561 2332 9265 
   5600 3350 4574 2340 9300 
   5621 6313 4599 2395 9301 
   5623 6350 4607 2550 9400 
   5700 6520 4611 4622 9410 
   5825 6563 4623 5910 9452 
   5833 9040 4625 7230 9584 
   5910 9075 4645 7325 9635 
   8030 9163 4659 7330 9800 
   8034 9187 4670 7430 9810 
   8080 9253 4672 7450  
   8163 9254 4680 7470  
   8180 9325 4695 7480  
   8200 9410  8461  
   8370 9412  8497  
   8380 9413    
   8420 9433    
   8490 9571    
   8499 9635    
   8501 9921    
   8540 9940    
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GAPED      666039 111013 
      666077 111041 
      666078 111055 
      666096 111062 
       111064 
       888022 
       888064 
       888077 

Note: Table represent all corresponding IAPS and GAPED picture numbers for each 
condition for Study 1 and Study 2. Picture numbers used in both studies are bold. Sexual and 
neutral conditions from Study 1 used internet search methods to select sexual and neutral 
pictures. 
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Supplementary Figure 2. Neurosynth ‘sexual’ map brain representation 

 

 

 

 

 

 

 

 

 

 

 

 
Figure S2. Brain representation of neurosynth map for the term ‘sexual’. This map was 
downloaded from neurosynth.com. 
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Supplementary Table 2. Neurosynth ‘sexual’ map classification performance 

Table S2 

Performance by neurosynth map ‘sexual’ on data Study 1 and Study 2.  

Dataset Condition Method Accuracy (%) Specificity (%) Sensitivity (%) 
    SE  CI  CI 
Study 1 Sex vs. Neu FC 84 3.8 84 76-90 84 76-91 

SI 73 3.2 89 82-95 57 47-67 
Sex vs. Pos FC 77 4.3 77 68-86 77 69-86 

SI 66 3.4 54 44-63 79 71-87 
Sex vs.  Neg FC 57 5.0 57 47-66 57 46-66 

SI 58 3.5 70 61-79 46 37-56 
Study 2 Sex vs. Pos FC 50 11.8 50 28-73 50 26-72 

SI 44 8.3 44 21-69 44 22-67 
Sex vs. Neg FC 56 11.7 56 31-79 56 33-79 

SI 50 8.3 50 26-73 50 28-72 

Note: The accuracy with standard error (SE), specificity and sensitivity with confidence 
interval (CI) are presented to demonstrate the performance of the neurosynth map ‘sexual’. 
This map was downloaded from neurosynth.org. Results for both forced choice (FC) and 
single interval (SI) classification methods are presented. The dataset from Study 1 is the 
dataset from Wehrum et al. (2013), the dataset from Study 2 is from Kragel et al. (2019). 
Condition abbreviations: sex = sexual, neu = neutral, pos = positive, neg = negative. 
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Supplementary Table 3. MNI coordinates of BASIC model 

Table S3.  

MNI coordinates of positive and negative effects of the BASIC model  

Region Hemi Volume MNI coordinates Max. Z-value Modal Label    
x y z 

  

Positive Effects 
       

Amygdala LB  
 

432 -30 -7 -17 7.0345 Amygdala 
V Striatum R 144 15 26 -8 7.0345 Basal ganglia 
Cau R 296 15 26 -2 7.0345 

 

NAC R 704 3 8 -5 7.0345 
 

Putamen Pp L 2504 -27 -13 4 7.0345 
 

Putamen Pp R 816 27 -13 10 7.0345 
 

Cau R 384 27 -31 16 7.0345 
 

Bstem Ponscd L 288 -12 -43 -38 7.0345 Brainstem 
Bstem Pons R 312 18 -28 -41 7.0345 

 

Multiple regions 
 

2504 3 -34 -14 7.0345 
 

Cblm VIIb L 80 -9 -73 -50 7.0345 Cerebellum 
Cblm VIIIa L 808 -15 -67 -50 7.0345 

 

Cblm VIIIa l 520 -27 -46 -47 7.0345 
 

Cblm VIIIb L 96 -27 -43 -50 7.0345 
 

Cblm VI R 80 39 -52 -26 7.0345 
 

Cblm CrusI R 2016 42 -52 -32 7.0345 
 

Cblm CrusII R 320 45 -49 -44 7.0345 
 

Cblm VIIb R 144 42 -49 -47 7.0345 
 

Cblm VIIIa R 336 30 -46 -47 7.0345 
 

Cblm CrusII R 200 24 -70 -41 7.0345 
 

Cblm CrusII R 1440 24 -76 -41 7.0345 
 

Cblm Dentate L 1240 -12 -49 -38 7.0345 
 

Cblm IX L 800 -9 -49 -38 7.0345 
 

Cblm CrusII L 360 -12 -79 -41 7.0345 
 

Cblm I IV R 312 21 -25 -38 7.0345 
 

Cblm CrusII R 192 36 -76 -38 2.3824 
 

Cblm CrusII R 744 9 -82 -32 7.0345 
 

Cblm CrusII R 216 30 -79 -35 2.0881 
 

Cblm Dentate R 288 12 -49 -35 7.0345 
 

Cblm IX R 480 6 -49 -35 7.0345 
 

Cblm CrusI L 432 -39 -61 -32 7.0345 
 

Cblm CrusI L 360 -21 -73 -29 7.0345 
 

Cblm I IV L 512 0 -46 -2 7.0345 
 

Cblm I IV L 632 -9 -46 -5 7.0345 
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Cblm I IV R 544 6 -49 -2 7.0345 
 

Cblm V L 1912 -21 -43 -20 7.0345 
 

Cblm VI L 784 -24 -49 -20 7.0345 
 

Cblm V R 1072 24 -40 -23 7.0345 
 

Cblm VI R 296 24 -49 -20 7.0345 
 

Cblm VI R 216 12 -67 -23 2.2549 
 

Cblm CrusI R 528 24 -88 -20 7.0345 
 

Ctx RSC R 536 6 -46 7 7.0345 Cortex Default Mode A 
Ctx 10r L 11136 -6 50 -2 7.0345 

 

Ctx 10v R 6808 6 53 -2 7.0345 
 

Ctx p32 L 1368 -15 56 -5 7.0345 
 

Multiple regions 
 

8624 -3 32 13 7.0345 
 

Ctx a24 R 5968 6 35 10 7.0345 
 

Ctx 9m R 824 3 56 22 7.0345 
 

Ctx 31pd L 240 -12 -58 31 7.0345 
 

Ctx 7m L 3584 -3 -61 31 7.0345 
 

Ctx 7m R 488 3 -55 31 7.0345 
 

Ctx RSC R 2272 0 -28 31 7.0345 
 

Ctx RSC R 2808 3 -34 31 7.0345 
 

Ctx s6 8 L 608 -21 26 61 7.0345 
 

Ctx TGd L 360 -54 -1 -38 7.0345 Cortex Default Mode B 
Ctx TGd L 1568 -24 11 -38 7.0345 

 

Ctx TGd L 184 -45 14 -32 7.0345 
 

Ctx TGd L 672 -51 11 -35 7.0345 
 

Ctx STSda L 4112 -57 -1 -11 7.0345 
 

Ctx TE1a L 2976 -54 -13 -14 7.0345 
 

Ctx 47s R 288 36 20 -14 7.0345 
 

Ctx 47l L 408 -45 26 -11 7.0345 
 

Ctx STSvp R 552 63 -40 1 7.0345 
 

Ctx STSdp L 432 -60 -28 1 7.0345 
 

Ctx 44 R 3960 51 29 19 7.0345 
 

Ctx 9m L 2112 -6 56 22 7.0345 
 

Ctx 55b L 480 -42 5 43 7.0345 
 

Ctx SFL R 664 0 23 64 7.0345 
 

Ctx SFL R 648 3 26 64 7.0345 
 

Ctx POS1 L 1192 -15 -61 13 7.0345 Cortex Default Mode C 
Ctx POS1 R 1544 15 -55 16 7.0345 

 

Ctx POS1 L 576 -9 -55 10 7.0345 
 

Ctx POS1 R 1096 9 -55 13 7.0345 
 

Ctx PHA1 L 4304 -24 -34 -14 7.0345 
 

Ctx PHA3 L 4560 -30 -46 -14 7.0345 
 

Ctx RSC L 1760 -6 -46 7 7.0345 
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Ctx H L 1960 -27 -16 -20 7.0345 
 

Ctx PHA2 R 2584 27 -37 -11 7.0345 
 

Ctx H R 2080 27 -13 -20 7.0345 
 

Ctx TE2p R 1912 51 -40 -20 7.0345 Cortex Dorsal Attention 
A 

Ctx TE2p R 3336 45 -46 -23 7.0345 
 

Ctx TE2p L 432 -42 -40 -17 7.0345 
 

Ctx PH L 1232 -54 -49 -11 7.0345 
 

Multiple regions 
 

9816 48 -70 1 7.0345 
 

Ctx FST R 408 42 -70 -5 7.0345 
 

Ctx TPOJ2 R 4168 54 -58 4 7.0345 
 

Ctx PH R 2000 51 -61 -5 7.0345 
 

Ctx TPOJ2 L 1864 -48 -64 13 7.0345 
 

Ctx IP0 L 336 -30 -79 31 7.0345 
 

Multiple regions 
 

28264 27 -49 58 7.0345 
 

Ctx 2 L 136 -21 -37 58 7.0345 Cortex Dorsal 
AttentionB 

Ctx 2 L 2808 -51 -25 40 7.0345 
 

Multiple regions 
 

20248 -30 -49 55 7.0345 
 

Ctx 7Am L 464 -9 -58 58 7.0345 
 

Ctx FEF R 1312 42 -1 46 7.0345 
 

Ctx PHT L 4792 -54 -64 4 7.0345 Cortex Fronto Parietal 
A 

Ctx p9 46v L 3880 -48 29 28 7.0345 
 

Ctx IFSp L 8912 -51 26 16 7.0345 
 

Ctx p9 46v R 1120 51 32 28 7.0345 
 

Ctx AIP L 400 -36 -52 46 7.0345 
 

Ctx AIP R 1144 39 -34 43 7.0345 
 

Ctx IP2 R 856 42 -46 52 7.0345 
 

Ctx IP1 L 288 -30 -64 40 7.0345 
 

Ctx TE1m R 528 54 -22 -14 7.0345 Cortex Fronto Parietal 
B 

Ctx a47r R 1264 45 44 -14 7.0345 
 

Ctx TE1p L 4704 -60 -43 -8 7.0345 
 

Ctx a47r L 3000 -45 47 -5 7.0345 
 

Ctx a47r L 392 -48 47 -14 7.0345 
 

Ctx 8BM L 2312 -6 38 49 7.0345 
 

Ctx PFm R 360 48 -49 43 7.0345 
 

Ctx PFm L 288 -48 -55 46 7.0345 
 

Ctx 8BM R 672 9 29 46 7.0345 
 

Ctx POS2 R 2384 12 -73 43 7.0345 Cortex Fronto Parietal 
C 

Ctx POS2 L 736 -3 -79 43 7.0345 
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Ctx POS2 R 856 6 -76 43 7.0345 
 

Ctx POS2 L 504 -18 -73 37 7.0345 
 

Ctx TGd R 480 39 14 -47 7.0345 Cortex Limbic 
Ctx TGv L 1272 -51 -4 -41 7.0345 

 

Ctx PeEc L 200 -24 5 -38 7.0345 
 

Ctx TGd R 4336 54 2 -23 7.0345 
 

Ctx TF L 192 -42 -13 -23 7.0345 
 

Ctx 10pp R 3112 18 65 -5 7.0345 
 

Ctx 10pp L 864 -15 59 -17 7.0345 
 

Ctx 13l L 432 -27 32 -20 7.0345 
 

Ctx 6mp L 7664 -6 -13 58 7.0345 Cortex Somatomotor A 
Ctx 24dd  R 5808 6 -13 58 7.0345 

 

Ctx 4 L 18832 -21 -22 61 7.0345 
 

Ctx 4 R 8376 12 -22 67 7.0345 
 

Ctx 3b L 18112 -36 -25 52 7.0345 
 

Ctx 3b R 4080 21 -28 64 7.0345 
 

Ctx 1 R 2656 63 -4 31 7.0345 
 

Ctx 1 R 760 42 -34 55 7.0345 
 

Ctx 4 R 1544 39 -16 49 7.0345 
 

Ctx 1 R 4448 45 -16 49 7.0345 
 

Ctx OP1 L 424 -42 -19 22 7.0345 Cortex Somatomotor B 
Ctx OP1 L 2664 -54 -16 10 7.0345 

 

Ctx Ig L 2280 -36 -16 16 7.0345 
 

Ctx OP4 R 408 51 -10 16 7.0345 
 

Ctx OP4 R 440 51 -13 16 7.0345 
 

Ctx OP4 R 448 48 -10 13 7.0345 
 

Ctx 43 R 80 45 -7 13 7.0345 
 

Ctx A4 L 288 -66 -31 16 7.0345 
 

Ctx 6v R 1064 60 -1 34 7.0345 
 

Ctx STSda R 9208 54 2 -14 7.0345 Cortex Temporal 
Parietal 

Ctx PSL R 216 63 -40 25 3.3885 
 

Ctx AAIC R 1696 33 17 -14 7.0345 Cortex Ventral 
Attention A 

Ctx PoI2 L 1096 -42 2 -2 7.0345 
 

Ctx 23c R 144 6 -7 43 7.0345 
 

Ctx PF L 16944 -54 -31 34 7.0345 
 

Ctx PF R 8888 57 -28 34 7.0345 
 

Ctx 55b R 240 42 2 46 7.0345 
 

Ctx p47r R 680 48 44 -8 7.0345 Cortex Ventral 
Attention B 

Ctx V2 R 88 18 -64 16 7.0345 
 

Ctx V8 L 312 -30 -67 -8 7.0345 
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Ctx V2 R 480 12 -61 16 7.0345 
 

Ctx VVC R 5016 30 -46 -14 7.0345 
 

Ctx VVC L 360 -36 -61 -17 7.0345 
 

Multiple regions 
 

8128 -45 -76 4 7.0345 
 

Ctx V4 L 512 -39 -76 -5 7.0345 
 

Ctx V4 L 712 -30 -88 7 7.0345 
 

Ctx V2 R 840 0 -88 13 7.0345 
 

Ctx V2 R 1576 3 -85 19 7.0345 
 

Ctx V7 L 600 -27 -79 31 7.0345 
 

Ctx PreS  R 1480 9 -40 4 7.0345 Cortex Visual 
Peripheral 

Ctx VMV1 L 5424 -15 -52 -2 7.0345 
 

Ctx V1 R 2928 12 -52 4 7.0345 
 

Ctx VMV2 R 2432 27 -49 -8 7.0345 
 

Ctx V1 L 3744 -18 -100 -2 7.0345 
 

Ctx V1 L 256 -12 -100 -11 7.0345 
 

Ctx V1 L 448 -9 -97 -8 7.0345 
 

Ctx V6 R 2560 18 -79 37 7.0345 
 

Ctx V3A R 424 6 -79 43 7.0345 
 

Ctx DVT L 144 -18 -73 34 7.0345 
 

Thal Pulv 
 

176 9 -34 4 7.000 Diencephalon 
Thal VPL 

 
624 -18 -19 4 1.000 

 

Thal VPL 
 

184 -21 -22 4 2.000 
 

Thal Intralam 
 

128 -15 -19 4 5.000 
 

Thal MGN 
 

592 -18 -25 -2 6.000 
 

Thal Intralam 
 

624 9 -19 10 4.000 
 

Thal Intralam 
 

192 6 -19 13 7.000 
 

  
280 -24 -25 10 6.000 

 

Negative Effects 
       

Putamen Pp L L 216 -30 -7 -8 -1.9806 Basal ganglia 
Cau L 216 -24 -25 19 -3.8041 

 

Ctx TGd L 216 -45 14 -23 -2.0974 Cortex Default Mode B 
Ctx STSda L 208 -54 -7 -8 -3.0585 

 

Ctx STSvp R 216 54 -40 -2 -2.2665 
 

Ctx Pgi L 216 -51 -49 22 -2.2028 
 

Ctx 8BL R 216 12 32 52 -2.3489 
 

Ctx 8BL R 216 3 41 55 -2.0291 
 

Ctx 8BL R 288 3 35 61 -2.0379 
 

Ctx TE1m R 216 66 -28 -14 -5.3535 Cortex Fronto Parietal 
B 

Ctx TE1p R 216 69 -46 -11 -4.4189 
 

Ctx TE1p R 216 69 -46 -5 -3.7389 
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Ctx PeEc R 216 27 -22 -35 -2.4218 Cortex Limbic 
Ctx TGd R 216 30 5 -35 -2.2131 

 

Ctx TF R 216 42 -13 -29 -1.9949 
 

Ctx A4 R 216 69 -19 4 -3.3648 Cortex Somatomotor B 
Ctx Pbelt R 216 51 -28 10 -3.0585 

 

Ctx RI R 216 42 -37 19 -2.6214 
 

Ctx A5 R 216 51 -22 1 -2.5611 Cortex Temporal 
Parietal 

Ctx TPOJ1 L 216 -54 -40 13 -3.1357 
 

Ctx V1 L 216 -12 -82 1 -2.7063 Cortex Visual 
Peripheral 

Thal VL 
 

216 18 -16 13 -2.1124 Diencephalon 

Note: MNI coordinates of brain areas of the BASIC model (uncorrected with p < .05). 
Regions are labeled reference atlas Glasser 2016 (for full names see Glasser et al., 2016).  
Volume and coordinates are in cubic mm and the max z-value is the signed maximum over z-
score for each voxel. The modal labels present the best reference atlas label, defined as 
reference region with highest number of in-region voxels. Regions covering >25% of >5 
regions are labeled as ‘Multiple regions’. 
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Supplementary Table 4. Performance classification of sexual versus neutral/affective 

images with virtual large-scale network lesions 

Table S4 

Performance classification between sexual and other conditions in Study 1 with ‘virtual 

lesions’ omitting voxels in each large-scale network 

Contrast  Removed 
Network 

Accuracy 
(%) 

Specificity (%) Sensitivity (%) Effect 
Size    

SE 
 

CI 
 

CI 
 

Sex vs. Neu  dAttention 100 0.0 100 100-100 100 100-100 3.22 
Default 100 0.0 100 100-100 100 100-100 3.29 
Frontoparietal 100 0.0 100 100-100 100 100-100 3.23 
Limbic 100 0.0 100 100-100 100 100-100 3.27 
Somatomotor 100 0.0 100 100-100 100 100-100 3.38 
Ventral Attention 100 0.0 100 100-100 100 100-100 3.33 
Visual 100 0.0 100 100-100 100 100-100 3.10 

Sex vs. Pos 
  

dAttention 100 0.0 100 100-100 100 100-100 3.64 
Default 100 0.0 100 100-100 100 100-100 3.40 
Frontoparietal 100 0.0 100 100-100 100 100-100 3.43 
Limbic 100 0.0 100 100-100 100 100-100 3.49 
Somatomotor 100 0.0 100 100-100 100 100-100 3.48 
Ventral Attention 100 0.0 100 100-100 100 100-100 3.59 
Visual 100 0.0 100 100-100 100 100-100 3.11 

Sex vs. Neg dAttention 99 1.0 99 97-100 99 96-100 3.01 
Default 99 1.0 99 97-100 99 97-100 2.75 
Frontoparietal 99 1.0 99 97-100 99 97-100 3.01 
Limbic 99 1.0 99 97-100 99 97-100 3.03 
Somatomotor 99 1.0 99 97-100 99 97-100 2.85 
Ventral Attention 99 1.0 99 97-100 99 97-100 2.94 
Visual 99 1.0 99 97-100 99 97-100 2.85 

Note: The accuracy with standard error (SE), specificity and sensitivity with confidence 
interval (CI) are presented to demonstrate the performance of SVMs with one large-scale 
network removed each time. Results for both forced choice (FC) and single interval (SI) 
classification methods are presented. The dataset from Study 1 is the dataset from Wehrum et 
al. (2013), the dataset from Study 2 is from Kragel et al. (2019). Condition abbreviations: sex 
= sexual, neu = neutral, pos = positive, neg = negative.  
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Supplementary Figure 3. Spatial scale evaluation of sexual and nonsexual affective 

image classification 

 

Figure S3. Evaluation of where information is contained for the classification between sexual 
and positive (A), and sexual and negative conditions (B). Spatial scales evaluated are parcels 
based on large scale networks (Buckner et al., 2011), all parcels and whole-brain scale.  
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