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Abstract  

The in vitro generation from pluripotent stem cells (PSCs) of different blood cell types, in 

particular those that are not replenished by hematopoietic stem cells (HSCs) like fetal-derived 

tissue-resident macrophages and innate-like lymphocytes, is of a particular interest. In order 

to succeed in this endeavor, a thorough understanding of the pathway interplay promoting 

lineage specification for the different blood cell types is needed. Notch signaling is essential 

for the HSC generation and their derivatives, but its requirement for tissue-resident immune 

cells is unknown. Using mouse embryonic stem cells (mESCs) to recapitulate murine 

embryonic development, we have studied the requirement for Notch signaling during the 

earliest B-lymphopoiesis and found that Rbpj-deficient mESCs are able to generate B-1 cells. 

Their Notch-independence was confirmed in ex vivo experiments using Rbpj-deficient 

embryos. In addition, we found that upregulation of Notch signaling was needed for the 

emergence of B-2 lymphoid cells. Taken together, these findings indicate that control of Notch 

signaling dosage is critical for the different B-cell lineage specification and provides pivotal 

information for their in vitro generation from PSCs for therapeutic applications. 

 

Introduction 

It is well accepted that Notch signaling is indispensable for the generation of hematopoietic 

stem cell (HSC) from hemogenic endothelial cells (HECs) in the mouse embryo1,2, in particular, 

for the endothelial-to-hematopoietic transition (EHT) yielding HSCs. However, it remains 

unclarified the role of Notch signaling in HSC-independent hematopoietic programs, such as 

those generating tissue-resident immune cells (e.g. microglia, epidermal γδT-cells, and B-1a 

cells)3. Experiments in different animal models have shown that erythroid-myeloid progenitor 

(EMP) development in the yolk sac (YS) is largely unaffected in the absence of Notch 

signaling1,2,4,5, but little is known about embryonic lymphopoiesis. While T-cell lineage 

specification requires continuous Notch activation, B-cell development from adult HSCs 

occurs in the absence of active Notch signaling6. Whether the emergence of fetal B-1 cells is 

HSC-dependent is still controversial7-9 and therefore its requirement of Notch activation is 
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currently unknown. Here we used Rbpj-/- mouse embryonic stem cells (mESCs)10 and mouse 

embryos, defective for the canonical Notch signaling target, to determine the Notch signaling 

requirement in fetal B-lymphopoiesis. Our results indicate that not only Notch signaling is 

dispensable for the emergence of fetal B-1 cells, thus, indicating their HSC-independency, but 

also its fine tuning is critical for the emergence of B-2 cells. 

 

Methods 

Rbpj+/- and Rbpj-/- mESCs were a kind gift from Dr. Timm Schroeder10. The primitive and 

definitive colony forming cells (CFCs) were produced from ESCs through embryoid body 

formation as previously reported11,12. T- and B- lymphoid cells were differentiated on OP9 or 

OP9-DL1 stromal cells with added 10ng/ml SCF and 10ng/ml IL7 as previously described13. 

VE-cadherin Cre mice14 were obtained from Dr. Nancy Speck. Rbpj-flox mice6 were obtained 

from Dr. Tasuku Honjo.  The modified B-progenitor CFC assays were performed as previously 

reported15. AA4.1+CD19+ B-progenitors were harvested from the co-culture of mESC Flk-1+ 

with OP9 and were transplanted into the peritoneal cavity of sublethally (100rad) irradiated 

NSG neonates at day 1 or 216. 

 

Results and Discussion 

We first validated that Rbpj-/- mESC hematopoietic differentiation faithfully phenocopies what 

has been reported in several animal models defective for Notch signaling1,2,4. Both day 3.25 

and day 5.5 Flk-1+ cells from Rbpj-/-embryoid bodies (EBs) produced a higher number of 

classical defined primitive erythroid colony forming cells (EryP-CFCs) than that of Rbpj+/- ESCs 

(Figure S1A-D, Figure S2A-D). In day 5.5 Flk-1+ primitive erythroid progenitor cells segregated 

to the CD41+ fraction that was more abundant in Rbpj-/- than in Rbpj+/- EBs (Figure S2E-G), 

confirming that primitive erythropoiesis is not properly terminated in the absence of Rbpj4,17. 

 We next tested the ability of day 5.5 Flk-1+ hemogenic endothelial cells (HECs) yielding 

EMP-like cells12 to undergo EHT, in serum free adherent culture conditions12 (Figure S3A) and 

found that Rbpj-/- ECs generated less CD45+ cells and CFCs (2.9-fold) (Figure S3B-D).  Gene 
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expression analysis via qPCR revealed that known Notch targets2 (Hes1 and Gata2) as well 

as pivotal hematopoietic transcription factors (Tal1 and Runx1c) are significantly down-

regulated in day 5.5 Flk-1+ HECs (Figure S3E). These results, in line with those obtained with 

chimeric Notch1-/- mice4, suggest that Rbpj is not required for the generation of EMP 

hematopoiesis, but alters the proliferation of hematopoietic progenitors. Alternatively, day 5.5 

Flk-1+ cells, and probably EMP HECs in the mouse embryos, are heterogenous and comprise 

both Notch-dependent and -independent precursors. Collectively, these data show that Rbpj-

/- mESCs can be used to dissect the Notch signaling requirement of different hematopoietic 

embryonic progenitors. 

We then investigated the lymphoid potential of Rbpj-/- ESCs. In OP9-DL1 co-culture,13 

while Rbpj+/- Flk-1+ cells  differentiated into CD4+CD8+ double positive (DP) T-cells,  Rbpj-/- Flk-

1+ showed maturation arrest at DN1 stage and lineage switch into CD19+ B-cells (Figure S3F-

G) consistent with the previous report of conditional Rbpj knockout mice6. This is also 

compatible with a recent report showing that the first embryonic thymopoiesis-initiating 

progenitors are present in the absence of Rbpj18, but are unable to progress beyond the DN1, 

although this report did not assess the alternative B-cell fate. The earliest thymic T-progenitors 

(ETPs) in DN1 have been reported to possess B- and myeloid potential19 and it is well 

accepted that lineage choice of T- or B-cells depends on Notch signaling6,20. Therefore, our 

observation of alternative Rbpj-/- B-cell specification in T-cell cultures supports a model where 

ETP-like cells are produced and switch to B-cell fate in the absence of Notch signaling.  

Next, we confirmed B-cell production from Rbpj-/- Flk-1+ cells in the OP9 co-culture, at 

a similar level to heterozygous ESCs. (Fig. 1A, B). We recently reported that mESC-derived 

B-cells engrafted immunodeficient neonates as peritoneal B-1 cells16.  Likewise, we injected 

AA4.1+CD19+ B-cells differentiated from Rbpj+/- and Rbpj-/- ESCs into NSG neonates.  Indeed, 

Rbpj-/- B-1 cells, but not B-2 cells, were engrafted in the recipient peritoneal cavity (Fig. 1C, D).  

Thus, Rbpj-/- ESCs can differentiate into transplantable B-1 cells. 

  Next, we tested the effect of Notch signal inhibition on HECs of the mouse embryo. 

FACS sorted VE-cadherin+ (VC+) ECs from E9.5 YS and paraaortic splanchnopleura (P-Sp) 
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were plated on OP9 cells with or without gamma secretase inhibitor (GSI) that inhibits the 

cleavage of Notch intracellular domain (NICD), thus inhibits Notch-intracellular signaling21 (Fig. 

1E). Mac1+ myeloid and CD19+B220+ B-cells were similarly produced regardless of GSI 

addition (Fig. 1F, G). In OP9-DL1 culture with GSI, the T-cell development from VC+ ECs was 

arrested at DN1 stage, where B220+ B-cells were detected, whereas DN2 or DN3 committed 

T-cells were produced in control culture (Fig. 1H). We also confirmed the Notch-independent 

B-cell potential using VCCre:Rbpjf/f embryos (Cre+RbpjKO). The YS and P-Sp cells from 

VCCre+RbpjKO and control embryos displayed similar erythro-myeloid and B-cell production 

(Fig. 1I). These results indicate the presence of Notch signal independent B-lymphopoiesis. 

 Next, the positive effect of Notch signaling on the HECs was examined using 

Doxycycline (Dox) inducible NICD-overexpressing (iNICD) ESCs22. iNICD Flk-1+ cells were 

differentiated on OP9 with 0, 100, and 500 ng/ml Dox. Flk-1+ cells produced CD19+ B-cells 

without Dox and CD4+CD8+ DP and DN CD25+ T-committed cells with 500ng/ml Dox (Fig. 2A). 

Interestingly, iNICD Flk-1+ cells produced both T- and B-cells in the same well with 100ng/ml 

Dox. We hypothesized that the HEC fate into B-1, B-2, and T-cell lineage is determined by the 

dosage of Notch signaling as it is also seen in B- and T-cell differentiation from BM HSPCs20. 

Additionally, we and otheres showed that Notch signaling induced B-2 potential in HSC-

precursors9,15,23. The modified B-progenitor CFC assays showed more B-1+B-2 progenitor 

colonies with a moderate dosage of Dox (Fig. 2B, C). These results indicate that fine tuning 

of Notch-signaling control B-1 and B-2 cell fate specification from the HECs. 

 Here, using Rbpj-/- ESC and mouse models, we demonstrated that the development of 

the earliest lymphoid progenitors, in particular of B-1 cells, can occur in the absence of Notch 

signaling and therefore independently of HSCs. Because B-1a cells are mainly fetal derived 

and are not replenished by BM progenitors, the conditioning regimen for BM transplantation 

therapy may induce permanent B-1 cell deficiency in humans, which may cause patients' 

susceptibility to certain bacterial/viral infections24. Additionally, natural IgM antibodies 

produced by B-1 cells have protective roles against atherosclerosis and other inflammatory 

diseases25. Therefore, there is an unmet clinical need for B-1 re-establishing cell therapies. 
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Our findings are critical for the future development of strategies for the in vitro generation of 

B-1a cells from PSCs. 
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Figure Legends 

Fig. 1 Rbpj-/- ESCs can differentiate into erythro-myeloid, B-cells, and early lymphoid 

progenitors in vitro. A, Representative FACS plots of Mac1+ myeloid and CD19+ B-cells 

produced from Flk-1+ cells on OP9 co-culture are shown. B, The percentages of Mac1+ and 

CD19+ cells among CD45+ cells in the ESC culture with OP9 are shown (n=6).  C, 

Representative FACS plots and the donor derived cells of the peritoneal cells of the recipient 

NSG mice transplanted with Rbpj-/- ESC-derived B-1 cells are depicted (n=4). E, Sorting 

strategy of CD31+VE-cadherin+ HECs from E9.5 YS and P-Sp is shown. More than three times 

experiments were performed. F and G, Representative FACS plots and percentages among 

CD45+ cells of the supernatant of HEC co-culture with OP9 with/without GSI are depicted 

(n=3). H, The representative FACS plots of YS/PSP co-culture with OP9-DL1 with/without GSI 

are depicted (n=3 for each group). I, The percentages of each blood lineages among 

mononuclear cells (MNCs) in the supernatant of WT and VCCre:RbpjKO YS and P-Sp co-

culture with OP9 are shown (n=3 for each group). The percentage of Ter119+ and Mac1+ cells 

was examined at day 6 and the percentage of B-cells was examined at day10 of OP9 co-

culture. Student’s unpaired t-test *p < 0.05. 

 

Fig. 2. The different dosages of Notch signaling affect the lineage choice of HECs 

between B-1 and B-2 cells. The representative FACS plots of Flk1+ cell-coculture with OP9 

with different dosages of doxycycline (n>3). B, The representative FACS plots of B-1 and B-2 

progenitors that form a single colony is depicted. C, B-1 and B-2 progenitor percentages 

among CD45+ cells in each colony with and without doxycycline are shown. Dox (-) n=8, dox 

(+) n=19. Student’s unpaired t-test **p < 0.01. 

  

Fig. S1. Primitive erythropoiesis termination is impaired in the absence of Notch 

signaling. A, Schematic representation of the mESC differentiation for the generation of the 

primitive hematopoietic program. B, Kinetics of CFC development from Flk-1+-derived 
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aggregates and their hematopoietic lineage distribution (C). D, Kinetics of EryP-CFC. n=3, 

independent experiments. Student’s unpaired t-test *p < 0.05, **p < 0.01. 

 

Fig. S2. Residual primitive erythropoietic progenitor segregate to CD41+ cells in d5.5 

differentiating cultures. A, Schematic representation of the mESC differentiation for the 

generation of the EMP like hematopoietic program. B, Representative flow cytometric analysis 

of the Flk-1 expression in d5.5. EBs, of 3 independent experiments. C, Relative number of 

CFCs and (D) EryP-CFC generated from d5.5 Fk-1+ cells. E, Representative flow cytometric 

analysis of the Flk-1 and CD41 expression in d5.5. EBs. F, Quantification of CD41+ cells 

present within the Flk1+ population. G, Frequency of CFC within the CD41 fractions of Flk-1+ 

cells. n=3, independent experiments. Student’s unpaired t-test *p < 0.05, **p < 0.01. 

 

Fig. S3. Hematopoietic output from HECs yielding EMP-like progenitors is reduced but 

not abrogated in the absence of Notch signaling. A, Schematic representation of the 

mESC differentiation for the HEC cultures. B, Representative flow cytometric analysis of the 

VE-Cad and CD45 expression after 48 and 96 hours of HEC culture. C, Relative number of 

CFCs obtained after 96 hours of HEC culture and (D) their lineage distribution . E, qRT-PCR-

based gene expression analysis in d5.5 Flk-1+ cells. F, Representative flow cytometric 

analysis of lymphoid makers in cells obtained from Rbpj+/- and Rbpj-/- Flk-1+ cells cultured on 

OP9-DL1 for 15 days. G, Quantification of the proportion of each T-cell stage of Flk-1+ cell 

differentiation on OP9-DL. DN (Double negative): CD4-CD8-, DN1: CD4-CD8-CD25-CD44+, 

DN2: CD4-CD8-CD25+CD44+, DN3: CD4-CD8-CD25+CD44-, SP: single positive. N>3, 

independent experiments. Student’s unpaired t-test *p < 0.05, **p < 0.01. 
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Figure S3
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