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Abstract 1

Innovations in single cell technologies have lead to a flurry of datasets and computational tools to process and 2

interpret them, including analyses of cell composition changes and transition in cell states. The diffcyt workflow 3

for differential discovery in cytometry data consist of several steps, including preprocessing, cell population 4

identification and differential testing for an association with a binary or continuous covariate. However, the 5

commonly measured quantity of survival time in clinical studies often results in a censored covariate where 6

classical differential testing is inapplicable. To overcome this limitation, multiple methods to directly include 7

censored covariates in differential abundance analysis were examined with the use of simulation studies and a 8

case study. Results show high error control and decent sensitivity for a subset of the methods. The tested 9

methods are implemented in the R package censcyt as an extension of diffcyt and are available at 10

https://github.com/retogerber/censcyt. Methods for the direct inclusion of a censored variable as a 11

predictor in GLMMs are a valid alternative to classical survival analysis methods, such as the Cox proportional 12

hazard model, while allowing for more flexibility in the differential analysis. 13

Background 14

Flow and mass cytometry are techniques to measure the presence of fluorochromes or isotopes conjugated to 15

antibodies that are bound to specific cellular components at single cell resolution. Although cytometry can be 16

considered an established method, recent developments enable the measurement of ever more markers 17

simultaneously, resulting in a high-dimensional view for each cell [1, 2]. Although the number of measured 18

features per cell is still much lower than in other single cell methods, such as single-cell RNA sequencing 19

(scRNA-seq), the throughput is typically much higher with thousands of cells per second [1, 2]. An additional 20

benefit of cytometry compared to scRNA-seq is the measurement at the protein level instead at the RNA level 21

(since correlations between protein and mRNA expression can be low [3,4]), although new cytometry-by-seq 22

approaches (e.g. Cite-seq [5] and REAP-seq [6]) allow the simultaneous measurement of transcript and protein 23

expression. The antibodies used in cytometry experiments are often chosen to discriminate several cell types by 24

leveraging the biological knowledge about their protein expression (e.g. T-cells can be distinguished from other 25

lymphocytes by the amount of CD3 they express). After obtaining the raw marker intensities per cell and 26

preprocessing (including some or all of: Compensation, Quality assessment, Normalization, De-Barcoding, 27

Filtering, Transformation [7, 8]), the first step is to discern cell populations. The historical approach for this 28

clustering is manual gating, which requires an expert to choose thresholds of marker intensities to obtain (known) 29

cell populations. Challenges around manual gating include lack of reproducibility and impracticability for high 30

dimensionality [9, 10], which is why modern approaches try to overcome these limitations by either automatically 31

choosing the best threshold to separate subpopulations (e.g. with flowDensity [11]), or by clustering cells using 32

techniques such as FlowSOM (using a self organizing map) [12], flowMeans (k-means with cluster merging) [13] 33

or PhenoGraph (based on a nearest-neighbor graph) [14]. Alternatives that do not strictly involve clustering 34

include classifying cells based on an annotated reference dataset (e.g., linear discriminant analysis [15]). 35
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After clustering or cell type assignment, the processed data contains a subpopulation label for each cell. The 36

two classical analyses that can be performed are differential abundance (DA) and differential state analysis 37

(DS) [16]. In DA, the (perhaps normalized) relative proportion of cells in a subpopulation per sample is tested for 38

an association with additional information about the sample (e.g. control vs. treatment). The input data 39

consists of a cluster× sample matrix of cell population abundances. In contrast, DS analyses organize the single 40

cell data into (cluster-marker)× sample matrices, typically summarizing each subpopulation per sample with 41

median marker expression; afterward, the summary is modeled against sample-wise annnotations for the 42

association testing. 43

The R [17] package diffcyt [18] provides a framework for DA and DS for flow and mass cytometry. After 44

preprocessing of the raw data, FlowSOM is (by default) used to (over)cluster cells into many small clusters 45

representing potential rare cell populations [18]. DA can then be performed with well-known count-based 46

methods voom [19], edgeR [20] or Generalized Linear Mixed Models (GLMM ). Alternatives for differential 47

discovery include, among others, citrus (overclustering, building of hierarchy, model selection and regularizations 48

to get associations) [21], cydar (differential abundance on hypersphere counts, testing with Generalized Linear 49

Models) [22], CellCnn (convolutional neural networks) [23] and MASC (Mixed-effects modeling of Associations of 50

Single Cells) [24]. An important distinction is that, with citrus and CellCnn on one side and diffcyt and MASC 51

(and cydar) on the other, the association testing is ”reversed”: for diffcyt, the cell population (relative) 52

abundances are represented in the statistical model as the response, whereas in citrus and CellCnn, the 53

abundances are treated as a covariate. The reversed approach allows for more flexibility in the experimental 54

setup since it allows to include additional covariates, such as batch or age, to be directly adjusted for [16], and 55

diffcyt was shown to compare favourably in terms of sensitivity and specificity across several test cases [18]. 56

Cytometry samples from clinical studies often contain additional patient data, such as treatment group (e.g., 57

control vs. treated), age or survival time. DA with a binary variable (e.g. control vs. treated) can be seen as the 58

”classical” case in cytometry. Of particular interest is whether a cell subpopulation is more abundant in one 59

experimental condition compared to the other, which could be indicative of the effectiveness of a treatment. If an 60

association with a continuous variable (e.g. age) is of interest, the modeling and testing are similar to the binary 61

case and often the same methods can be used, since linear models underpin the statistical framework. If a 62

time-to-event variable (e.g. time to an event, such as death or recurrence of disease) is considered, there is a need 63

to use different methods altogether. The problem with time-to-event variables is a purely practical one caused by 64

events that are ”censored”, i.e., they are not fully observed but only a minimum (or maximum) is known. 65

An example of cytometry data of a clinical study can be found in the FlowCAP IV (Flow Cytometry: Critical 66

Assessment of Population Identification Methods) challenge [25]. 13 marker intensities of PBMC samples of 383 67

patients linked to time to progression to AIDS from HIV+ were measured with flow cytometry, with the 68

objective to find cellular correlates that predict survival [25]. At the time, the two best performing methods, 69

(FloReMi [26] and flowDensity/flowType/RchyOptimyx ), both relied on classical survival analysis methods in the 70

association testing step, such as the Cox proportional hazard model [27], where the censored variable is modeled 71

as the response and the subpopulation abundance as the predictor. 72

Meanwhile, the performant frameworks for cytometry analysis that have been shown to perform well with 73

completely observed data (e.g. diffcyt [18]) cannot directly handle censored data; in particular, a censored 74

predictor should not be treated as fully observed, since it can lead to a bias [28]. Removing incomplete samples 75

can be a workaround, but is inefficient for high censoring rates and might lead to a bias as well [29]. Thus, the 76

goal of this work is to investigate how to best directly include a censored predictor in the modeling framework, 77

which itself is an under-researched area compared to survival response models. The following are noteworthy: 78

Rigobon et al. described basic issues that arise from censored covariates [28]; Tsimikas et al. developed a method 79

based on estimating functions for generalized linear models [30]; Taylor et al. described two methods based on 80

multiple imputation [31]; Qian et al. developed a threshold regression approach [32]; Atem et al. developed 81

methods based on multiple imputation in a bootstrapping setup [33]. 82

In the following, we describe an extension to the linear model approach to DA in diffcyt that allows to 83

directly include random right censored time-to-event variables as a covariate using methods based on multiple 84

imputation. More specifically, risk set imputation and Kaplan-Meier imputation (imputation based on the 85

Kaplan-Meier estimator of the survival function) from Taylor et al. [31] and the conditional multiple imputation 86

(imputation based on the mean residual life) from Atem et al. [33] are included. A simulation framework was 87
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developed to evaluate basic properties of the model as well as differential discovery performance in the context of 88

cytometry. The dataset from the FlowCAP IV challenge was re-analysed according to the diffcyt workflow with 89

the censoring-specific methods to highlight real world applicability. 90

Results 91

In order to test the performance of the included methods that handle censored covariates, two simulation studies 92

were performed, the first exploring basic properties in a simplistic model and the second embedded in the 93

situation of differential discovery performance when considering a single cell dataset with multiple 94

subpopulations. 95

Basic simulations 96

In the basic simulation, counts (Yj) for a sample j were modeled as binomially distributed with a GLMM 97

association with two covariates, one censored (Tj) and the other binary (Zj), via a logit link function with 98

regression coefficients β: 99

Yj |nj , pj ∼ Bin(nj , pj)

logit(pj) = β0 + β1Tj + β2Zj +Rj

nj ∼ U(1e4, 1e5)

Tj ∼Weibull(λt, κt)

Rj ∼ N(0, σ2)

(1)

where Rj represents an observation-level random effect to model overdispersion and nj is the total number of 100

cells in a sample. For further details, see the Methods section. 101

Results of the basic simulations are shown in Figure 1 for three different censoring rates (30%, 50%, 70%) for 102

a sample size of 100 with 100 repetitions per condition. Four different evaluation criteria are considered: raw bias 103

(RB = E(β̂1)− β1), coverage rate (CR, proportion of confidence intervals that contain the true value), confidence 104

interval (CI) width and root mean squared error (RMSE =

√
E((β̂1 − β1)2)). For a multiple imputation method 105

to be considered “randomization-valid”, it should have no bias and a CR close to the specified proportion (in this 106

case, 0.95) [34]. If a method is randomization-valid, the average width of the CI is another important criterion 107

that represents statistical efficiency. On the other hand, the RMSE is an indicator of the precision of the 108

estimation as it combines the variance and the bias (RMSE = Var(β̂1) + Bias(β̂1)2). For increasing censoring 109

rates, the RB (top row in Figure 1) for methods Kaplan-Meier imputation (km), Kaplan-Meier imputation with 110

an exponential survival function tail (kme), risk set imputation (rs) and predictive mean matching (pmm) 111

increases slightly, while for the other methods, it remains constant although the RMSE increases. In particular, 112

the RB for those four methods is positive under all conditions, indicating overestimation. This observed bias is 113

quite consistent across different simulation conditions (See Supplementary Figures S1-S4) although only for a low 114

regression coefficient of the censored covariate does it become pronounced (Supplementary Figure S2). The CR 115

(second row in Figure 1) is for all methods close to the expected value of 0.95 and taken together with the RB (in 116

general close to zero) confirms the randomization-validness of the methods under most of the tested simulation 117

conditions. The CI width (third row in Figure 1) for km, kme and rs has a nearly equal spread across all 118

conditions while for the remaining methods, it increases with increasing censoring rate. Since the RMSE (bottom 119

row in Figure 1) is a combination of the variance and the bias of an estimate it summarizes row 1 and 3 of Figure 120

1. So even though the estimates from km, kme and rs are slightly biased, their RMSE is lower compared to the 121

other methods since their variance is lower. 122

The distribution of p-values under the null simulation is for a low censoring rate uniform for all methods 123

except mrl whose distribution is shifted towards 1 (Figure 2). For increasing sample sizes, the p-value 124

distributions of all methods (except cc) shift towards 1, suggesting they become more conservative. The 125

distribution for cc on the other hand shifts slightly towards 0. 126

Taken together, these results show that no tested methods stand out as being uniformly underperforming, but 127

none is remarkably outperforming compared to its competing methods. 128
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Simulations modeled from real data 129

Figure 3 depicts a schematic of the simulation procedure for the multiple cell population scenario. Based on a 130

real dataset clustered into cell populations (e.g. data from FlowCAP IV clustered with FlowSOM ; Figure 3a), a 131

Dirichlet-multinomial (DM) distribution is fit to the cluster× sample matrix of abundances (Figure 3b). To 132

insert a known association, the obtained concentration parameters α = (α1 ... αK) ∈ RK+ are then adjusted to 133

include an association with a continuous (and later, censored) and a binary variable (Figure 3c, Eqn.3). The sizes 134

(second parameter of DM) are kept the same. For subpopulation i ∈ {1...K} and sample j ∈ {1...N} the counts 135

of a sample Yj ∈ NK with size nj ∈ N are distributed according to 136

Yj ∼ DM(nj , Aj) (2)

with the matrix of concentration parameters A = (αT1 ... αTN ) ∈ RK×N+ dependent among others on the 137

continuous covariate Tj and the binary covariate Zj : 138

Aij = logit−1(β0i + β1iTj + β2iZj)×
K∑
l=1

Alj (3)

where the β parameters are the regression coefficients. A new dataset is then simulated with the adjusted 139

parameters(Figure 3d). For further details, see the Methods section. 140

When two covariates are present, one option is to test for an association of the cell population abundance 141

with the censored covariate (i.e. by testing if the regression coefficient of the censored covariate β1 = 0 in Eqn. 3) 142

while also accounting for the binary covariate. In Figure 4 the TPR-FDR (true positive rate versus achieved false 143

discovery rate) curves for the detection of true association between cell population abundance and survival time 144

are shown for three different censoring rates and four different sample sizes. 145

The method GLMM is the generalized linear mixed model method from diffcyt using the true (but 146

unobserved) survival times and is included as a control, since it represents the maximum performance that could 147

be achieved if the data were fully observed. It is not dependent on the censoring rate, so it can also be seen as a 148

qualitative comparison of the simulation variability for a given sample size. pmm, on the other hand, can be 149

considered to be a quasi-negative control, since it treats censored values as missing (leading to increased 150

uncertainty about the data); thus, it highlights the gain in information from including censored values versus 151

treating them as missing. In contrast, cc only keeps the “best” samples (the ones that are observed), which leads 152

to more certainty about the data (at the cost of less data and potentially biased estimates). 153

Not surprisingly, lower sample sizes and increased censoring rates result in lower sensitivity. For a censoring 154

rate of 30%, the differences in performance between the methods are minimal, independent of the sample size. 155

For high censoring rates (70%), the differences between the methods are more prominent but decrease again for 156

large sample sizes (400). pmm has overall the lowest sensitivity and poor error control; this is especially 157

pronounced at high censoring rates leading to TPR-FDR curves with high FDR at low TPR. On the other hand, 158

cc shows moderate sensitivity but the error control is poor for both high censoring rates and small sample sizes. 159

rs, km, kme have in general a moderate sensitivity and good error control while mrl has good sensitivity and 160

decent error control. Especially for high censoring rates, mrl outperforms other methods in terms of TPR. 161

To summarize: The censoring-specific methods have in general good error control, but especially for high 162

censoring rates, result in lower sensitivity at a given p-value threshold (e.g. 0.05) than cc (which has poor error 163

control). 164

The second option is to test for the association between the binary covariate and the cell population 165

abundance (i.e. by testing if the regression coefficient of the binary covariate β2 = 0 in Eqn. 3), in the presence 166

of a censored covariate. The TPR-FDR curves in this scenario (Figure 5) show clear differences compared to the 167

testing for the association with the censored variable. GLMM is again the unrealistic control while ncGLMM is 168

based on GLMM, but excludes the censored covariate in differential testing. It could therefore be seen as the 169

ad-hoc solution when a censored covariate is present but not of interest and one decides to neglect the possible 170

effect of the second covariate on the response. Two main differences compared to the association testing of the 171

censored covariate is that cc and mrl have low sensitivity, even lower than pmm in many cases. The best 172

performing methods are km, kme and rs, which often have similar sensitivity and error control. In many cases, 173
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they have a higher sensitivity than ncGLMM indicating that there is a benefit of accounting for the censored 174

covariate instead of discarding it. Comparing the error control between Figure 4 and 5 shows that in the binary 175

covariate association testing, the error control of the censoring-specific methods is often closer to its expected 176

values than in the censored covariate association testing. 177

178

An alternative simulation scenario with only one censored covariate was modeled as well to compare 179

censored-covariate methods with the Cox proportional hazard model [27] (by maintaining the simulated 180

associations, but switching the response and the covariate in the statistical model). The results indicate similar 181

performance in terms of specificity and error control for the Cox proportional hazards model and the censored 182

covariate regression models (Supplementary Figure S5). 183

Case study 184

To illustrate the use of models with censored covariates in differential discovery analysis, the FlowCAP IV 185

dataset was reanalysed. A total of 766 flow cytometry PBMC samples linked to time to progression to AIDS 186

from HIV+ of 383 patients (two per patient, one stimulated, one unstimulated) were available. For each sample, 187

13 marker intensities (IFNγ , TNFα, CD4, CD27, CD107-A, CD154, CD3, CCR7, IL2, CD8, CD57, CD45RO and 188

V-Amine/CD14) together with channels FSC-A, FSC-H and SSC-A were measured. Of the 383 available survival 189

times, 79 were observed, resulting in a censoring rate of 79% [25]. 190

Preprocessing was performed according to the FloReMi pipeline: quality control, removal of margin events, 191

doublet removal, compensation, logicle transformation and selection of alive T-cells [26]. 192

FlowSOM was used for clustering with all marker intensities except FSC-C, FSC-H and SSC-A. The number 193

of clusters was set to 400 and additionally, the metaclustering step was performed to obtain different 194

subpopulation resolutions. The differential testing was then performed for a number of clusters of 20, 50, 100 and 195

400. The covariates were the survival time and the condition (stimulated or unstimulated) of the sample. Two 196

random effects were modeled, one on a per sample level and the other on a per patient level. The three main 197

methods (rs, km, mrl ; number of imputations equal to 200) plus the complete case analysis were applied. An 198

illustration of how the association between the survival time and the abundance for a cell population looks like is 199

shown in Figure 6. At the top is a cluster with small adjusted p-value while the cluster in the bottom has a high 200

adjusted p-value (as evaluated by mrl). No immediate association is visible, which could have various 201

explanations, including high censoring rate, overdispersion, weak association. 202

Although no ground truth is established (i.e. which cell belongs to which cell population and which (if any) 203

cell population is DA), a comparison to results from other methods (i.e. the original FlowCAP IV submissions) 204

still gives insights into differential discovery performance. For the differential testing, the proportion of 205

significant clusters for multiple cut offs differed substantially (Table 1). In general, the proportion of significant 206

clusters is higher for a lower number of total clusters. While rs and km did not detect any DA clusters, cc found 207

a large proportion of clusters to be significant and mrl has intermediate detection rates. 208

Based on the proportion of detected clusters (Table 1), a level of 100 clusters was deemed to have a good 209

balance between precision (cell population sizes) and sensitivity (proportion of detected clusters). A closer look 210

at the (unadjusted) p-values of those clusters (at a level of 100 clusters) revealed similarities between the 211

methods: 6 clusters were found in the 10 clusters with lowest (unadjusted) p-value for at least 3 methods. The 212

adjusted p-values for rs and km are much higher than any reasonable significance level, however, cc and mrl have 213

clusters that are differentially abundant. For cc, the proportion of significant clusters seems to be rather high 214

(∼ 50%), which is not unexpected given the poor error control observed in the simulations. 215

Comparing the marker expressions of those “top” 6 clusters (Supplementary Figure S6) with the discovered 216

subpopulations in the FlowCAP IV challenge reveals some similarities. For example, Cluster 9 matches the 217

described population of CD3+ CD4- CD14/VIVID+ CD57- cells [25]) and cluster 38 is similar to the CD4- 218

CD27- CD107a- CD154- CD45RO- population described in FloReMi [26]. 219
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Number of cluster cut off mrl rs km cc
20 0.01 0.35 0 0 0.75

0.05 0.55 0 0 0.9
0.1 0.85 0 0.1 0.95

50 0.01 0.3 0 0 0.62
0.05 0.48 0 0 0.76
0.1 0.66 0 0 0.8

100 0.01 0.13 0 0 0.49
0.05 0.32 0 0 0.59
0.1 0.39 0 0 0.64

400 0.01 0 0 0 0.0575
0.05 0 0 0 0.07
0.1 0 0 0 0.108

Table 1. Proportion of significant clusters for different total number of clusters (20, 50, 100, 200) for different
significant levels (0.01, 0.05, 0.1) after multiple hypothesis correction in the case study. cc : complete case
analysis, km Kaplan-Meier imputation, mrl mean residual life imputation (conditional multiple imputation), rs
Risk set imputation.

Discussion 220

In differential abundance analysis with a variable subject to censoring, existing methods make use of classical 221

survival analysis methods, such as the Cox proportional hazard model. In particular, this would model the 222

observed cell population abundances as predictors. The use of a reversed approach (cell population abundance as 223

response), however, has the benefit to directly include confounders such as batch or age. The problem is that this 224

reversed approach leads to a censored predictor, which renders standard differential abundance analysis 225

inapplicable. A workaround to this issue is the use of multiple imputation, where the imputation step is 226

specifically designed to handle censored values. Simulation studies indicate that in general, there is a gain by 227

including the censored data instead of discarding samples (complete case analysis; cc) or treating censored values 228

as missing (predictive mean matching; pmm). 229

More specifically, the basic simulations revealed consistent but slightly biased parameter estimation for the 230

related methods rs, km and kme, and the simulations modeled from real data showed similar or increased 231

performance in terms of sensitivity compared to cc but with better error control. Parameter estimation with mrl 232

on the other hand was unbiased in the basic simulation, but the coverage rate was higher than expected, which 233

typically leads to conservative performance. In the simulations modeled from real data, the conservative 234

performance of mrl was apparent for low FDR, while the TPR was often (especially for higher censoring rates) 235

higher than for other methods. In the case study (no ground truth), only mrl and cc were able to detect 236

differentially abundant cell (sub) populations although especially for cc, the number of detected clusters was high, 237

which could indicate many false positives. But since for mrl the FDR was in the simulations in general very low, 238

this could mean that indeed many clusters are differentially abundant or alternatively, the real data is 239

substantially different in structure compared to the simulations. For example, the simulations assumed a missing 240

data mechanism that is missing-completely-at-random (MCAR), which might not be given in this case. 241

Especially for cc, a missing data mechanism different from MCAR could be a problem since it is known to be 242

biased under this condition. On the other hand, mrl (and rs and km) should be able to handle certain 243

missing-at-random (MAR) cases [33], although this was not directly confirmed here. 244

The methods considered for direct inclusion of a censored covariate all rely on multiple imputation, which has 245

the advantage of high interpretability since the underlying statistical models are classical GLMMs. A 246

disadvantage are high computing costs caused by the need for repeated imputations (e.g. for high censoring rates, 247

runtimes of 1 h instead of 1 min); runtimes can be nonetheless reduced through parallelization. The resolution at 248

which to analyze is another issue, since a high number of clusters may reduce the statistical power imposed by 249

multiple hypothesis correction, while associations with rare cell populations might be overlooked for a low total 250

number of clusters. If a hierarchical structure of the cell populations is available (e.g. via metaclustering in 251

FlowSOM ), tree-based aggregated hypothesis testing methods (e.g. treeclimbR [35]) could increase differential 252

6/19

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.09.374447doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.374447
http://creativecommons.org/licenses/by/4.0/


discovery performance. Additional improvements of the differential discovery performance could be achieved by 253

the use of a different analysis method such as edgeR or voom, which were shown to have increased performance 254

compared to GLMM [18]. A further issue is of general nature: testing the association with a continuous 255

(censored) covariate requires larger sample sizes compared to the testing with a binary covariate, although this 256

nonetheless also depends on the dispersion and the strength of the association. 257

Conclusion 258

Statistical modeling with a high proportion of censored data is always challenging, but even more so in DA 259

settings with often overdispersed data and the need for multiple hypothesis testing correction. Nonetheless, we 260

showed that including censored variables as a predictor in GLMMs results in high error control and decent 261

sensitivity for a subset of the tested methods. Compared to classical survival analysis methods, such as the Cox 262

proportional hazard model, higher flexibility in testing is provided, reflecting the need in typical experimental 263

and clinical setups. 264

The tested methods were implemented in R and are submitted to Bioconductor. The source code is also 265

available on GitHub https://github.com/retogerber/censcyt. Scripts for reproducing results and figures 266

can be found on https://github.com/retogerber/censcyt_paper_scripts. 267

Methods 268

Censoring 269

The data mechanism for simulating censored data is based on the one described in Atem et al. [33]. The variable
X to be censored is drawn from a Weibull distribution with scale λx and shape κx with the following
parameterization:

f(x) =
κ

λ

(x
λ

)κ−1
e−( xλ )

κ

with the scale parameter λ > 0, the shape parameter κ > 0 and x ≥ 0. A second variable C that corresponds to
the censoring time is also drawn from a Weibull distribution, but with different shape and scale parameters. The
observed value T is then the minimum of X and C. In summary:

X ∼Weibull(λt, κt)

C ∼Weibull(λc, κc)

T = Min(X,C)

The parameters of the Weibull distributions are derived from the FlowCAP IV dataset [25]. More precisely λx 270

and κx are obtained by fitting a Weibull distribution on the full dataset (taking into account censoring), while λc 271

is from fitting only on the censored samples. κc is then calculated by first defining the desired censoring rate and 272

then solving for κc (by calculating the probability P (C < X) =
∫∞
0

∫ x
0
f(c)f(x)dcdx, which can be seen as the 273

expected censoring rate, for different values of κc). 274

Single cluster simulation 275

For the basic simulations with only a single cluster, the counts Yj (number of cells) with j ∈ 1..N was sampled 276

from a generalized linear mixed model with a logit link function where the response (the number of cells) followed 277

a binomial distribution (Eqn. 1) where Tj follows a Weibull distribution with parameter as described above 278

estimated from the FlowCAP IV dataset [25], the regression coefficients were set to b0 = −2, b1 = −0.0001 and 279

b2 = 1, Zj ∈ {0, 1} is a binary covariate with balanced groups, Rj is an observation level random effect to model 280

overdispersion distributed according to a standard normal distribution (σ2 = 1) and nj is the sample size 281

distributed according to a uniform distribution with a minimum limit of 10’000 and a maximum limit of 100’000. 282

7/19

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.09.374447doi: bioRxiv preprint 

https://github.com/retogerber/censcyt
https://github.com/retogerber/censcyt_paper_scripts
https://doi.org/10.1101/2020.11.09.374447
http://creativecommons.org/licenses/by/4.0/


Multiple cluster simulation 283

The matrix of counts Y ∈ RK×N for K clusters (cell populations) and N samples follows a Dirichlet-Multinomial
(DM) distribution (Eqn. 2) for j ∈ {1...N} where nj is the total number of cells in sample j and
A = (αT1 ... αTN} ∈ RK×N with Aij > 0 for i ∈ {1...N} are the concentration parameters dependent on
covariates Tj and Zj . Additionally Yj = (Y1j ...Ykj), Tj ∼Weibull(λ, κ) and Zj ∈ {0, 1} is a binary variable with
balanced groups. The proportions of cells in cluster i in sample j is simply

πij =
Yij∑K
l=1 Ylj

An association for cluster i is then assumed to be the following: 284

E(πij |Tj , Zj) = logit−1(β0i + β1iTj + β2iZj) (4)

with an intercept β0i, a slope β1i for Tj and a slope β2i for Zj . The β’s are therefore fixed for a cluster but are 285

different between clusters. The covariates Tj and Zj are specific for a sample but not a cluster. The proportions 286

πj for sample j follow a Dirichlet distribution, meaning the πij themselves follow a Beta distribution with mean 287

E(πij |Tj , Zj) =
Aij∑K
l=1Alj

(5)

This allows to combine Eqn. 4 and Eqn. 5 leading to Eqn. 6 (which is the same as Eqn. 3): 288

Aij = logit−1(β0i + β1iTj + β2iZj)A•j (6)

with the sum of the concentration parameters for a sample A•j =
∑K
l=1Alj . This means that Aij |Tj , Zj is 289

dependent on six values: the intercept β0i, the first slope β1i, the continuous covariate Tj , the second slope β2i, 290

the binary covariate Zj and A•j . Since the sum A•j depends on all Aij for a given sample j, this means that in 291

order to keep this sum equal across samples, for every Aij that is increased with increasing Tj there has to be an 292

Aij that decreases the same amount. Because of the non-linearity of the logit function this could lead to a very 293

weak association of the second Aij (which would not strictly follow the logit relationship). The strategy is 294

therefore to allow small discrepancies of the sum A•j in order to get the specified associations. To decrease the 295

variation of the sum A•j two clusters of similar proportion are chosen. To obtain β0 and β1, the desired 296

minimum / maximum mean proportion πij for max(Tj) is determined and then Zj is set to zero to solve for β0 297

and β1. This will result in a sum A•j that is exactly the same at Tj = 0 and Tj = max(Tj). All sums A•j in 298

between will slightly deviate but this deviation is too small to detect under the simulation conditions considered 299

here. To obtain β2i, a difference of the mean abundance at Tj = 0 is specified, which then allows to calculate β2i. 300

In short, the β’s are calculated by specifying border constraints, consisting of maximum differences in the mean 301

abundance dependent on the covariates. Because it was observed that the spread of the simulated data was 302

higher than in the real dataset, the concentration parameters were multiplied by a factor of five (keeping the 303

expected counts per cluster the same) to reduce the variance of counts. 304

Multiple imputation 305

The goal of multiple imputation is not to replace the missing or censored values by estimates but rather to find a 306

parameter estimate of the statistical model being tested that is unbiased and confidence valid [34]. 307

Multiple imputation consists of three main steps [34]: Imputation, Analysis, Pooling. In the first step, multiple 308

complete datasets are generated by replacing the incomplete values with a random draw from a set of possible 309

true values. This can, for example, be the assumed or empirical distribution of the incomplete value. In the 310

second step, each completed dataset is individually analysed, e.g. by fitting a regression model. In the third step, 311

the results from the second step are combined using Rubin’s rules [36] that consider the additional variances in 312

the analysis. A slight variation is the use of Resampling in the first step. Before imputation, a bootstrap sample 313

is drawn, which is then the new incomplete dataset where the missing values get replaced. One of the advantages 314

of this approach: the incomplete value can be replaced by a deterministic quantity of the data (e.g. the mean), 315

which would not work in classical multiple imputation (each imputed dataset would be the same). A drawback is 316

that Resampling techniques are based on large-sample theory and might not work properly for small samples [29]. 317
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DA 318

The presented DA methods are based on the GLMM approach in diffcyt which consists of fitting a generalized 319

linear mixed model with a logit link function for each cell population, testing and multiple hypothesis testing 320

correction. When a censored covariate is present, multiple imputation is used to handle the additional 321

uncertainties of the parameters caused by incomplete data. The imputation methods are described in the 322

following. 323

In complete case analysis (cc, also known as listwise deletion [34]), only the observed values (T j |T j < Cj for 324

j ∈ {1...N}) are used by discarding all incomplete samples. 325

The risk set imputation (rs) [31] first constructs the risk set R(T l) = {T j |T j > T l} for j ∈ {1...N} for all 326

T l|T l <X l with l ∈ {1...N} and second, randomly draws one of those as the imputed value. If censoring 327

depends on a covariate, the risk set is calculated as described in (Hsu et al.) [37], incorporating the idea of 328

predictive mean matching. 329

The Kaplan-Meier imputation (km) [31] is similar to risk set imputation. It first constructs the risk set R(T l) 330

for all T l|T l <X l and then estimates the survival function with the Kaplan-Meier estimator for each of those 331

sets. A random event time according to the survival curve is drawn and replaces the censored value. 332

Conditional multiple imputation [33] (labeled here as mean residual life imputation (mrl)) is based on the 333

mean residual life, which is the expected remaining survival time until an event happens 334

mrl(t) = E(X − t|X > t) =

∫∞
t
S(u)du

S(t)
(7)

with the random variable X representing the true (unobserved) survival time and S(t) the survival function. It 335

can be used to get an estimate of how long it will take until an event happens given that the event did not 336

happen yet. Conditional single imputation [33] (Conditional multiple imputation with only one imputation) 337

imputes censored values by adding the corresponding mean residual life. First a survival curve S(T ) (using the 338

Kaplan-Meier estimator) is fitted and then the mean residual life is added to the censored value [33]. If censoring 339

depends on a covariate, S(T ) can be fitted using the Cox-proportional hazards model [27]. Mean residual life 340

imputation (Conditional multiple imputation) can not be used in the normal multiple imputation set up since all 341

imputed datasets would be the same. Instead Resampling is applied to first generate incomplete datasets before 342

imputation. 343

The estimation of S(T ) is done without any distributional assumptions resulting in a high data dependency. 344

If the sample size is small and/or many values are censored the estimation can be drastically different from the 345

true (unobserved) survival function. Especially towards the tails, as data gets even sparser, estimation is difficult. 346

If the highest measured value is censored, S(T ) does not reach its theoretical minimum (zero). The usual way to 347

deal with this problem is to treat the maximum value as if it was observed. Another possibility is to make a 348

distributional assumption for the tail of the survival function. This was explored for the method Kaplan-Meier 349

imputation by assuming an exponential tail, which is referred to here as kme (based on [38]). 350

Unfortunately, there is no clear rule as to how many imputations are needed [34]. In general, this depends on 351

(among other things) the censoring rate; higher censoring requires more imputations. Two methods to estimate 352

the number of imputations are based on a linear rule [39] and a quadratic rule [40]. Only minor changes in the 353

results after around 50 imputations could be seen in our case leading to the use of 50 imputations as the default. 354

Case study 355

Following are some clarifications of the description in the main text. The raw flow cytometry data is available 356

under http://flowrepository.org/id/FR-FCM-ZZ99. The data set consists of 766 PBMC samples linked to 357

time to progression to AIDS from HIV+ of 383 patients. For each patient, two samples (measured at the same 358

time) are available: one untreated and one treated with HIV-Gag proteins. 359

Preprocessing was performed according to the FloReMi pipeline [26]: First, quality control by removing cells 360

within a certain time sampling interval where the median FSC-A value differed dramatically from tolerable limits. 361

Then, removal of margin events by removing cells that have a minimum and maximum value for some channel. 362

Next, the selection of single cells by removing cells whose FSC-A to FSC-H ratio was larger than the median 363

ratio plus two times the standard deviation of the ratios. Next, compensation with the given spillover matrices 364
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(from the .fcs files) was applied, data was logicle transformed and alive T-cells were gated (using flowDensity) 365

using channels V-Amine/CD14 and CD3 and selection of V-Amine/CD14-CD3+ population. 366

In the differential testing a transformed survival time, according to strans = loge(s+ 11) (the +11 is to obtain 367

only positive values since the lowest survival time is −10), was used. 368
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Figure 1. Single cluster simulation results for a sample size of 100 for censoring rates of 30%, 50% and 70%.
Shown are four measures calculated from 100 simulation repetitions: difference of the estimated regression
coefficient (β̂1) and its true value (β1) , coverage rate (CR), confidence interval (CI) width and root mean squared
error (RMSE). cc: complete case analysis, km: Kaplan-Meier imputation, kme: Kaplan-Meier imputation with
an exponential tail, mrl : mean residual life imputation (conditional multiple imputation), pmm: predictive
mean matching (treating censored values as missing), rs: risk set imputation. Other parameter values are: true
regression coefficient β1 = −1e− 4, number of multiple imputations = 50 and the variance of the random effect
= 1.
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Figure 2. Single cluster simulation p-value distribution under the null model for three different censoring rates
(30%, 50%, 70%). cc : complete case analysis, km Kaplan-Meier imputation, kme Kaplan-Meier imputation with
an exponential tail, mrl mean residual life imputation (conditional multiple imputation), pmm predictive mean
matching (treating censored values as missing), rs Risk set imputation. Each line represents 1000 repetitions.
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Figure 3. Simulation schema for multiple cell populations. (a) Starting with a cluster × sample matrix of
abundances from a real dataset (b) a dirichlet-multinomial (DM) distribution is fitted. (c) The DM parameters
are expanded and adapted to include an association of the abundances with a continuous covariate t and a binary
covariate z. (d) A new dataset is simulated from the new parameters.
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Figure 4. Multiple cluster simulation results testing for the association of the censored covariate. TPR-FDR
curves for censoring rates of 30%, 50% and 70% (rows) and samples sizes of 50,100,200 (columns). The x-axis
is square root transformed. cc: complete case analysis, km: Kaplan-Meier imputation, kme: Kaplan-Meier
imputation with an exponential tail, mrl : mean residual life imputation (conditional multiple imputation), pmm:
predictive mean matching (treating censored values as missing), rs: Risk set imputation. GLMM uses the
(unobserved) ground truth of the survival time and can be considered to be the maximum possible performance
of the other methods.
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Figure 5. TPR-FDR curves of multiple cluster simulations with testing for the association of the binary
covariate. Rows are censoring rates (30%, 50% and 70%) and columns are samples sizes (50, 100, 200 and
400). The x-axis is square root transformed. cc: complete case analysis, km: Kaplan-Meier imputation, kme:
Kaplan-Meier imputation with an exponential tail of the survival function, mrl : mean residual life imputation
(conditional multiple imputation), pmm: predictive mean matching (treating censored values as missing), rs :
risk set imputation. GLMM uses the (unobserved) ground truth of the survival time and can be considered to be
the maximum possible performance of the other methods. ncGLMM : same as GLMM but uses only the binary
covariate for fitting and testing.
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Figure 6. Association between cluster proportion and survival time for two clusters, one DA (top) and one non
DA (bottom), evaluated with mrl for a total number of clusters of 100. The survival time is translated to get only
positive values and then log transformed. Scaling of the axis in the upper plot removed 7 data points (0.9%).
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