1 Dual clathrin and adhesion signaling systems regulate growth factor receptor a
--

- 2
- 3 Marco A. Alfonzo-Mendez, Kem A. Sochacki, Marie-Paule Strub, Justin W. Taraska^{*}
- 4 Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of
- 5 Health, 50 South Drive, Building 50, Bethesda, MD 20892
- 6 *Corresponding author: justin.taraska@nih.gov
- 7 Key words: Flat Clathrin Lattices, EGFR, Src, β5-integrin, Crosstalk, Phosphorylation, Electron
- 8 Microscopy, TIRF Microscopy.
- 9

10 ABSTRACT

11 The crosstalk between growth factor and adhesion receptors is key for cell growth and migration. In 12 pathological settings, these receptors are drivers of cancer. Yet, how growth and adhesion signals are spatially organized and integrated is poorly understood. Here we use quantitative fluorescence and 13 14 electron microscopy to reveal a mechanism where flat clathrin lattices partition and activate growth 15 factor signals via a coordinated response that involves crosstalk between epidermal growth factor 16 receptor (EGFR) and the adhesion receptor β 5-integrin. We show that ligand-activated EGFR, Grb2, Src, 17 and β 5-integrin are captured by clathrin coated-structures at the plasma membrane. Clathrin structures 18 dramatically grow in response to ligand activation into large flat plaques and provide a signaling 19 platform that link EGFR and β 5-integrin through Src-mediated phosphorylation. Disrupting this 20 EGFR/Src/ β 5-integrin axis prevents both clathrin plaque growth and receptor signaling. Our study 21 reveals a reciprocal regulation of clathrin lattices and two different receptor systems to enhance cell

- 22 growth factor signaling. These findings have broad implications for the control of growth factor
- 23 receptors, mechanotransduction, and endocytosis.

24

25 INTRODUCTION

26 Cellular communication begins with a cascade of molecular interactions initiated by plasma 27 membrane (PM) receptors of which the receptor tyrosine kinases (RTKs) are one of the major 28 superfamilies. RTKs are ubiquitous integral membrane proteins in eukaryotes that perform numerous 29 actions including the regulation of cell proliferation, differentiation, survival and migration¹. 30 Epidermal growth factor receptor (EGFR) is one of the most widely studied members of the RTK superfamily, which regulates epithelial tissue development and homeostasis. In lung, breast, and 31 head and neck cancers, EGFR is a driver of tumorigenesis and is a major target for therapy^{2, 3}. EGFR 32 spans the membrane and contains a ligand-interacting domain facing the extracellular space and a 33 34 tyrosine kinase region in the cytoplasm⁴. The binding of EGFR to epidermal growth factor (EGF) 35 triggers receptor dimerization and cross-phosphorylation of tyrosine residues within its cytosolic domain^{5, 6}. This provides docking sites for the recruitment of scaffold proteins including Grb2 and the 36 activation of downstream tyrosine kinases such as Src⁷⁻⁹. The EGFR pathway can be activated either 37 38 directly by its cognate ligands or through transactivation by other signaling proteins including integrins^{10, 11}. 39

Integrins are adhesion molecules that are responsible for cell-cell and cell-matrix interactions, and
relay mechanical signals bidirectionally between the extracellular space and the cytoplasm¹². In this
way, integrins sense the local environment and control tissue rigidity, cell growth, and movement¹³.
Dysregulation of integrin signaling contributes to cancer and metastasis¹⁴. Integrins are thought to be
heterodimers of α and β subunits, each containing a large multidomain extracellular region (>700

residues) for ligand biding, a single transmembrane helix, and a short cytoplasmic tail (13-70
residues)¹⁵. β-integrin cytoplasmic tails lack enzymatic activity. Instead, they harbor distinct
regulatory sequences including two NPxY motifs (Asn-Pro-x-Tyr) that can be phosphorylated¹⁶. NPxY
motifs have a high affinity for phosphotyrosine binding domain proteins¹⁷. This allows them to bind
to signaling partners including clathrin-mediated endocytosis (CME) accessory proteins^{18, 19}. While
these proteins are known to interact generally, how they are spatially organized at the PM to control
signaling and crosstalk is unclear.

EGFR and integrins can be regulated through CME—the main pathway used by eukaryotic cells to 52 internalize receptors into the cytoplasm^{20, 21}. During CME, clathrin and adaptors assemble to bend the 53 membrane into Ω -shaped pits^{22, 23}. Scission of clathrin-coated pits (CCPs) from the PM yields closed 54 55 spherical vesicles with an average diameter of ~100 nm²⁴. Besides CCPs, cells exhibit a subset of clathrin coats known as flat clathrin lattices (FCLs) or plaques^{25, 26}. In contrast to CCPs, FCLs are long-lived on the 56 PM and display a variety of two-dimensional shapes^{27, 28}. FCLs are abundant in myocytes and can bind 57 cortical actin during muscle formation and function^{29, 30}. FCLs are also important for the adhesion 58 between osteoclasts and bone^{31, 32}. During cell communication, different types of receptors including 59 EGFR are clustered at FCLs³³. Additionally, FCLs are enriched with β 5-integrin³⁴⁻³⁶. Yet, it is unknown how 60 flat clathrin lattices are regulated and their general functions are still unclear. 61

Here, we identified an EGFR/β5-integrin/Src signaling axis that regulates flat clathrin lattice biogenesis
during growth factor stimulation. Using a combination of quantitative fluorescence and electron
microscopy, we showed that EGF triggers large ultrastructural changes in the membrane of human
squamous (HSC3) cells. These changes include the generation and expansion of large FCLs and
required EGFR interactions with EGF as well as Src kinase and β5-integrin. Agonist stimulation leads to
persistent recruitment of EGFR, Grb2, and β5-integrin into clathrin structures, and a corresponding loss

of Src kinase. We provide evidence of β5-integrin phosphorylation mediated by Src that regulates this
signaling system. These data reveal a mutual regulation of FCLs and two different receptor systems:
EGFR and β5 integrin. Thus, an EGFR/β5-integrin/Src axis contributes to the biogenesis of FCLs, which
in turn act as dynamic signaling platforms to partition and enhance growth factor signaling at the PM
of human cells.

73

74 **RESULTS**

75 EGF triggers changes in the ultrastructure of clathrin lattices

First, we tracked the ultrastructure of clathrin at the PM during growth factor stimulation. To accomplish

this, we used genome-edited HSC3 cells endogenously expressing EGFR tagged with GFP, an established

78 model to study EGFR endocytosis and human EGFR-dependent head and neck carcinoma³⁷⁻³⁹. We

treated HSC3 cells with vehicle (Ctrl) or EGF for 2, 5, 15, 30 and 60 min. Then, we mechanically unroofed

80 cells to directly visualized clathrin at the cytoplasmic face of the PM using platinum replica transmission

81 electron microscopy (PREM)⁴⁰. In these images, we measured the structure and distribution of clathrin

82 coated structures (CCSs) across the PM of control and EGF stimulated cells. Remarkably, CCSs were 4.6-

fold more abundant in cells stimulated with EGF for 15 min (Fig. 1a-d and Sup. Fig.1).

84 PREM allowed us to segment distinct CCSs based on their curvature into three subclasses: 1) flat clathrin

85 lattices (FCLs), where no curvature is evident (shown in green); 2) dome, curved but the clathrin edge is

visible (blue); and 3) sphere, highly curved and edge is not observable (magenta) (Fig. 1a-d)⁴¹.

87 Representative segmentation masks illustrate the densities of diverse CCSs densities at different time

points of EGF stimulation (Fig. 1e). We compared the differences in densities by quantifying the

89 membrane occupation of all CCSs (Sup. Fig. 1) and individual subclasses (Fig. 1f-h). All CCSs in control

90 cells occupied 0.84±0.2% membrane area and markedly increased 2.5-, 4.6- and 5-fold after EGF

91	stimulation for 5, 15, and 30 min, respectively. The area of all CCSs decreased to near baseline levels
92	after 60 min (0.67 \pm 0.33%) (Sup. Fig. 1). Notably, membrane area occupation of FCLs followed a similar
93	time course to all CCSs classes, with a peak at 15 and 30 min post-EGF (3.2 \pm 0.58%, 6.5-fold; 3.3 \pm 1.92%,
94	6.7-fold), reaching near-baseline levels at 60 min (0.5 \pm 0.22%) (Fig. 1f). In contrast, the mean membrane
95	occupation of domed and spherical clathrin structures remained below 1% with no significant
96	differences across the times tested (Fig. 1g-h). Thus, EGF specifically increased the total area occupied
97	by FCLs at the plasma membrane.
98	FCLs were considerably bigger after EGF treatment (Fig. 1a-d). The distribution range of the size of
99	hundreds of FCLs changed starting at 5 min EGF treatment (6,753.5-131,167.9 nm ²), with a peak after 15
100	min (3,461.5-282,649.1 nm ²) and 30 min (3,838.7-244,634.4 nm ²) and approached to control level after
101	60 min (6,847.3-101,739.3 nm ²) (Fig. 1i). The average size of domed (21,993.9±4294.8 nm ²) and
102	spherical clathrin structures (11,075.2 \pm 1,714.7 nm ²) were similar to their respective controls through
103	the time course (Fig. 1j-k). Together, our nanoscale analysis revealed a direct connection between the
103	the time course (Fig. 1j-k). Together, our nanoscale analysis revealed a direct connection between the
103 104	the time course (Fig. 1j-k). Together, our nanoscale analysis revealed a direct connection between the ultrastructure of FCLs and the temporal response to EGF at the plasma membrane.
103 104 105	the time course (Fig. 1j-k). Together, our nanoscale analysis revealed a direct connection between the ultrastructure of FCLs and the temporal response to EGF at the plasma membrane. EGFR, Src and β5-integrin are required for flat clathrin lattice formation
103 104 105 106	 the time course (Fig. 1j-k). Together, our nanoscale analysis revealed a direct connection between the ultrastructure of FCLs and the temporal response to EGF at the plasma membrane. EGFR, Src and β5-integrin are required for flat clathrin lattice formation EGF triggers phosphorylation cascades that activate distinct cellular effectors. We considered that
103 104 105 106 107	 the time course (Fig. 1j-k). Together, our nanoscale analysis revealed a direct connection between the ultrastructure of FCLs and the temporal response to EGF at the plasma membrane. EGFR, Src and β5-integrin are required for flat clathrin lattice formation EGF triggers phosphorylation cascades that activate distinct cellular effectors. We considered that signaling can regulate FCL biogenesis during growth factor stimulation. To identify the possible members
103 104 105 106 107 108	 the time course (Fig. 1j-k). Together, our nanoscale analysis revealed a direct connection between the ultrastructure of FCLs and the temporal response to EGF at the plasma membrane. EGFR, Src and β5-integrin are required for flat clathrin lattice formation EGF triggers phosphorylation cascades that activate distinct cellular effectors. We considered that signaling can regulate FCL biogenesis during growth factor stimulation. To identify the possible members of the EGFR signaling pathway involved in this process, we performed a pharmacological screen (Fig. 2g).
103 104 105 106 107 108 109	 the time course (Fig. 1j-k). Together, our nanoscale analysis revealed a direct connection between the ultrastructure of FCLs and the temporal response to EGF at the plasma membrane. EGFR, Src and β5-integrin are required for flat clathrin lattice formation EGF triggers phosphorylation cascades that activate distinct cellular effectors. We considered that signaling can regulate FCL biogenesis during growth factor stimulation. To identify the possible members of the EGFR signaling pathway involved in this process, we performed a pharmacological screen (Fig. 2g). We first targeted EGFR using gefitinib (Gefi), a drug that blocks receptor activity by binding to the ATP-
103 104 105 106 107 108 109 110	 the time course (Fig. 1j-k). Together, our nanoscale analysis revealed a direct connection between the ultrastructure of FCLs and the temporal response to EGF at the plasma membrane. EGFR, Src and β5-integrin are required for flat clathrin lattice formation EGF triggers phosphorylation cascades that activate distinct cellular effectors. We considered that signaling can regulate FCL biogenesis during growth factor stimulation. To identify the possible members of the EGFR signaling pathway involved in this process, we performed a pharmacological screen (Fig. 2g). We first targeted EGFR using gefitinib (Gefi), a drug that blocks receptor activity by binding to the ATP-pocket in the tyrosine kinase domain⁴². PREM of HSC3 cells preincubated with gefitinib followed by EGF

114	First, Src is a master effector immediately downstream of EGFR. And second, Src has been reported to
115	directly phosphorylate proteins key to the endocytic machinery ⁴³⁻⁴⁵ . We used PP2, a specific Src family
116	kinase inhibitor ⁴⁶ , and then challenged the cells with EGF. We observed a 4.1-fold decrease in FCLs
117	occupation compared to EGF alone, and similar as compared to control cells (PP2+EGF= 0.77 \pm 0.24%)
118	(Fig. 2d). We also targeted the β 5-integrin, a known component of FCLs ^{19, 34} . We treated cells with
119	cilengitide acid (CTA), a molecule that specifically prevents eta 5-integrin interaction with the extracellular
120	matrix ⁴⁷ followed by EGF stimulation. We detected a 2.2-fold inhibition of FCL stimulation by EGF
121	consistent with the other two drugs tested (CTA+EGF= 1.48. ± 0.73 %) (Fig. 2e). Representative
122	segmentation masks illustrate the diversity of CCSs in the presence of the three blockers (Fig. 2f). The
123	drugs additionally showed a similar inhibitory effect on the size of FCLs (Fig.2i). The drugs did not
124	significantly affect the percentage of membrane area occupied or the size of domed and spherical
125	clathrin structures, in the presence or absence of EGF (Sup. Fig.3). Overall, these data indicated that
126	activated EGFR, the downstream tyrosine kinase Src, and eta 5-integrin are all required for the EGF-
127	induced biogenesis of FCLs.
128	EGFR, Src and $\beta\text{5-integrin}$ are differentially located in flat clathrin lattices
129	We envisioned that EGFR, Src and eta 5-integrin are spatially located in close proximity to FCLs to regulate
130	their formation during EGF signaling. Using total internal reflection fluorescence microscopy (TIRFM)

along with a high-throughput correlation analysis⁴⁸, we mapped the location of EGFR, Src and β 5-

132 integrin at thousands of individual clathrin-coated structures in an unbiased manner. Correlation

analysis illustrates how often proteins of interest are spatially associated with clathrin. We assessed the

134 correlation between EGFR and clathrin. To do this, we used the genome-edited HSC3 endogenously

expressing EGFR-GFP and transfected them with mScarlet tagged clathrin light chain A (mScarlet-CLCa).

136 Figure 3a shows clathrin as diffraction-limited puncta, whereas EGFR appears as a more diffuse

137	fluorescent signal across the bottom PM in control cells (C=0.15±0.06). EGF stimulation caused the
138	appearance of pronounced EGFR clusters and a 2.4 -fold increase in its correlation with clathrin
139	(C=0.3±0.15) (see white in overlay). We observed a similar increase in wild type (WT) HSC3 cells co-
140	transfected with EGFR-GFP and mScarlet-CLCa stimulated with EGF (Sup. Fig. 5). We then imaged control
141	cells expressing Src-GFP that showed diffuse florescence similar to EGFR (Fig. 3a). Likewise, the Src signal
142	correlated with clathrin (C=0.41±0.1), but decreased 2.2-fold in the presence of EGF (C=0.18±0.1) (Fig.
143	3b). Interestingly, the eta 5-integrin signal appeared as discreet puncta that markedly correlated with
144	clathrin in both control (C=0.79±0.11) and EGF treated cells (C=0.76±0.07) (Fig. 3a-b). Thus, EGFR, Src
145	and, eta 5-integrin differentially correlate with clathrin. To further confirm this, we measured the EGFR
146	and Src signal using β 5-integrin as a reference. Similarly, stimulation increased the β 5-integrin
147	correlation with EGFR, but decreased correlation with Src (Sup. Fig. 6). Of note, we tested other
148	members of the β -integrin subfamily including β 1, β 3, and β 6 as well as α V, the most frequent partner
149	of eta 5-integrin. However, the correlation values were 2- to 4-fold smaller when compared to the eta 5-
150	integrin correlation with clathrin (Sup. Fig. 7). Altogether, these data support the idea that EGF leads to
151	a persistent recruitment of EGFR and eta 5-integrin into CCSs with a concurrent loss of Src.
152	EGFR and β 5-integrin are connected through Src-mediated phosphorylation
153	Next we assessed the biochemical connection between EGFR, Src and eta 5-integrin. EGF binding elicits
154	EGFR dimerization leading to Src tyrosine kinase activation ⁴⁹ . β 5-integrin cytoplasmic domain has three
155	tyrosine residues (Y766, Y774 and Y796) that are highly conserved among their orthologues and
156	paralogues (Sup. Fig. 8). In silico analysis suggested Src, among other kinases, has a substantial likelihood
157	of catalyzing phosphorylation at all tyrosines of the eta 5-integrin cytoplasmic domain (Sup. Fig 8). We

158 therefore hypothesized that these proteins form a signaling loop that can regulate clathrin remodeling

through phosphorylation. To support this hypothesis, we used a luciferase-coupled system to measure

160	the phosphorylation of synthetic peptides corresponding to the $eta5$ -integrin cytoplasmic domain (Fig.
161	4a). We detected a 13.6-fold increase in the phosphorylation of the WT peptide in the presence of Src,
162	as compared to the negative control containing only the WT peptide (Fig. 4b). By contrast, this effect
163	was reduced when we tested the non-phosphorylatable peptide 3Y-F. As a positive control, we
164	incubated a peptide corresponding to amino acids 6-20 of p34 ^{cdc2} , a well characterized Src substrate ⁵⁰ , in
165	the presence of purified and active Src, and we found an incremented phosphorylation. While eta 5-
166	integrin has been reported to be phosphorylated by PAK4 at S759 and S762 ⁵¹ , we did not detect
167	phosphorylation when the WT eta 5-intregrin peptide was incubated with purified PAK4 (Fig. 4b). These
168	data indicate that the intracellular domain of β 5-integrin is a bona fide Src substrate <i>in vitro</i> .
169	To evaluate the cellular effects of tyrosine phosphorylation of eta 5-integrin, we co-transfected WT HSC3
170	cells with mScarlet-CLCa plus either the eta 5-intregrin-GFP wild type (WT), carboxyl-truncated (Δ C), non-
171	phosphorylatable (3Y-F), phosphomimetic (3Y-E), or PAK targeted (2S-A) mutants (Fig. 4a). We tested
172	this mutants using two-color TIRFM as previously described. In control cells, we observed that the
173	fluorescent signal of either WT, 3Y-F, 3Y-E or 2S-A mutants appeared as diffraction-limited punctate that
174	highly correlated with clathrin (C=0.79±0.1, 0.81±0.11, 0.76±0.08, 0.82±0.09, respectively) (Fig. 4c-d). In
175	contrast, the ΔC mutant exhibited a diffuse fluorescence across the membrane and a greatly decreased
176	correlation with clathrin (C=0.41±0.08). In cells stimulated with EGF, we observed that the WT eta 5-
177	integrin strongly correlated with clathrin (C=0.84±0.05) (Fig. 4 and Fig. 5c-d). This spatial correlation was
178	abolished in the Δ C (C=0.18±0.12) and the 3Y-F mutant (C=0.46±0.21). By contrast, the correlation with
179	clathrin persisted in the 3Y-E (C=0.76±0.04) and the 2S-A mutants (C=0.8±0.07). Thus, eta 5-integrin
180	requires tyrosine phosphorylation to spatially correlate with clathrin. Moreover, these experiments
181	suggest that crosstalk between EGFR and eta 5-integrin mediated by Src takes place at CCSs.
100	Flat clatherin lattices required an ending at the plasma membrane

182 Flat clathrin lattices regulate sustained signaling at the plasma membrane

183	Finally, we hypothesized that FCLs mediate EGFR membrane-associated signal transduction by
184	regulating the distribution of active receptors and downstream interactors in both space and time. Using
185	TIRFM, we visualized the presence of active EGFR at the PM by immunolabeling endogenous phosphor-
186	Y1068 (P-EGFR), a well-established marker of EGFR activity (Fig. 5a). In stimulated cells, the correlation
187	of P-EGFR with clathrin increased 3.5-fold (C=0.6 \pm 0.11) with respect to the control (C=0.17 \pm 0.1).
188	Conversely, disruption of FCLs formation by CTA treatment (Fig.2e), decreased the P-EGFR correlation
189	with clathrin by $^{\sim}$ 30% (C=0.41 \pm 0.14) (Fig 5b). A similar trend was observed when we measured the
190	fluorescence intensity of P-EGFR at the PM (Fig. 5c). Furthermore, we measured the fluorescence
191	intensity of the total EGFR-GFP signal (T-EGFR) at the PM as an indicator of receptor internalization. We
192	observed that EGF led to a 41.7% decrease of the T-EGFR, and CTA treatment further decreased
193	receptor at the PM (68.7%) (Fig. 5d). We also examined the location of the downstream master scaffold
194	Grb2 in FCLs (Fig. 5e). While EGF caused an increase in both Grb2 correlation with clathrin and
195	recruitment of the adaptor to the PM, CTA blocked these effects (Fig. 5e-). Together these data suggest
196	that FCLs activate growth factor signals at the PM by delaying endocytosis of a population of active EGFR
197	along with key partner proteins such as Grb2. These events are mediated by the phosphorylation-
198	dependent cross talk between EGFR, integrins, and clathrin at the plasma membrane.
199	

199

200 DISCUSSION

201 Crosstalk between signaling systems allows for biological processes to be integrated, responsive, and 202 adaptable⁵². There is an emerging hypothesis that FCLs can act as signaling zones or adhesion sites at the 203 PM, filling unique roles outside of endocytosis. Here, we show that activated EGFR, Src, and β 5-integrin 204 are coupled to a dramatic growth and maintenance of FCLs in human cells. These planar clathrin sites in 205 turn partition and enhance growth factor signals at the PM (Fig. 6). Thus, two receptor systems (growth

206 factor and adhesion) are connected, clustered, and controlled at the nanoscale by endocytic proteins. 207 We propose that a reciprocal feedback loop operates where FCLs facilitate local crosstalk between 208 EGFR, β 5-integrin, and other signaling proteins to create dynamic signaling hubs across the PM. 209 First, we observed clathrin using platinum replica electron microscopy to structurally distinguish flat 210 from curved clathrin structures. Surprisingly, EGFR activation resulted in a dramatic increase in FCLs size 211 and density. Other shapes of clathrin were unchanged. Blocking the receptor abolished these effects. Of 212 note, the structural changes we see follow a time course similar to the activation dynamics of 213 downstream kinases⁵³, further supporting the direct connection between clathrin remodeling and cell 214 signaling. Our pharmacological screening linked the tyrosine kinase Src and the adhesion receptor β 5-215 integrin to FCL formation and EGFR activation. Historically, growth factor receptors and integrins have 216 been biochemically connected to Src in several ways¹⁰. Here, we show a new direct spatial connection. 217 We also found that FCLs are preloaded with a subpopulation of Src. This kinase was released from the complex in response to EGF. In contrast, β 5-integrin is enriched in FCLs^{19, 34, 35}, and we found that this 218 219 correlation with clathrin persisted in response to EGF. Thus, EGFR, Src and β 5-integrin are dynamically 220 coupled through FCLs to regulate EGF signaling.

221 We showed that this new pathway is controlled by phosphorylation. Specifically, in silico analysis and 222 biochemical assays indicated that the β 5-integrin intracellular domain is a Src substrate. Src activation 223 kinetics are fast and occur within 5 minutes⁵⁴. Thus, it is possible that at an early stage of clathrin 224 growth, Src phosphorylates targets and is then released. While our results point toward an early 225 phosphorylation event in β 5-integrin mediated by Src, it is also possible that Src continually cycles on 226 and off clathrin during receptor activation and plays a more extensive role in the process. Likewise, Src is 227 a promiscuous kinase and might phosphorylate additional substrates located on other PM structures 228 such as caveolae and focal adhesions^{55, 56}.

229	Second, we found that deletion of the eta 5-integrin cytoplasmic domain and non-phosphorylatable
230	mutations (3Y-F) block integrin association with clathrin. These effects were rescued by a phosphomimic
231	mutant (3Y-E), suggesting that tyrosine phosphorylation of eta 5-integrin is a molecular switch in this
232	process. Interestingly, the eta 5-integrin cytoplasmic domain interacts with endocytic proteins including
233	Eps15, ARH, and Numb ¹⁹ . Integrin cytoplasmic tails can also induce profound differences in the behavior
234	of integrins $^{\rm 57}$. Thus, we propose that a phosphorylation switch in $\beta 5$ -integrin is the regulator for the
235	orchestrated recruitment of the endocytic machinery to sites where FCLs form and grow. In this regard,
236	the growth factor response is directly linked to the cellular adhesion system through activation of
237	endocytic proteins and controlled by phosphorylation.
238	A recent hypothesis proposes that long-lived FCLs arise from adhesive forces generated from integrins
239	that physically prevent clathrin from curving—a process called frustrated endocytosis ^{34 27, 58} .
240	Interestingly, we observed the FCL formation and the enrichment of active EGFR and Grb2 peak after 15
241	min of stimulation with EGF (Fig. 1 and 5). At the same time, we detected a decrease in the overall signal
242	of EGFR at the PM. This decrease suggests that EGF triggers the internalization of a population of EGFR
243	into the cell. In parallel, some phosphorylated and active receptors remain at the PM in clathrin. By
244	preventing endocytosis of a subpopulation of EGFR, this clathrin/adhesion complex could prolong EGF
245	signaling at these sites. These domains might also act as diffusion traps for EGFR and other growth
246	factor receptors whose diffusion decreases after agonist stimulation ⁵⁹⁻⁶² . Using fluorescence microscopy,
247	EGFR and other structurally diverse receptors have been reported to form long-lived complexes ^{27, 63-66} . In
248	contrast, stimulation of LPA1 receptor has been shown to trigger the depolymerization of FCLs ³³ . Thus,
249	different systems might activate or deactivate these structures to regulate their activity. How
250	endocytosis, adhesion, and receptor diffusion cooperate across the entire population of active receptors
251	to control signaling will be an important future area of study.

252 Is this mechanism unique to EGFR? Many receptors including 7-transmembrane receptors and B cell receptors trigger clathrin nucleation at the PM upon biding their ligands^{27, 63-66}. For the β_2 -adrenergic 253 254 receptor, the increase in clathrin occurs with a delay in clathrin-coated vesicle maturation and no differences in the overall rate of vesicle scission⁶⁴. Our data revealed a similar increase in clathrin 255 256 nucleation during EGF stimulation, but the major changes to clathrin occurred specifically and 257 exclusively with a dramatic growth in FCLs. It is possible that other receptor cargos also stabilize flat 258 clathrin coats to act as nanoscale receptor signaling domains. Thus, FCLs could be generalized signaling 259 hubs at the PM. Future work is needed to test this hypothesis. 260 Growing evidence suggests that signaling systems are locally organized by organelles and cytoskeletal 261 structures. We propose that FCLs are a unique plasma membrane scaffold that dynamically capture and 262 organize receptors and signaling molecules in space and time through multivalent interactions at the 263 nanoscale. We suggest that crosstalk between EGFR and β 5-integrin through Src phosphorylation occurs 264 in FCLs and simultaneously regulates their biogenesis. Finally, because of the importance of 265 EGFR/Src/ β 5-integrin in physiology, and the connection between dysregulation of this system and 266 cancer, FCLs likely play a broader role in coordinating the cellular responses to chemical and mechanical stimuli. Understanding these pathways is key to understanding cellular functions in both health and 267 268 disease. Our data provide a new nanoscale signaling platform that dynamically organizes, coordinates, 269 and regulates this essential biology.

270 METHODS

271 Cell culture and transfection

Wild-type HSC-3 (human oral squamous carcinoma) cells were obtained from the JCRB Cell Bank
 (JCRB0623). Genome-edited HSC-3 cells expressing endogenous EGFR-GFP were previously reported³⁹
 and kindly donated by Dr. Alexander Sorkin (University of Pittsburgh). Cells were grown at 37 °C with

275	5% CO₂ in phenol-free Dulbecco's modified Eagle's medium (DMEM) (Thermo-Fisher, Gibco [™] ,
276	31053028) containing 4.5 g/L glucose and supplemented with 10% (v/v) fetal bovine serum (Atlanta
277	Biologicals, S10350), 50 mg/mL streptomycin - 50 U/mL penicillin (Thermo-Fisher, Gibco [™] , 15070063),
278	1% v/v Glutamax (Thermo-Fisher, 35050061), and 1 mM sodium pyruvate (Thermo-Fisher, Gibco [™] ,
279	11360070). Cell lines were used from low-passage frozen stocks and monitored for mycoplasma
280	contamination. For experiments, cells were grown on 25 mm diameter rat tail collagen I-coated
281	coverslips (Neuvitro Corporation, GG-25-1.5-collagen). For transfections, cells were incubated for 4 h
282	with 500 ng of the indicated plasmid(s) and 5 μL of Lipofectamine 3000 (Thermo-Fisher, L3000015) in
283	OptiMEM (Thermo-Fisher, Gibco [™] , 31985062). Experiments were performed 18 h after transfection.
284	Plasmids
285	EGFR-GFP #32751, Src-GFP #110496, Src-mCherry #55002, $lpha$ V-integrin-mEmerald #53985, eta 1-integrin-
285 286	EGFR-GFP #32751, Src-GFP #110496, Src-mCherry #55002, α V-integrin-mEmerald #53985, β 1-integrin-GFP #69804 were purchased from Addgene. β 5-integrin-GFP was kindly donated by Dr. Staffan
286	GFP #69804 were purchased from Addgene. β 5-integrin-GFP was kindly donated by Dr. Staffan
286 287	GFP #69804 were purchased from Addgene. β5-integrin-GFP was kindly donated by Dr. Staffan Strömblad (Karolinska Institutet). EGFR-mScarlet, mScarlet-CLCa, β3-integrin-GFP, β6-integrin-GFP, β5-
286 287 288	GFP #69804 were purchased from Addgene. β 5-integrin-GFP was kindly donated by Dr. Staffan Strömblad (Karolinska Institutet). EGFR-mScarlet, mScarlet-CLCa, β 3-integrin-GFP, β 6-integrin-GFP, β 5- integrin-GFP lacking 743-799 amino acids (Δ C), β 5-integrin-GFP containing point mutations Tyr766, 774,
286 287 288 289	GFP #69804 were purchased from Addgene. β 5-integrin-GFP was kindly donated by Dr. Staffan Strömblad (Karolinska Institutet). EGFR-mScarlet, mScarlet-CLCa, β 3-integrin-GFP, β 6-integrin-GFP, β 5- integrin-GFP lacking 743-799 amino acids (Δ C), β 5-integrin-GFP containing point mutations Tyr766, 774, 794Phe (3Y-F), Tyr766, 774, 794Glu (3YE), and Ser759, 762Ala (2S-A), were built using either Q5 Site-
286 287 288 289 290	GFP #69804 were purchased from Addgene. β5-integrin-GFP was kindly donated by Dr. Staffan Strömblad (Karolinska Institutet). EGFR-mScarlet, mScarlet-CLCa, β3-integrin-GFP, β6-integrin-GFP, β5- integrin-GFP lacking 743-799 amino acids (ΔC), β5-integrin-GFP containing point mutations Tyr766, 774, 794Phe (3Y-F), Tyr766, 774, 794Glu (3YE), and Ser759, 762Ala (2S-A), were built using either Q5 Site- Directed Mutagenesis Kit (New England Biolabs, E0554S) or In-Fusion HD Cloning Plus (Clonetech,

294 v/v Glutamax and 10 mM HEPES) for 2 h before the pulse-chase assay. Then, cells were pulsed in

starvation buffer supplemented with 0.1% w/v bovine serum albumin at 4 °C for 40 min with 50 ng/mL

296 human recombinant EGF (Thermo-Fisher, Gibco[™], PHG0311L) to allow ligand bind to the EGFR. In brief,

297	cells were washed twice with PBS (Thermo-Fisher, Gibco [™] , 10010023). Synchronized receptor activation
298	and endocytosis were triggered by placing the coverslips in pre-warmed media and incubation at 37 $^\circ$ C
299	for the indicated times. To stop stimulation, cells were washed twice with iced-cold PBS. To block EGFR,
300	Src, and $\beta 5$ -integrin cells were incubated for 20 min before chase and during pulse with 10 μM gefitinib
301	(Santa Cruz Biotechnology, 184475-35-2), 10 μ M PP2 (Thermo-Scientific, 172889-27-9), and 10 μ M
302	cilengitide acid (CTA) (Sigma-Aldrich, SML1594), respectively.
303	Cell unroofing and fixation
304	After EGF pulse-chase stimulations, cells were rinsed briefly with stabilization buffer (30 mM HEPES, 70
305	mM KCl, 5 mM MgCl ₂ , 3 mM EGTA, pH 7.4). Fixed cell membranes were obtained with application of
306	unroofing buffer containing 2 % paraformaldehyde in stabilization buffer using a 10 mL syringe with a
307	22 gauge, 1.5 needle. The syringe was held vertically within 1 cm of the coverslip during the mechanical
308	unroofing. Afterwards, the coverslips were moved to fresh unroofing buffer containing 2 %
309	paraformaldehyde for 20 min. They were rinsed 4× with PBS followed by electron or fluorescent
310	microscopy preparation.

311 Platinum replica electron microscopy (PREM)

312 Coverslips were transferred from glutaraldehyde into 0.1% w/v tannic acid for 20 min. Then,

313 coverslips were rinsed 4× with water, and placed in 0.1% w/v uranyl acetate for 20 min. The

314 coverslips were dehydrated, critical point dried, and coated with platinum and carbon as previously

described⁴⁰. The replicas were separated from glass coverslips using hydrofluoric acid and mounted

- on glow-discharged Formvar/carbon-coated 75-mesh copper TEM grids (Ted Pella 01802-F).
- 317 Transmission Electron Microscopy imaging was performed as previously described⁶⁷ at 15,000×
- magnification (1.2 nm per pixel) using a JEOL1400 (JEOL) and SerialEM software for montaging.
- 319 Montages were stitched together using IMOD⁶⁷. Images are presented in inverted contrast. Each

montage was manually segmented in imageJ⁶⁸ by outlining the edge of the membrane, flat clathrin structures (no visible curvature), domed clathrin structures (curved but can still see the edge of the lattice), and sphere clathrin structures (curved beyond a hemisphere such that the edge of the lattice is no longer visible) as previously described⁴¹. The percentage of occupied membrane area was defined as the sum of areas from clathrin of the specified subtype divided by the total area of visible membrane.

326 Immunofluorescence

- 327 Unroofed cells were incubated in PBS containing 3% w/v bovine serum albumin (Fisher Bioreagents,
- 328 BP9703) and 0.1% v/v triton X-100 (Sigma-Aldrich, T9284) for 1 h at room temperature. The cells
- were then immunolabelled with the indicated primary antibodies for 1 h at room temperature:
- 1:1000 anti-Clathrin Heavy Chain monoclonal antibody X22 (Thermo-Fisher, MA1-065), 1:800 anti-
- Phospho-EGF Receptor (Tyr1068) (D7A5) XP[®] Rabbit mAb (Cell Signaling, 3777), 1:50 anti-Grb2 Y237
- 332 (Abcam, 32037). Then, cells were washed 5x and incubated in 2.5 μg/mL of the corresponding
- 333 secondary antibody conjugated with Alexa Fluor 647 for 30 min at room temperature (Invitrogen, anti-
- mouse A21237, anti-rabbit A21246). When indicated, cells were labeled with 16.5 pmol of Alexa Fluor
- 335 488-Phalloidin for 15 min (Invitrogen, A12379). The coverslips were then rinsed 4× with blocking
- buffer, 4× with PBS, and then post-fixed with 4% paraformaldehyde in PBS for 20 min and imaged
- immediately or refrigerated overnight.

338 Total Internal Reflection Microscopy (TIRFM)

339 Cells were imaged on an inverted fluorescent microscope (IX-81, Olympus), equipped with a 100x, 1.45

- 340 NA objective (Olympus). Combined green (488 nm) and red (561 nm) lasers (Melles Griot) were
- 341 controlled with an acousto-optic tunable filter (Andor) and passed through a LF405/488/561/635
- 342 dichroic mirror. Emitted light was filtered using a 565 DCXR dichroic mirror on the image splitter

343	(Photometrics), passed through 525Q/50 and 605Q/55 filters and projected onto the chip of an
344	electron-multiplying charge-coupled device (EMCCD) camera. Images were acquired using the Andor IQ2
345	software. Cells were excited with alternate green and red excitation light, and images in each channel
346	were acquired at 500-ms exposure at 5 Hz. Automated correlation analysis was performed on aligned
347	images as described previously ⁴⁸ and the fluorescence intensity signal at the plasma membrane was
348	assessed using ImageJ software by measuring the integrated density (mean gray value) of the
349	background subtracted from that of the cell and normalizing this value to the total cell area.
350	In silico analysis
351	Integrin sequences were obtained from the UniProt Knowledgebase. β 5-integrin orthologs: <i>H.</i>
352	sapiens (ID P18084); M. musculus (ID O70309); B. taurus (ID P80747); P. cynocephalus (ID Q07441); X.
353	<i>laevis</i> (ID Q6DF97); <i>D. rerio</i> (ID F1Q7R1). Integrin orthologs: β1-integrin (ID P05556); β2-integrin (ID
354	P05107); β3-integrin (ID P05106); β6-integrin (ID P18564); β7-integrin (ID P26010). The sequence
355	alignments were performed using the blast-protein suite (protein-protein BLAST,
356	(http://www.uniprot.org/blast/). The prediction of phosphorylation sites was obtained using
357	NetPhos 3.0 (http://www.cbs.dtu.dk/services/NetPhos) and the Group-based Prediction System, GPS
358	2.0 (http://gps.biocuckoo.org/) on-line services, employing cut-off values of 0.75 and 4, respectively.
359	Prediction of the probable protein kinases involved was obtained using GPS 2.0.
360	In vitro kinase assay
361	Identification of the eta 5-integrin carboxyl domain as Src substrate was determined using the ADP-Glo
362	Kinase Assay (Promega, V6930) following protocols recommended by the manufacturer. All reactions
262	ware nerformed in kinese huffer (40 mNA Trie all 7 5 20 mNA Mach 2 mNA MacO 100 mNA Ma Ma

- 363 were performed in kinase buffer (40 mM Tris, pH 7.5, 20 mM MgCl₂, 2 mM MsSO₄, 100 mM Na₃VO₄,
- 364 10 mM DTT) supplemented with 50 mM ATP, 1 mM of the indicated peptide, and 50 ng of purified
- active Src (Millipore-Sigma, 14-326) or PAK (Millipore-Sigma, 14-584). β5-integrin peptide

366	corresponding to amino acids	743-799 and Y766, 774	, 794F were chemically synthetized ((Biobasic). As a
-----	------------------------------	-----------------------	--------------------------------------	------------------

- 367 positive control we used a bona fide Src substrate peptide corresponding to amino acids 6-20 of
- 368 p34^{cdc2} (Millipore-Sigma, 12-140). The reactions were carried out at room temperature in a total
- volume of 25 μL for 40 min in white 96-well, F-bottom, non-binding microplates (Greiner Bio-one,
- 370 655904). Signal was recorded using a luminometer (Biotek) with an integration time of 0.5 s.

371 Statistics

- 372 Data were tested for normality and equal variances with Shapiro–Wilk. The statistical tests were chosen
- 373 as follows: unpaired normally distributed data were tested with a two-tailed *t*-test (in the case of similar
- 374 variances) or with a two-tailed *t*-test with Welch's correction (in the case of different variances). All tests
- 375 were performed with Origin 2015.

376 Data availability

All data supporting this work are available upon request to the corresponding author.

378 Author contributions

- 379 MAAM, KAS and JWT designed experiments. KAS developed software for data analysis. MAAM
- 380 performed experiments and analyzed data. MPS performed molecular cloning and helped with in vitro
- 381 phosphorylation assays. MAAM wrote and JWT edited the manuscript and all authors commented on
- the work. JWT supervised the project.

383 Acknowledgements

- 384 We would like to thank the NHLBI Electron Microscopy core for support with EM imaging and
- 385 instrumentation, Xufeng Wu and the NHLBI light Microscopy core for support with fluorescence imaging
- and instrumentation, Ethan Tyler of NIH Medical Arts Department for the creation of Figure 6, Agila
- 387 Somasundaram, and members of the Taraska laboratory for discussion and comments on the

388 manuscript. JWT is supported by the NHLBI Intramural Research Program, National Institutes of Health,

- 389 Bethesda, Maryland.
- **390 Declaration of Interests**
- 391 The authors declare no competing interest.
- 392

393 FIGURE LEGENDS

394 Figure 1. EGF modifies the ultrastructure of clathrin at the plasma membrane. a, Montaged PREM image of an unroofed control HSC3-EGFR-GFP cell and the mask created after segmentation of the full 395 396 membrane outlined (yellow). Flat, dome, and sphere clathrin-coated structures (CCCs) are shown in 397 green, blue, and magenta, respectively. **b**, High-magnification of the cropped PREM in (a); the different 398 segmented CCSs are color-coded as in (a), with native grayscale in magnified insets. c, Montaged PREM 399 image of an unroofed HSC3-EGFR-GFP cell treated with 50 ng/mL EGF for 15 min and the mask created 400 after the segmentation. d, High-magnification of a representative region of the PREM in (c), the 401 magnification insets are shown at the same scale and are outlined with dashed squares in each image. e, 402 Representative masks of the EGF stimulation time course for 0, 2, 5, 15, 30 and 60 min. PREM images 403 corresponding to the masks and cropped images are shown in Supplementary Figure 2. f-h, 404 Morphometric analysis of the percentage of plasma membrane (PM) area occupation for each CCS. I-405 shaped box plots show median extended from 25th to 75th percentiles, and minimum and maximum 406 data point whiskers with a coefficient value of 1.5. i-k, Morphometric analysis of the size of flat, dome, 407 and sphere CCSs during the EGF time course. Dot plots show every structure segmented, the bar is the 408 median. 0 min: Nflat=141, Ndome=46, Nsphere=68, Ncells=4; 2 min: Nflat=164, Ndome=32, Nsphere=30, Ncells=3; 5 409 min: N_{flat}=184, N_{dome}=26, N_{sphere}=36, N_{cells}=4; 15 min: N_{flat}=559, N_{dome}=67, N_{sphere}=207, N_{cells}=4; 30 min:

410 N_{flat} =395, N_{dome} =149, N_{sphere} =113, N_{cells} =3; 60 min: N_{flat} =81, N_{dome} =15, N_{sphere} =57, N_{cells} =5. Scale bars in (**a**) 411 and (**c**) are 5000 nm. Scale bars in (**b**, **d**, **e**) are 1 μ m; insets are 200 nm.

412

413 **Figure 2. Flat clathrin lattice formation requires EGFR, Src and β5-integrin. a,** Representative PREMs of 414 control HSC3-EGFR-GFP cells (Ctrl), (b) treated either with 50 ng/mL EGF alone (EGF) for 15 min in 415 presence of (c) 10 μ M gefitinib (Gefi+EGF), (d) 10 μ M PP2 (PP2+EGF) and (e) 10 μ M cilengitide acid (CTA+EGF). The magnification insets are shown at the same scale and are outlined with dashed squares 416 417 in each image. Flat, dome and sphere clathrin-coated structures (CCSs) are shown in green, blue and 418 magenta, respectively, with native grayscale in magnified insets. f, Representative masks of segmented 419 cells treated as in (a-e). PREM images corresponding to the masks and cropped images are shown in 420 Supplementary Figure 4. g, A diagram shows the respective targets of the drugs used in (a-e). h, 421 Morphometric analysis of the percentage of plasma membrane (PM) area occupation for flat clathrin 422 structures. I-shaped box plots show median extended from 25th to 75th percentiles, and minimum and 423 maximum data point whiskers with a coefficient value of 1.5. i, Morphometric analysis of the size of flat 424 structures of cells treated as indicated in (a-f). Dot plots show every structure segmented, the bar 425 indicate the median. Ctrl: N_{flat}=141, N_{cells}=4; EGF: N_{flat}=554, N_{cells}=4; Gefi+EGF: N_{flat}=160, N_{cells}=4; PP2+EGF: 426 Nflat=267, Ncells=4; CTA+EGF: Nflat=244, Ncells=4. Scale bars in (a-f) are 1 µm; insets are 200 nm. Ctrl and 427 EGF data are from Figure 1 and shown for reference. 428

429 Figure 3. Differential location of EGFR, Src and β5-integrin in clathrin coated structures. a,

Representative TIRF images of genome-edited HSC3 expressing EGFR-GFP and transfected with
mScarlet-CLCa or HSC3 WT cells co-transfected with mScarlet-CLCa + Src-GFP or β5-integrin-GFP before
(Ctrl) or after 50 ng/mL EGF stimulation for 15 min. Scale bar is 10 µm; insets are 7.3x7.3 µm. b,
Automated correlation analysis. Dot box plots show median extended from 25th to 75th percentiles,

434	mean (square) and minimum and maximum data point whiskers with a coefficient value of 1.5.
435	Significance was tested by a two-tailed unpaired t-test. EGFR, * <i>P</i> = 5.9×10 ⁻⁷ ; Src, * <i>P</i> = 1.7×10 ⁻¹¹ ; β 5-
436	integrin, ^{ns} P= 0.358. N _{EGFR-Ctrl} = 23 cells – 3728 spots, N _{EGFR-EGF} =22 cells – 2173 spots, N _{Src-Ctrl} = 28 cells –
437	1394 spots, $N_{Src-EGF}$ = 27 cells –1407spots, $N_{\beta 5-Ctrl}$ =21 cells – 1037 spots; $N_{\beta 5-EGF}$ =29 cells – 1011 spots.
438	
439	Figure 4. β 5-integrin phosphorylation controls spatial correlation with clathrin. a, Diagram of β 5-
440	integrin and magnification of the cytoplasmic domain showing different mutants. Numbers indicate the
441	residue positions, and letters identify the amino acid. Truncated line in the diagram, indicates deletion
442	of sequence coding for amino acids 743-799, Wild type (WT), carboxyl truncated (Δ C), none-
443	phosphorylatable (3Y-F), phosphomimetic (3Y-E), and PAK-targeted (2S-A). b , <i>In vitro</i> phosphorylation
444	assay using purified Src or PAK4 and peptides corresponding to the eta 5-integrin carboxyl domain (742-
445	799) WT and mutants in (a). Significance was tested by a two-tailed unpaired t-test, * P =1.51×10 ⁻⁴ ,
446	** <i>P</i> =0.002, *** <i>P</i> =1.09×10 ⁻⁵ , ^{ns} P=0.0205. N=4, 6, 5, 6, 6. c , Representative TIRF images of HSC3 WT cells
447	co-transfected with mScarlet-CLCa and $\beta\text{5-integrin-GFP}$ WT or containing the different mutations shown
448	in (a), either before (Ctrl) or after 50 ng/mL EGF stimulation for 15 min. Scale bars are 10 μ m; insets are
449	7.3x7.3 μ m. d , Automated correlation analysis of (a). Dot box plots show median extended from 25th to
450	75th percentiles, mean (square) and minimum and maximum data point whiskers with a coefficient
451	value of 1.5. Significance was tested by a two-tailed unpaired t-test, ${}^{ns}P_{\beta5-WT}=0.0811$, *** $P_{\beta5-\Delta C}=4.03\times 10^{-7}$,
452	*** $P_{\beta 5-3Y-F}=8.9\times10^{-5}$, ^{ns} $P_{\beta 5-3Y-E}=0.9149$, ^{ns} $P_{\beta 5-2S-A}=0.5331$. N _{<math>\beta 5-WT-Ctrl=20 cells - 1499 spots, N$\beta 5-WT-EGF=16 cells$</math>}
453	$-872 \text{ spots, } N_{\beta 5\text{-}\Delta C\text{-}Ctrl} = 17 \text{ cells} - 1199 \text{ spots, } N_{\beta 5\text{-}\Delta C\text{-}EGF} = 19 \text{ cells} - 1440 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 \text{ cells} - 826 \text{ spots, } N_{\beta 5\text{-}\Delta C\text{-}EGF} = 19 \text{ cells} - 1440 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 \text{ cells} - 826 \text{ spots, } N_{\beta 5\text{-}\Delta C\text{-}EGF} = 19 \text{ cells} - 1440 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 \text{ cells} - 826 \text{ spots, } N_{\beta 5\text{-}\Delta C\text{-}EGF} = 19 \text{ cells} - 1440 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 \text{ cells} - 826 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 \text{ cells} - 826 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 \text{ cells} - 826 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 \text{ cells} - 826 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 \text{ cells} - 826 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 \text{ cells} - 826 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 \text{ cells} - 826 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 \text{ cells} - 826 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 \text{ cells} - 826 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 \text{ cells} - 826 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 \text{ cells} - 826 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 \text{ cells} - 826 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 \text{ cells} - 826 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 \text{ cells} - 826 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 \text{ cells} - 826 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 \text{ cells} - 826 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 \text{ cells} - 826 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 \text{ cells} - 826 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 \text{ cells} - 826 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 \text{ cells} - 826 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 \text{ cells} - 826 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 \text{ cells} - 826 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 \text{ cells} - 826 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 \text{ cells} - 826 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 \text{ cells} - 826 \text{ spots, } N_{\beta 5\text{-}3 Y\text{-}F\text{-}Ctrl} = 15 ce$
454	spots, $N_{\beta 5-3Y-F-EGF}$ =17 cells – 1099 spots, $N_{\beta 5-3Y-E-Ctrl}$ =17cells – 1245 spots, $N_{\beta 5-3Y-E-EGF}$ =16 cells – 1122 spots,
455	$N_{\beta 5-2S-A-Ctrl}$ =16 cells – 1326 spots, $N_{\beta 5-2S-A-EGF}$ =16 cells – 953 spots.
456	

457	Figure 5. Flat clathrin lattices partition sustained signals at the plasma membrane. a, Representative
458	TIRF images of control (Ctrl) unroofed genome-edited HSC3 cells expressing EGFR-GFP transfected with
459	mScarlet-CLCa and immunolabeled with anti-phospho EGFR (P-EGFR) coupled to Alexa 647, treated with
460	50 ng/mL EGF alone (EGF) or in the presence of 10 μ M cilengitide acid (CTA+EGF). b, Automated
461	correlation analysis of (a). * P =1.11x10 ⁻¹⁹ , ** P =1.70x10 ⁻⁵ . N _{Ctrl} =30 cells, N _{EGF} =25 cells, N _{CTA+EGF} =23 cells. c,
462	Fluorescence intensity measurements of the signal from P-EGFR. * <i>P</i> =1.13×10 ⁻⁹ , ** <i>P</i> =4.33x10 ⁻⁶ . N _{Ctrl} =21
463	cells, N_{EGF} =19 cells, $N_{CTA+EGF}$ =18 cells. d , Fluorescence intensity measurements of the signal from total
464	EGFR-GFP (T-EGFR). * <i>P</i> =1.95×10 ⁻⁴ , ** <i>P</i> =6.00x10 ⁻⁴ . N _{Ctrl} =29 cells, N _{EGF} =18 cells, N _{CTA+EGF} =18 cells. e ,
465	Representative TIRF images of HSC3 WT cells transfected with mScarlet-CLCa and Grb2-GFP before (Ctrl)
466	or after 15 min EGF stimulation. f , Automated correlation analysis of (e). * <i>P</i> =2.43×10 ⁻⁷ , ** <i>P</i> =1.06x10 ⁻¹¹ .
467	N_{Ctrl} =27 cells, N_{EGF} =38 cells, $N_{CTA+EGF}$ =23 cells. g , Fluorescence intensity measurements of the signal
468	coming from immunolabeled Grb2. *P=2.17×10 ⁻¹¹ , **P=1.06×10 ⁻⁴ . N _{Ctrl} =21 cells, N _{EGF} =19 cells,
469	$N_{CTA+EGF}$ =19 cells. Scale bars are 10 μ m; insets are 7.3x7.3 μ m square. Dot box plots show median
470	extended from 25th to 75th percentiles, mean (square) and minimum and maximum data point
471	whiskers with a coefficient value of 1.5. Significance was tested by a two-tailed unpaired t-test. AU,
472	fluorescence arbitrary units.
473	
474	Figure 6. Model of flat clathrin lattices biogenesis during growth factor response. The critical steps of

the model are: 1) small flat clathrin lattices are in close proximity to Src and are highly enriched with β5integrin; 2) EGF triggers the dimerization, clustering and cross-phosphorylation of EGFR at growing FCLs;
3) this in parallel allows the biding of the downstream scaffold Grb2 and locally activates Src; 4) which in
turn phosphorylates β5-integrin cytoplasmic domain; 5) the maintenance of the EGFR/Src/β5-integrin
axis promotes flat clathrin lattice growth. A key implication of this model is that two different receptor
systems are spatially organized at the nanoscale within flat clathrin lattices.

481

482 SUPPLEMENTARY FIGURE LEGENDS

483

484	Supplementary Figure 1. EGF increases the density of clathrin at the plasma membrane. a,
485	Representative PREM images of the flat (green), dome (blue), and sphere (magenta) clathrin-coated
486	structures (CCSs) segmented in Fig. 1. Scale bars are 100 nm. b , Morphometric analysis of the
487	percentage of plasma membrane area occupation for all clathrin-coated structures (CCSs) in PREM
488	images of control (Ctrl) HSC3-EGFR-GFP cells or treated with 50 ng/mL EGF for 2, 5, 15, 30 and 60 min
489	from Figure 1. I-shaped box plots show median extended from 25th to 75th percentiles, and minimum
490	and maximum data point whiskers with a coefficient value of 1.5. 0 min: N_{cells} =4; 2 min: N_{cells} =3; 5 min:
491	N _{cells} =4; 15 min: N _{cells} =4; 30 min: N _{cells} =3; 60 min: N _{cells} =5. c, Fluorescence intensity measurements of the
492	signal from clathrin heavy chain. Control (Ctrl) unroofed HSC3-EGFR-GFP cells or treated with 50 ng/mL
493	EGF were immunolabeled with anti-clathrin heavy chain coupled to Alexa 647. Ctrl: N_{cells} =5; EGF: N_{cells} =8.
494	
495	Supplementary Figure 2. Original PREM images of cells from which the cropped images in Figure 1
496	were derived. PREM images of control (Ctrl) HSC3-EGFR-GFP cells, stimulated with 50 ng/mL EGF for 0,
497	2, 5, 15, 30 and 60 min. Scale bars are 200 nm.
498	

Supplementary Figure 3. Morphometric analysis of PREM images of cells treated with different drugs.
a-c, Morphometric analysis of the percentage of plasma membrane area occupation for (a) all CCSs, (b)
dome, and (c) sphere structures in control (Ctrl) HSC3-EGFR-GFP cells or treated with 50 ng/mL EGF for
15 min in the absence (EGF) or presence 10 μM gefitinib (Gefi+EGF), 10 μM PP2 (PP2+EGF) and 10 μM
cilengitide acid (CTA+EGF). I-shaped box plots show median extended from 25th to 75th percentiles, and
minimum and maximum data point whiskers with a coefficient value of 1.5. d-e, Morphometric analysis

505	of the size of (d) dome and (e) sphere clathrin structures in cells treated as in (a-c). Dot plots show every
506	structure segmented, the bar indicate the median. f-h, Morphometric analysis of the percentage of
507	plasma membrane (PM) area occupation for (f) flat, (g) dome, and (h) sphere structures in control (Ctrl)
508	cells or treated only with the drugs in (a-c). i-k, Morphometric analysis of the size of (i) flat, (j) dome and
509	(k) sphere clathrin structures in cells treated as in (f-h). Ctrl: N _{flat} =141, N _{dome} =46, N _{sphere} =68; N _{cells} =4; EGF:
510	N_{flat} =559, N_{dome} =67, N_{sphere} =207, N_{cells} =4; Gefi: N_{flat} =153, N_{dome} =65, N_{sphere} =72, N_{cells} =4; Gefi+EGF: N_{flat} =160,
511	N_{dome} =69, N_{sphere} =103, N_{cells} =4; PP2: N_{flat} =109, N_{dome} =36, N_{sphere} =53, N_{cells} =3; PP2+EGF: N_{flat} =267, N_{dome} =88,
512	N_{sphere} =61, N_{cells} =4; CTA: N_{flat} =171, N_{dome} =137, N_{sphere} =229, N_{cells} =4; CTA+EGF: N_{flat} =244, N_{dome} =68,
513	N _{sphere} =167, N _{cells} =4. i, Representative masks of segmented cells treated as in (f-h). I, Representative
514	masks of segmented cells treated as in (a,f). Scale bar is Ctrl and EGF data are from Figure 1 and shown
515	for reference.
516	
517	Supplementary Figure 4. Original PREM images of cells treated with different drugs. Original PREM
518	images of cells from which the cropped images in Figure 2 and masks in Supplementary Figure 2 were
519	derived. Shown are control (Ctrl) HSC3-EGFR-GFP cells or treated with 50 ng/mL EGF for 15 min in the
520	absence (EGF) or presence 10 μ M gefitinib (Gefi+EGF), 10 μ M PP2 (PP2+EGF), 10 μ M cilengitide acid
521	(CTA+EGF) and the drugs alone (Gefi, PP2, CTA). Scale bars are 200 nm.
522	
523	Supplementary Figure 5. EGFR-GFP correlates with clathrin after EGF stimulation. a, Representative
524	TIRF images of HSC3 WT cells co-transfected with mScarlet-CLCa and EGFR-GFP before (Ctrl) or after 50
525	ng/mL EGF stimulation for 15 min. b , Automated correlation analysis of (a). Significance was tested by a
526	two-tailed unpaired t-test, * P_{EGFR} =4.2×10 ⁻⁷ . N _{EGFR-Ctrl} = 22 cells – 1148 spots, N _{EGFR-EGF} =24 cells – 1305
527	spots. Dot box plots show median extended from 25th to 75th percentiles, mean (square) and minimum

and maximum data point whiskers with a coefficient value of 1.5. Scale bar is 10 μ m; insets are 7.3x7.3

529 μm.

530

531 Supplementary Figure 6. Differential location of EGFR and Src in β 5-integrin enriched structures. a, 532 Representative TIRF images of HSC3 WT cells co-transfected with β 5-integrin-GFP and either EGFR-533 mScarlet or mCherry-Src before (Ctrl) or after 50 ng/mL EGF stimulation for 15 min. b, Automated 534 correlation analysis of (a). Significance was tested by a two-tailed unpaired t-test $*P_{EGFR} = 8.4 \times 10^{-4}$, $*P_{Src} =$ 535 1.2×10⁻⁶. N_{EGFR-Ctrl}=17 cells – 1516 spots, N_{EGFR-EGF}=16 cells – 1416 spots, N_{Src-Ctrl}= 24 cells – 1936 spots, 536 N_{src-EGF}=23 cells – 1872 spots. Dot box plots show median extended from 25th to 75th percentiles, mean 537 (square) and minimum and maximum data point whiskers with a coefficient value of 1.5. Scale bar is 10 538 μ m; insets are 7.3x7.3 μ m. 539 540 **Supplementary Figure 7. Clathrin coated structures are mainly enriched with β5-integrin.** Automated 541 correlation analysis of HSC3 WT cells co-transfected with mScarlet-CLCa and the indicated integrin 542 tagged with GFP before (Ctrl) or after 50 ng/mL EGF stimulation for 15 min. Cell were imaged using 543 TIRFM. Dot box plots show median extended from 25th to 75th percentiles, mean (square) and 544 minimum and maximum data point whiskers with a coefficient value of 1.5. Dots represent the mean 545 correlation value of independent experiments. 546 547 Supplementary Figure 8. In silico analysis of β5-integrin. a, Sequence alignment of cytoplasmic domain of different β 5-integrin orthologues. Tyrosine residues are marked in green. Symbols: i) *, single fully 548 549 conserved residue; ii) : , conservative; iii) . , noneconservative. b, Sequence alignment of cytoplasmic 550 domain of different β -integrin subfamily members. Symbols as in (a). **c**, Bioinformatic prediction of the

551 possible protein kinases involved in the posttranslational modification of the β5-integrin cytoplasmic

domain. The phosphopeptides identified by Netphos 3 and GPS 5 are indicated with the putative

553 modified residues in magenta; the residue position is indicated, as well as the protein kinases most likely

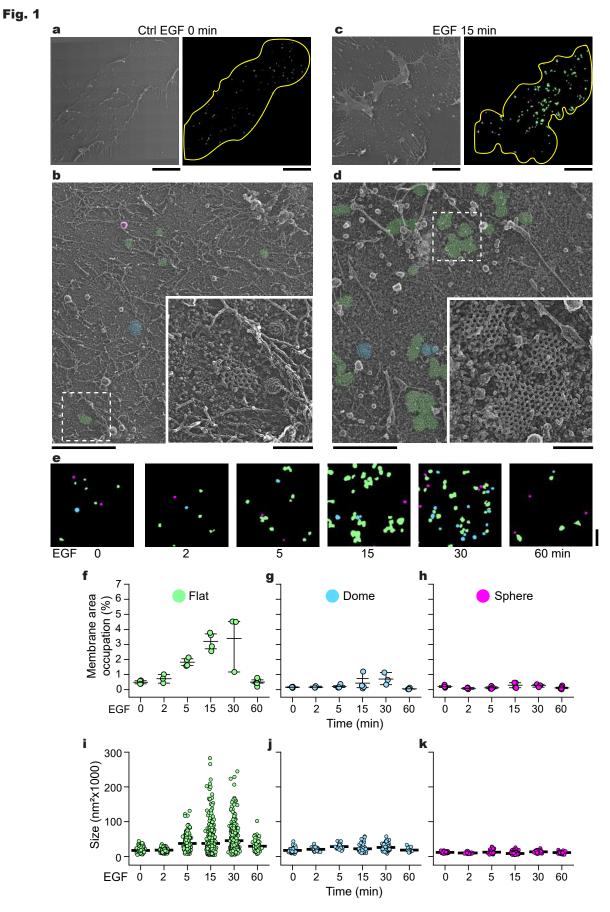
554 involved in the catalysis of the ATP phosho-transfer reaction. **d**, β 5-integrin phosphorylation sites

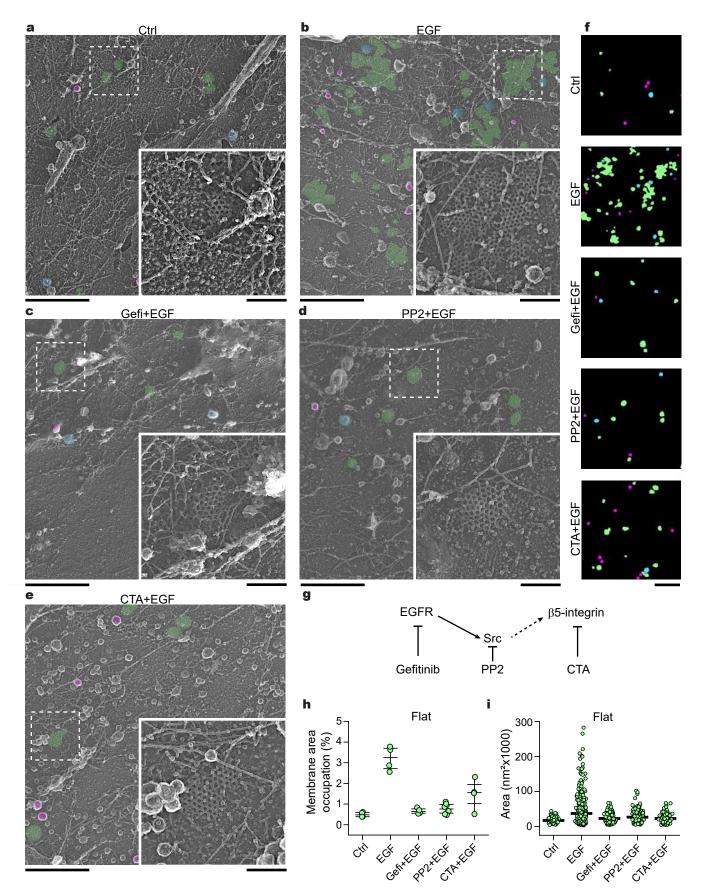
555 prediction. Tyrosine residues present in the β5-integrin cytoplasmic domain are listed with their

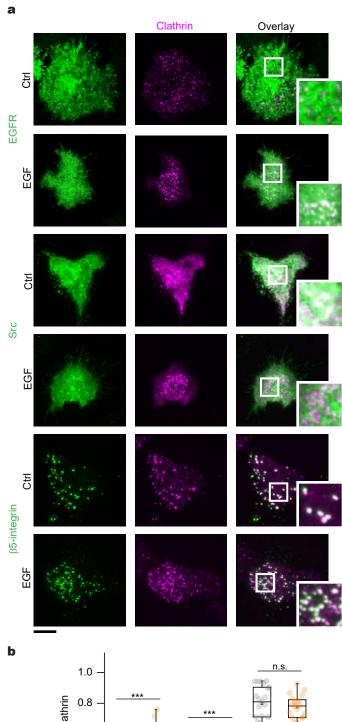
sequence position indicated. Residues colored with magenta were predicted to be phosphorylated by

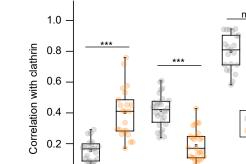
557 the indicated bioinformatic tool.

558


559	REFERENCES
228	REFERENCES


- 5611.Lemmon, M.A. & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117-1134562(2010).
- 5632.Chong, C.R. & Janne, P.A. The quest to overcome resistance to EGFR-targeted therapies in
cancer. *Nat Med* **19**, 1389-1400 (2013).
- 5653.Sigismund, S., Avanzato, D. & Lanzetti, L. Emerging functions of the EGFR in cancer. *Mol Oncol*566**12**, 3-20 (2018).
- Ogiso, H. *et al.* Crystal structure of the complex of human epidermal growth factor and receptor
 extracellular domains. *Cell* **110**, 775-787 (2002).
- 5695.Salazar-Cavazos, E. *et al.* Multisite EGFR phosphorylation is regulated by adaptor protein570abundances and dimer lifetimes. *Mol Biol Cell* **31**, 695-708 (2020).
- Schlessinger, J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor.
 Cell 110, 669-672 (2002).
- 573 7. Kim, L.C., Song, L. & Haura, E.B. Src kinases as therapeutic targets for cancer. *Nat Rev Clin Oncol*574 6, 587-595 (2009).
- 5758.Parsons, J.T. & Parsons, S.J. Src family protein tyrosine kinases: cooperating with growth factor576and adhesion signaling pathways. Curr Opin Cell Biol **9**, 187-192 (1997).
- 577 9. Sorkin, A., McClure, M., Huang, F. & Carter, R. Interaction of EGF receptor and grb2 in living cells
 578 visualized by fluorescence resonance energy transfer (FRET) microscopy. *Curr Biol* 10, 1395-1398
 579 (2000).
- 580 10. Chen, Z. *et al.* EGFR family and Src family kinase interactions: mechanics matters? *Curr Opin Cell* 581 *Biol* 51, 97-102 (2018).
- Ivaska, J. & Heino, J. Cooperation between integrins and growth factor receptors in signaling and
 endocytosis. *Annu Rev Cell Dev Biol* 27, 291-320 (2011).
- Bachmann, M., Kukkurainen, S., Hytonen, V.P. & Wehrle-Haller, B. Cell Adhesion by Integrins.
 Physiol Rev 99, 1655-1699 (2019).
- 58613.Kechagia, J.Z., Ivaska, J. & Roca-Cusachs, P. Integrins as biomechanical sensors of the587microenvironment. Nat Rev Mol Cell Biol 20, 457-473 (2019).
- 58814.Hamidi, H. & Ivaska, J. Every step of the way: integrins in cancer progression and metastasis. Nat589Rev Cancer 18, 533-548 (2018).


590	15.	Luo, B.H., Carman, C.V. & Springer, T.A. Structural basis of integrin regulation and signaling.
591		Annu Rev Immunol 25 , 619-647 (2007).
592	16.	Calderwood, D.A. et al. Integrin beta cytoplasmic domain interactions with phosphotyrosine-
593		binding domains: a structural prototype for diversity in integrin signaling. Proc Natl Acad Sci U S
594		A 100, 2272-2277 (2003).
595	17.	Uhlik, M.T. <i>et al.</i> Structural and evolutionary division of phosphotyrosine binding (PTB) domains.
596	-/.	J Mol Biol 345 , 1-20 (2005).
597	18.	Legate, K.R. & Fassler, R. Mechanisms that regulate adaptor binding to beta-integrin cytoplasmic
	10.	
598	40	tails. <i>J Cell Sci</i> 122 , 187-198 (2009).
599	19.	Zuidema, A. et al. Mechanisms of integrin alphaVbeta5 clustering in flat clathrin lattices. J Cell
600		<i>Sci</i> 131 (2018).
601	20.	Schmid, S.L. Reciprocal regulation of signaling and endocytosis: Implications for the evolving
602		cancer cell. <i>J Cell Biol</i> 216 , 2623-2632 (2017).
603	21.	Sorkin, A. & von Zastrow, M. Endocytosis and signalling: intertwining molecular networks. <i>Nat</i>
604		Rev Mol Cell Biol 10 , 609-622 (2009).
605	22.	Kaksonen, M. & Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol
606		19 , 313-326 (2018).
607	23.	Sochacki, K.A. & Taraska, J.W. From Flat to Curved Clathrin: Controlling a Plastic Ratchet. Trends
608		<i>Cell Biol</i> 29 , 241-256 (2019).
609	24.	Miller, S.E. <i>et al.</i> CALM regulates clathrin-coated vesicle size and maturation by directly sensing
610		and driving membrane curvature. <i>Dev Cell</i> 33 , 163-175 (2015).
611	25.	Heuser, J. Three-dimensional visualization of coated vesicle formation in fibroblasts. J Cell Biol
612	25.	84 , 560-583 (1980).
	20	
613	26.	Maupin, P. & Pollard, T.D. Improved preservation and staining of HeLa cell actin filaments,
614		clathrin-coated membranes, and other cytoplasmic structures by tannic acid-glutaraldehyde-
615		saponin fixation. J Cell Biol 96 , 51-62 (1983).
616	27.	Grove, J. et al. Flat clathrin lattices: stable features of the plasma membrane. Mol Biol Cell 25,
617		3581-3594 (2014).
618	28.	Saffarian, S., Cocucci, E. & Kirchhausen, T. Distinct dynamics of endocytic clathrin-coated pits
619		and coated plaques. <i>PLoS Biol</i> 7 , e1000191 (2009).
620	29.	Franck, A. et al. Clathrin plaques and associated actin anchor intermediate filaments in skeletal
621		muscle. <i>Mol Biol Cell</i> 30 , 579-590 (2019).
622	30.	Vassilopoulos, S. et al. Actin scaffolding by clathrin heavy chain is required for skeletal muscle
623		sarcomere organization. J Cell Biol 205, 377-393 (2014).
624	31.	Akisaka, T., Yoshida, H., Suzuki, R., Shimizu, K. & Takama, K. Clathrin sheets on the protoplasmic
625		surface of ventral membranes of osteoclasts in culture. J Electron Microsc (Tokyo) 52, 535-543
626		(2003).
627	32.	Akisaka, T., Yoshida, H., Suzuki, R. & Takama, K. Adhesion structures and their cytoskeleton-
628	52.	membrane interactions at podosomes of osteoclasts in culture. <i>Cell Tissue Res</i> 331 , 625-641
629	22	(2008).
630	33.	Leyton-Puig, D. et al. Flat clathrin lattices are dynamic actin-controlled hubs for clathrin-
631	•	mediated endocytosis and signalling of specific receptors. Nat Commun 8, 16068 (2017).
632	34.	Baschieri, F. et al. Frustrated endocytosis controls contractility-independent
633		mechanotransduction at clathrin-coated structures. Nat Commun 9, 3825 (2018).
634	35.	De Deyne, P.G. et al. The vitronectin receptor associates with clathrin-coated membrane
635		domains via the cytoplasmic domain of its beta5 subunit. <i>J Cell Sci</i> 111 (Pt 18) , 2729-2740
636		(1998).


~~~		
637	36.	Lock, J.G. <i>et al.</i> Reticular adhesions are a distinct class of cell-matrix adhesions that mediate
638	27	attachment during mitosis. <i>Nat Cell Biol</i> <b>20</b> , 1290-1302 (2018).
639 640	37.	Kudo, Y. <i>et al.</i> Establishment of an oral squamous cell carcinoma cell line with high invasive and
640	20	p27 degradation activities from a lymph node metastasis. <i>Oral Oncol</i> <b>39</b> , 515-520 (2003).
641	38.	Momose, F. <i>et al.</i> Variant sublines with different metastatic potentials selected in nude mice
642	20	from human oral squamous cell carcinomas. <i>J Oral Pathol Med</i> <b>18</b> , 391-395 (1989).
643	39.	Pinilla-Macua, I., Grassart, A., Duvvuri, U., Watkins, S.C. & Sorkin, A. EGF receptor signaling,
644	40	phosphorylation, ubiquitylation and endocytosis in tumors in vivo. <i>Elife</i> <b>6</b> (2017).
645	40.	Sochacki, K.A. & Taraska, J.W. Correlative Fluorescence Super-Resolution Localization
646		Microscopy and Platinum Replica EM on Unroofed Cells. <i>Methods Mol Biol</i> <b>1663</b> , 219-230
647		
648	41.	Sochacki, K.A., Dickey, A.M., Strub, M.P. & Taraska, J.W. Endocytic proteins are partitioned at
649	40	the edge of the clathrin lattice in mammalian cells. <i>Nat Cell Biol</i> <b>19</b> , 352-361 (2017).
650	42.	Sanford, M. & Scott, L.J. Gefitinib: a review of its use in the treatment of locally
651	40	advanced/metastatic non-small cell lung cancer. <i>Drugs</i> <b>69</b> , 2303-2328 (2009).
652	43.	Amanchy, R. <i>et al.</i> Identification of c-Src tyrosine kinase substrates in platelet-derived growth
653		factor receptor signaling. <i>Mol Oncol</i> <b>3</b> , 439-450 (2009).
654	44.	Wilde, A. <i>et al.</i> EGF receptor signaling stimulates SRC kinase phosphorylation of clathrin,
655	45	influencing clathrin redistribution and EGF uptake. <i>Cell</i> <b>96</b> , 677-687 (1999).
656	45.	Zimmerman, B., Simaan, M., Lee, M.H., Luttrell, L.M. & Laporte, S.A. c-Src-mediated
657		phosphorylation of AP-2 reveals a general mechanism for receptors internalizing through the
658	40	clathrin pathway. <i>Cell Signal</i> <b>21</b> , 103-110 (2009).
659	46.	Hanke, J.H. <i>et al.</i> Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor.
660	47	Study of Lck- and FynT-dependent T cell activation. <i>J Biol Chem</i> <b>271</b> , 695-701 (1996).
661	47.	Mould, A.P., Craig, S.E., Byron, S.K., Humphries, M.J. & Jowitt, T.A. Disruption of integrin-
662		fibronectin complexes by allosteric but not ligand-mimetic inhibitors. <i>Biochem J</i> <b>464</b> , 301-313
663	40	(2014).
664	48.	Larson, B.T., Sochacki, K.A., Kindem, J.M. & Taraska, J.W. Systematic spatial mapping of proteins
665 666	40	at exocytic and endocytic structures. <i>Mol Biol Cell</i> <b>25</b> , 2084-2093 (2014).
666 667	49.	Tice, D.A., Biscardi, J.S., Nickles, A.L. & Parsons, S.J. Mechanism of biological synergy between
667 668		cellular Src and epidermal growth factor receptor. <i>Proc Natl Acad Sci U S A</i> <b>96</b> , 1415-1420
669	FO	(1999). Cheng, H.C., Nishio, H., Hatase, O., Ralph, S. & Wang, J.H. A synthetic peptide derived from
670	50.	p34cdc2 is a specific and efficient substrate of src-family tyrosine kinases. J Biol Chem <b>267</b> , 9248-
671		9256 (1992).
672	51.	Li, Z. <i>et al.</i> p21-activated kinase 4 phosphorylation of integrin beta5 Ser-759 and Ser-762
673	51.	regulates cell migration. J Biol Chem <b>285</b> , 23699-23710 (2010).
674	52.	Scott, J.D. & Pawson, T. Cell signaling in space and time: where proteins come together and
675	52.	when they're apart. Science <b>326</b> , 1220-1224 (2009).
676	53.	Fortian, A. & Sorkin, A. Live-cell fluorescence imaging reveals high stoichiometry of Grb2 binding
677	55.	to the EGF receptor sustained during endocytosis. <i>J Cell Sci</i> <b>127</b> , 432-444 (2014).
678	54.	Kassenbrock, C.K., Hunter, S., Garl, P., Johnson, G.L. & Anderson, S.M. Inhibition of Src family
679	54.	kinases blocks epidermal growth factor (EGF)-induced activation of Akt, phosphorylation of c-
680		Cbl, and ubiquitination of the EGF receptor. J Biol Chem <b>277</b> , 24967-24975 (2002).
681	55.	Buwa, N., Mazumdar, D. & Balasubramanian, N. Caveolin1 Tyrosine-14 Phosphorylation: Role in
682	JJ.	Cellular Responsiveness to Mechanical Cues. J Membr Biol (2020).
683	56.	Reynolds, A.B. <i>et al.</i> SRChing for the substrates of Src. <i>Oncogene</i> <b>33</b> , 4537-4547 (2014).
565	50.	

684	57.	Nolte, M.A., Nolte-'t Hoen, E.N.M. & Margadant, C. Integrins Control Vesicular Trafficking; New
685		Tricks for Old Dogs. Trends Biochem Sci (2020).
686	58.	Baschieri, F., Porshneva, K. & Montagnac, G. Frustrated clathrin-mediated endocytosis - causes
687		and possible functions. J Cell Sci 133 (2020).
688	59.	Chung, I. et al. Spatial control of EGF receptor activation by reversible dimerization on living
689		cells. <i>Nature</i> <b>464</b> , 783-787 (2010).
690	60.	da Rocha-Azevedo, B. et al. Heterogeneity in VEGF Receptor-2 Mobility and Organization on the
691		Endothelial Cell Surface Leads to Diverse Models of Activation by VEGF. Cell Rep 32, 108187
692		(2020).
693	61.	Ibach, J. et al. Single Particle Tracking Reveals that EGFR Signaling Activity Is Amplified in
694		Clathrin-Coated Pits. PLoS One 10, e0143162 (2015).
695	62.	Low-Nam, S.T. et al. ErbB1 dimerization is promoted by domain co-confinement and stabilized
696		by ligand binding. <i>Nat Struct Mol Biol</i> <b>18</b> , 1244-1249 (2011).
697	63.	Kim, I. et al. Clathrin and AP2 are required for PtdIns(4,5)P2-mediated formation of LRP6
698		signalosomes. <i>J Cell Biol</i> <b>200</b> , 419-428 (2013).
699	64.	Lampe, M., Pierre, F., Al-Sabah, S., Krasel, C. & Merrifield, C.J. Dual single-scission event analysis
700		of constitutive transferrin receptor (TfR) endocytosis and ligand-triggered beta2-adrenergic
701		receptor (beta2AR) or Mu-opioid receptor (MOR) endocytosis. Mol Biol Cell 25, 3070-3080
702		(2014).
703	65.	Roberts, A.D. et al. Structurally distinct endocytic pathways for B cell receptors in B
704		lymphocytes. <i>Mol Biol Cell,</i> mbcE20080532 (2020).
705	66.	Flores-Otero, J. et al. Ligand-specific endocytic dwell times control functional selectivity of the
706		cannabinoid receptor 1. Nat Commun 5, 4589 (2014).
707	67.	Mastronarde, D.N. Automated electron microscope tomography using robust prediction of
708		specimen movements. J Struct Biol 152, 36-51 (2005).
709	68.	Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 9,
710		676-682 (2012).

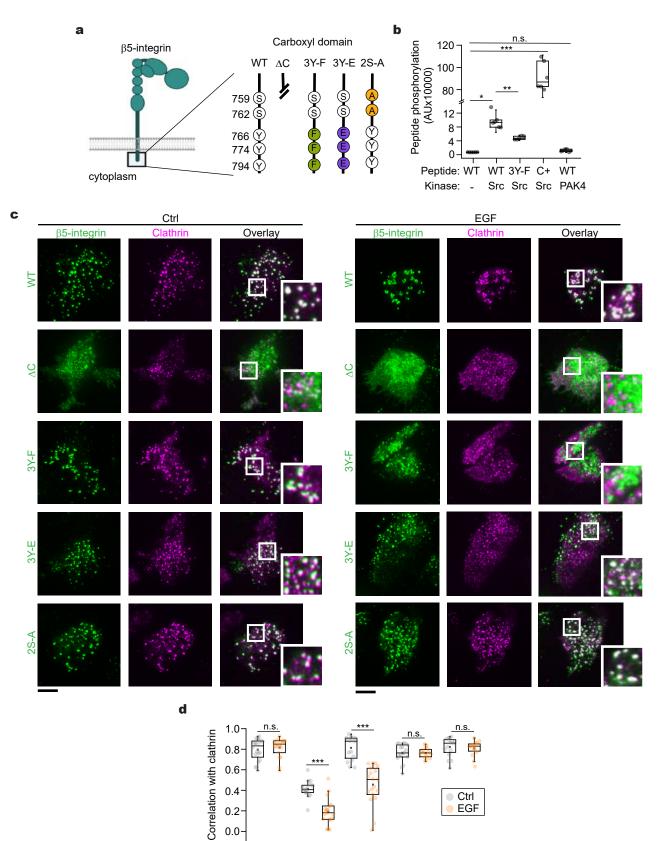








EGFR


Src

0.0

Ctrl EGF

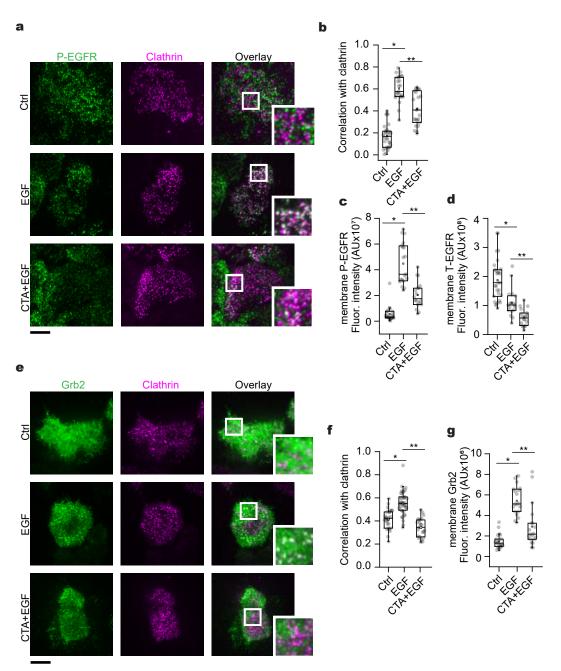
β5-integrin

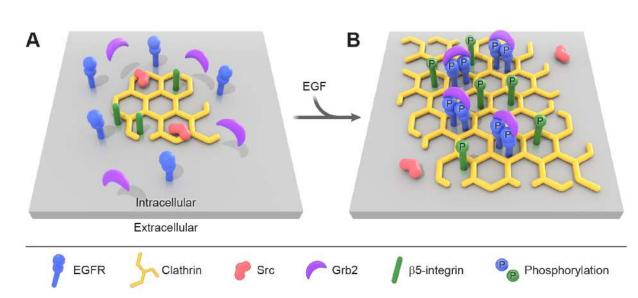
### Fig. 4





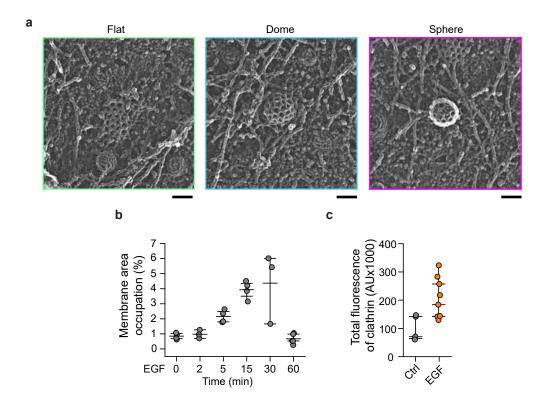
S-A


0.0


WT

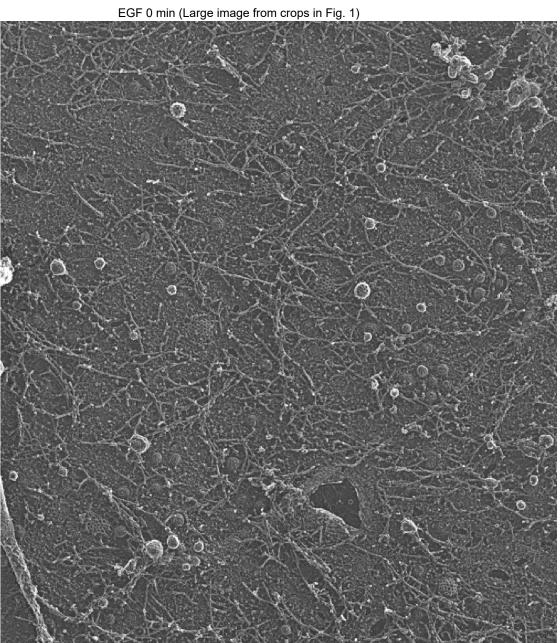
 $\Delta C$ 

I

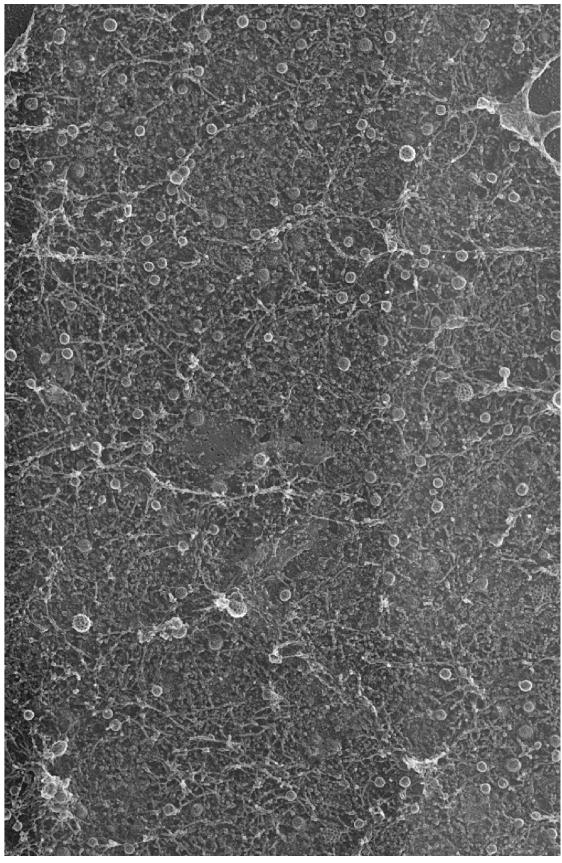

Fig. 5



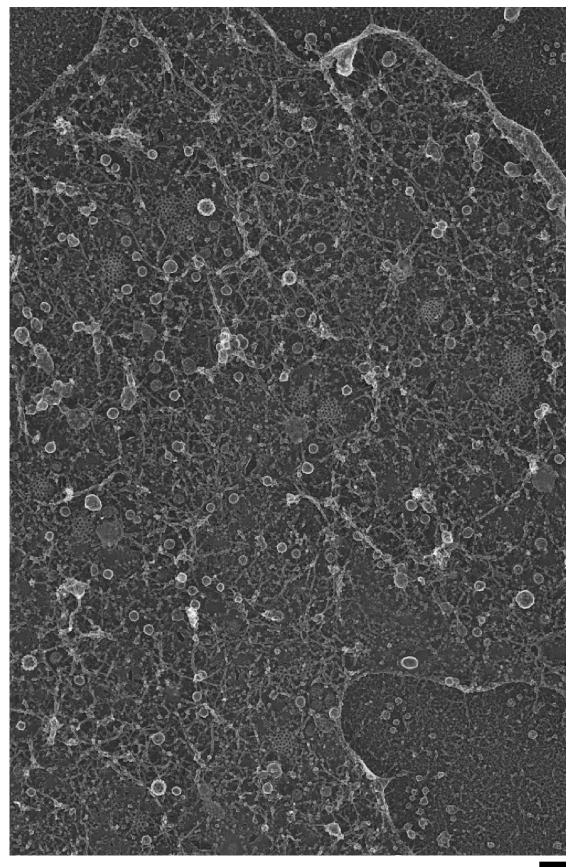



# Fig. 6

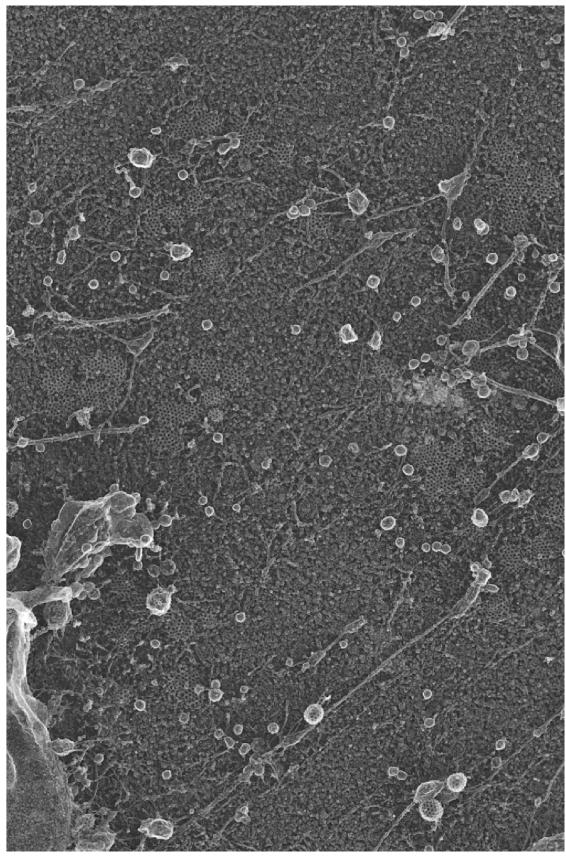
Sup. Fig. 1



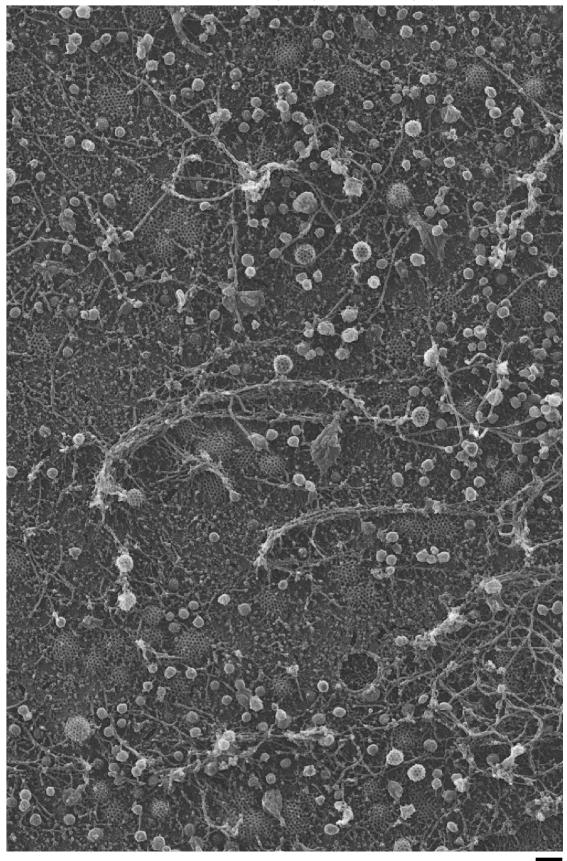

Sup. Fig. 2


С

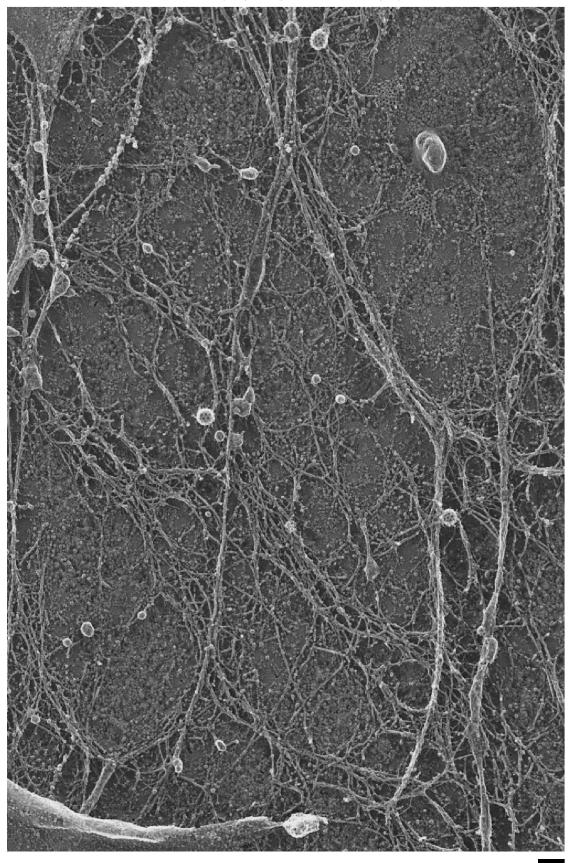



200 nm




EGF 2 min (Large image from crops in Fig. 1)



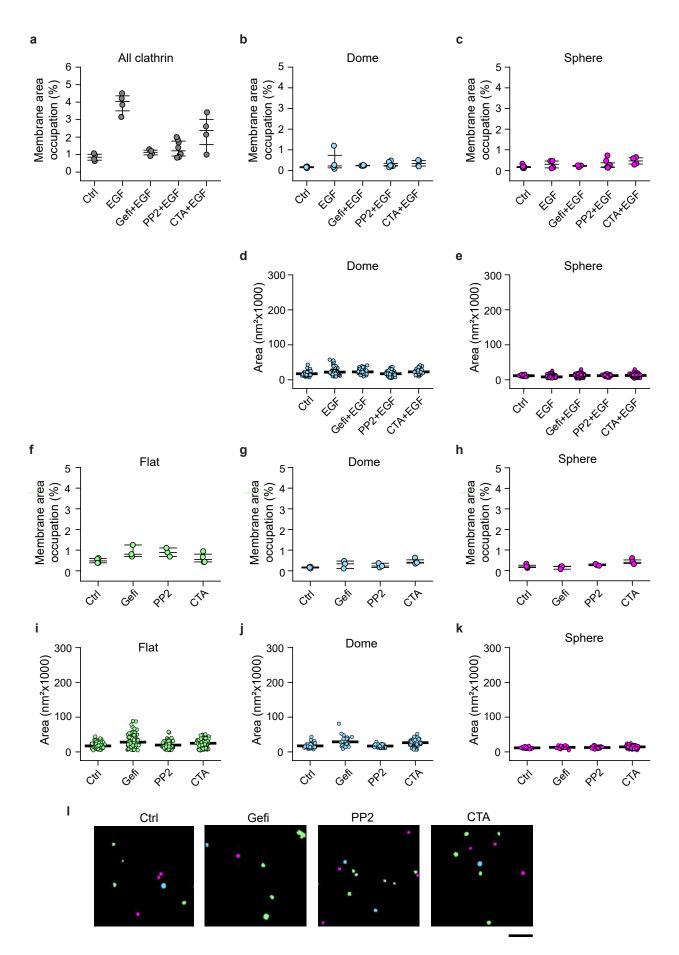

EGF 5 min (Large image from crops in Fig. 1)



EGF 15 min (Large image from crops in Fig. 1)

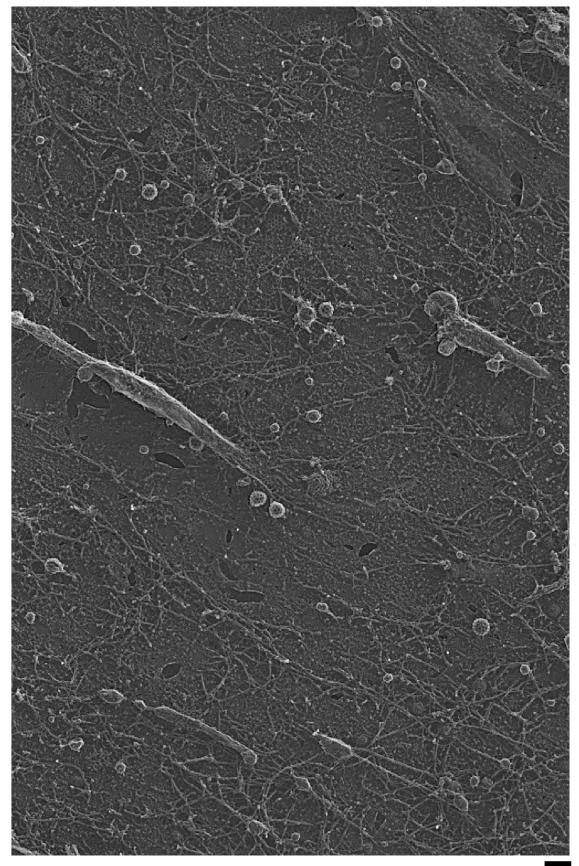


EGF 30 min (Large image from crops in Fig. 1)

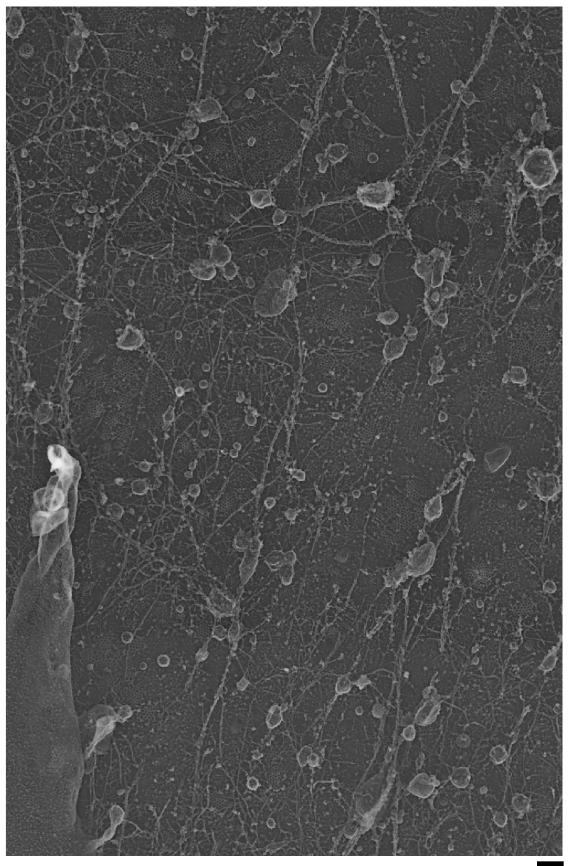



EGF 60 min (Large image from crops in Fig. 1)

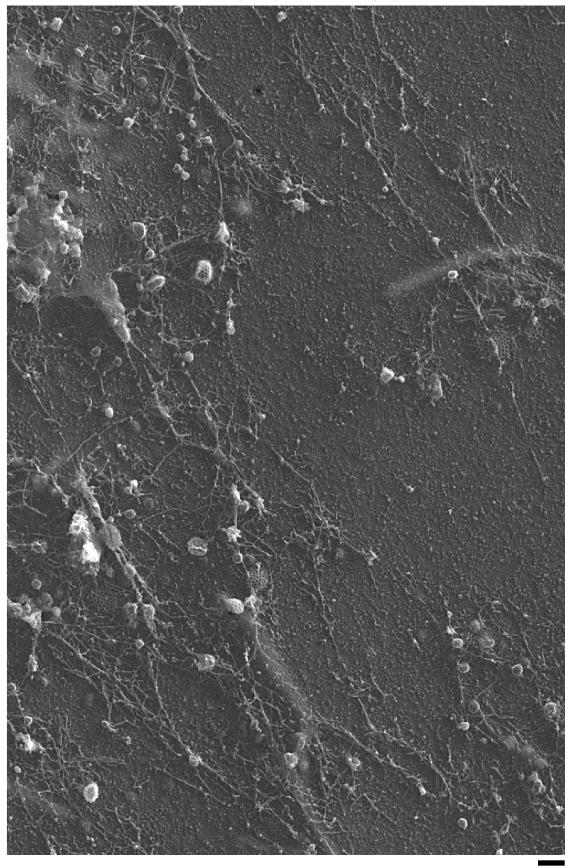
Supplementary Figure 2 continued


200 nm

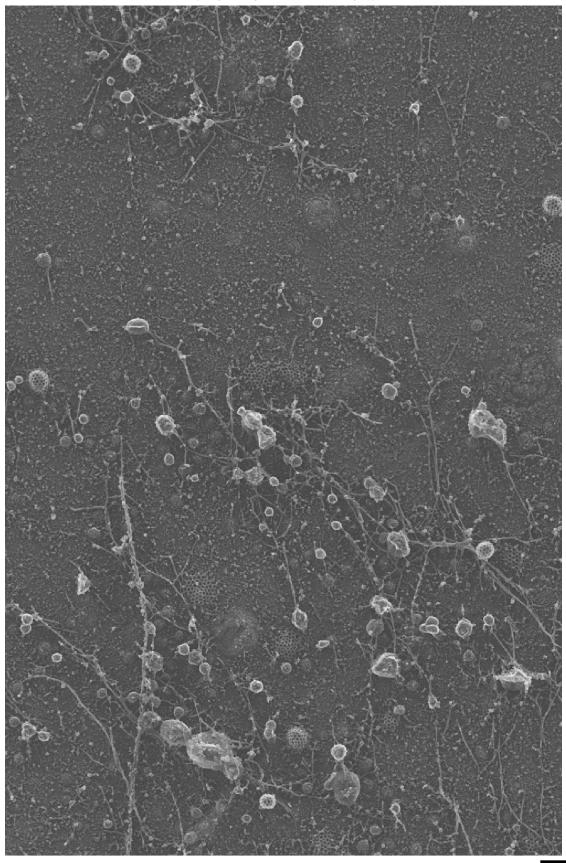
Sup. Fig. 3




# Sup. Fig. 4


Ctrl (Large image from crops in Fig. 2)

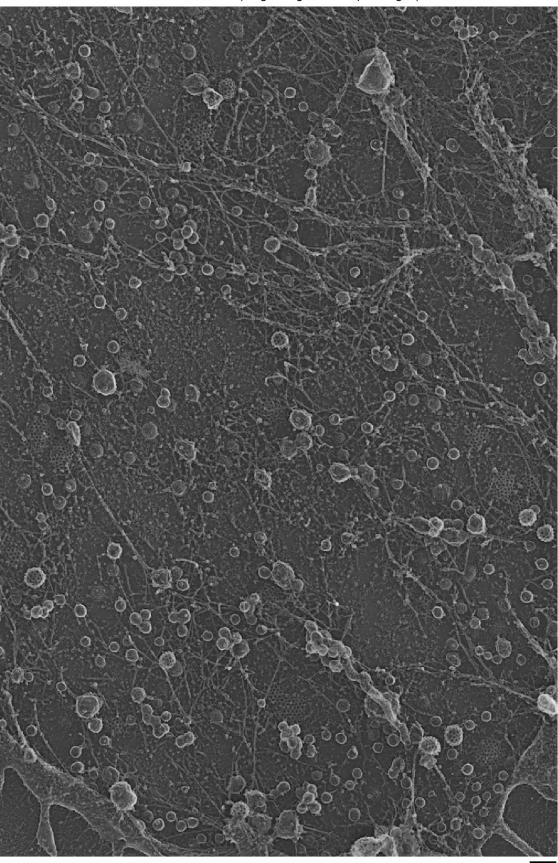



200 nm



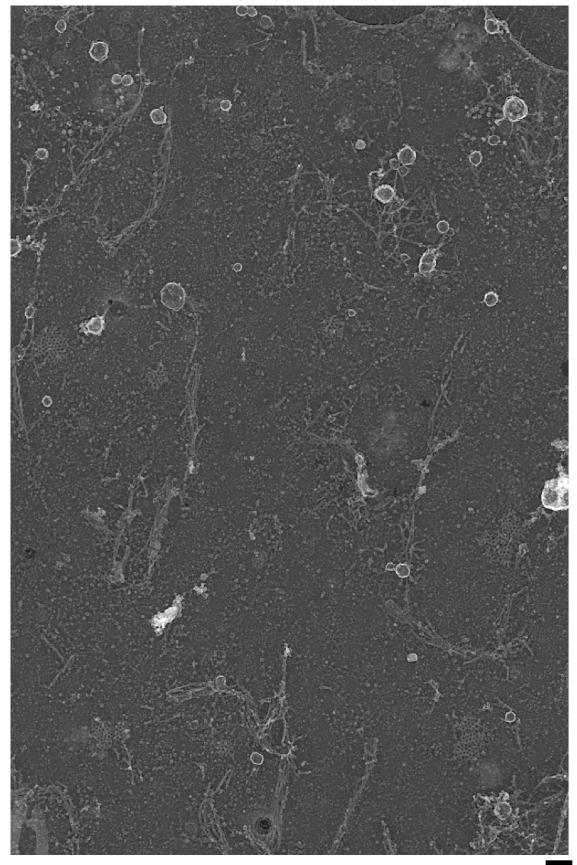
EGF (Large image from crops in Fig. 2)

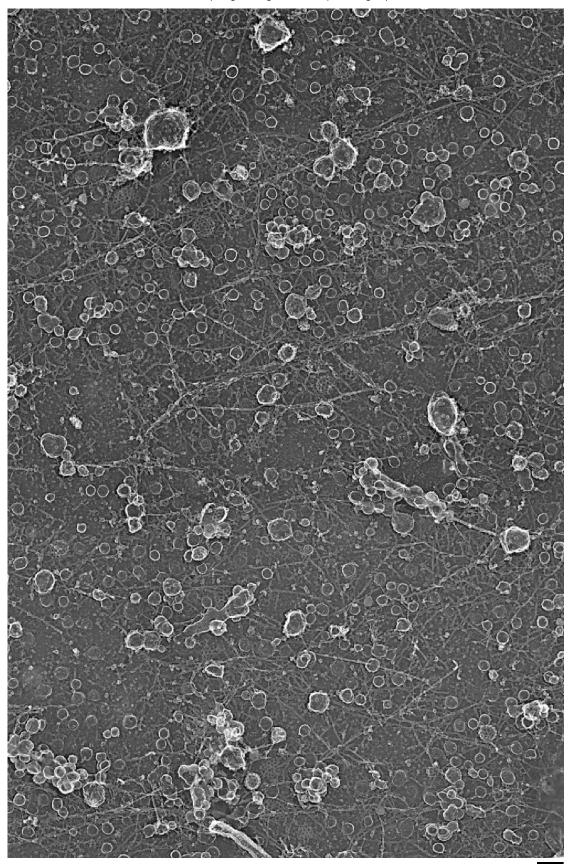



Gefi+EGF (Large image from crops in Fig. 2)

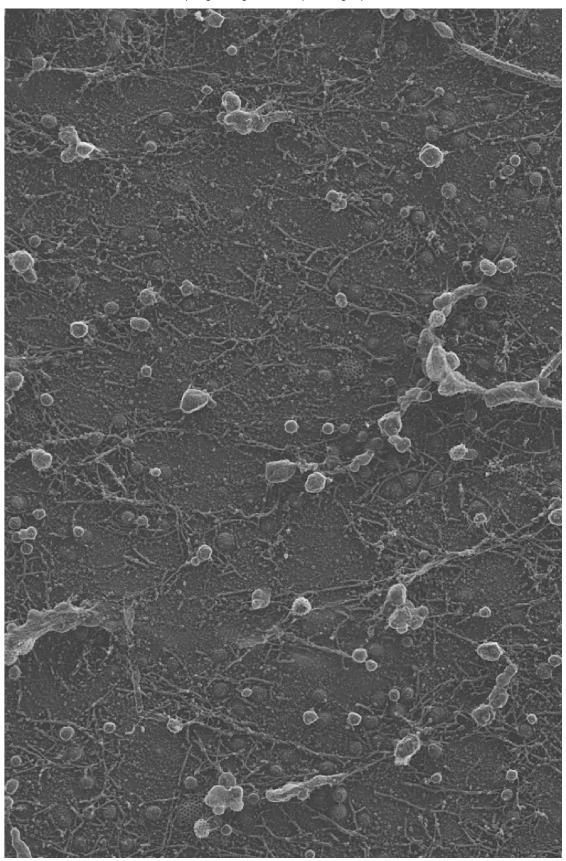


PP2+EGF (Large image from crops in Fig. 2)


Supplementary Figure 4 continued

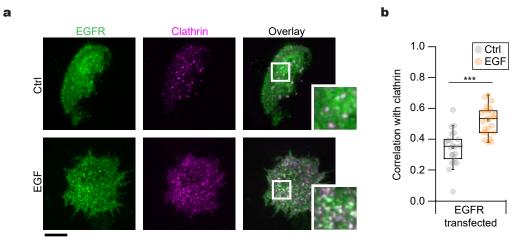

200 nm



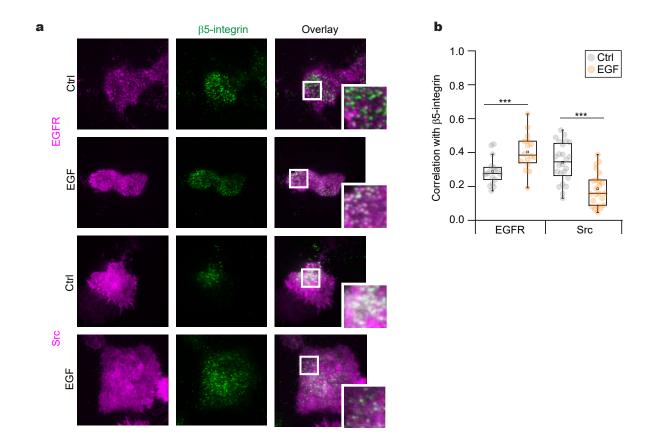

CTA+EGF (Large image from crops in Fig. 2)

Gefi (Large image from crops in Fig. 2)

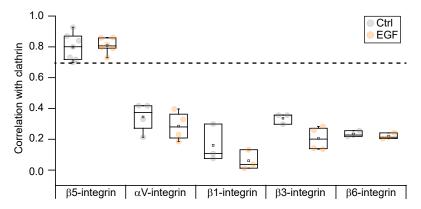





PP2 (Large image from crops in Fig. 2)




PP2 (Large image from crops in Fig. 2)


bioRxiv preprint doi: https://doi.org/10.1101/2020.11.09.373837; this version posted November 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.



Sup. Fig. 6







# Sup. Fig. 8

# β5-integrin cytoplasmic domain

H_sapiens	KLLVTIHDRREFAKFQSERSRAR	<mark>Y</mark> EMASNPL <mark>Y</mark> RKPISTHTVDFTFNKFNKS <mark>Y</mark> NGTVD 799	9
M_musculus	KLLVTIHDRREFAKFQSERSRAR	<mark>y</mark> emasnpl <mark>y</mark> rkpisthtvdfafnkfnks <mark>y</mark> ngsv- 798	8
B taurus	KLLVTIHDRREFAKFQSERSRAR	<mark>Y</mark> EMASNPL <mark>Y</mark> RKPISTHTVDFTFNKFNKS <mark>Y</mark> NGTVD 80(	0
P_cynocephalus	KLLVTIHDRREFAKFQSERSRAR	<mark>Y</mark> EMASNPL <mark>Y</mark> RKPISTHTVDFTFNKFNKS <mark>Y</mark> NGTVD 65!	5
X_laevis	KLLVTIHDRREFSRFQSDRSRAR	<mark>y</mark> emasnpl <mark>y</mark> rpavsthnvdemynmlsks <mark>y</mark> ngtt- 802	2
D_rerio		<mark>Y</mark> EMASNPV <mark>Y</mark> KRSVPMET-DFDMHGIK-SLNGGVH 802	2
	*****	***************************************	

#### b

# $\beta$ -integrin cytoplasmic domain

ITGB5	KLLVTIHDRREFAKFQSERSRAR <mark>Y</mark> EMAS1	NPL <mark>Y</mark> RKPISTHTVDFTFNI	KFNKS <mark>Y</mark> NGTVD	799
ITGB1	KLLMIIHDRREFAKFEKEKMNAKWDTGEN	NPI <mark>Y</mark> KSAVTTVV	NPK <mark>Y</mark> EGK	798
	KALIHLSDLREYRRFEKEKLKSQWNN-DN			
ITGB3	KLLITIHDRKEFAKFEEERARAKWDTANN	NPL <mark>Y</mark> KEATSTFT	NIT <mark>Y</mark> RGT	788
ITGB6	KLLVSFHDRKEVAKFEAERSKAKWQTGT	NPL <mark>Y</mark> RGSTSTFK	NVT <mark>Y</mark> KHREKQKVDLSTDC	788
ITGB7	RLSVEIYDRREYSRFEKEQQQLNWKQDS1	NPL <mark>Y</mark> KSAITTTI	NPRFQEADSPTL	798
	· · · · · · · · · · · · · · · · · · ·	*:::: :*	*	

#### С

Position	Residue	Peptide	Predicted Kinases	
766	Y	SERSRARYEMASNPL	Src, InsR, EGFR	
774	Y	EMASNPLYRKPISTH	Src, InsR, EGFR, Abl2, Itk, Ptk6	
794	Y	FNKFNKSYNGTVD	Src, InsR, EGFR, PDGFRa, Fes, Syk, Ptk6	

### d

		Y766	Y774	Y794
Tool	GPS 5.0			
	Netphos 3.0			
	PhosphoSitePlus			