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Abstract 

Multiple myeloma (MM) is consistently preceded by precursor conditions recognized 

clinically as monoclonal gammopathy of undetermined significance (MGUS) or 

smoldering myeloma (SMM). We interrogate, for the first time, the whole genome 

sequence (WGS) profile of 18 MGUS and compare them with those from 14 SMMs and 

80 MMs. We show that cases with a non-progressing, clinically stable myeloma precursor 

condition (n=15) are characterized by later initiation in the patient’s life and by the 

absence of myeloma defining genomic events including: chromothripsis, templated 

insertions, mutations in driver genes, aneuploidy, and canonical APOBEC mutational 

activity. This data provides evidence that WGS can be used to recognize two biologically 

and clinically distinct myeloma precursor entities that are either progressive or stable. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2020. ; https://doi.org/10.1101/2020.11.06.372011doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.06.372011
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

Introduction 

Multiple myeloma (MM) is the second most common hematological malignancy 

and is consistently preceded by the asymptomatic expansion of clonal plasma cells, 

termed either monoclonal gammopathy of undetermined significance (MGUS) or 

smoldering myeloma (SMM).1-6 These two precursor conditions are found in 2-3% of the 

general population aged older than 40 years. Only a small fraction of MGUS will ultimately 

progress to MM, whereas approximately 65% of persons with SMM will progress within 

10 years of initial diagnosis.2,4 Currently, the differentiation between MGUS and SMM is 

based on indirect measures and surrogate markers of disease burden.5,6 While these 

features are reasonably accurate in defining a SMM high-risk disease group and its 

average risk of progression,7 they perform significantly less well in predicting risk for the 

group of patients with low disease burden (e.g. intermediate- and low-risk SMM). 

Moreover, they do not provide a personalized assessment of risk for the individual 

patient.8-10 

In the last decades, next generation sequencing (NGS) approaches have 

facilitated major progress in deciphering the genomic complexity of MM and its precursor 

conditions.11,12 Mutations in driver genes and structural events (e.g. MYC translocations) 

have been reported to be infrequent in precursor conditions compared to MM, and their 

presence has been suggested to confer a higher risk of progression.5,13-20 However, these 

studies had two major limitations: 1) they were based on exome/targeted sequencing 

approaches and hence were not able to fully capture the landscape of myeloma defining 

genomic events; 2) they focused mostly on SMM and did not include MGUS. 
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Whole genome sequencing (WGS) has emerged as the most comprehensive 

approach to characterize MM and myeloma precursor conditions due to its ability to 

interrogate the full repertoire of myeloma defining genomic events including: single 

nucleotide variants (SNVs), mutational signatures, copy number variants (CNVs), and 

structural variants (SVs).9,13,21-25 However, the use of WGS on myeloma precursor 

conditions has been historically limited by the low clonal bone marrow plasma cell 

(BMPC) percentage, and therefore the availability of tumor DNA. To circumvent this 

challenge, in MGUS and SMM samples with low cellularity included in this study, we 

applied multi-parameter flow-cytometry sorting and an innovative low input WGS 

approach (Figure 1A) able to characterize the genomic landscape of normal tissue from 

a few thousand cells.26,27 Thanks to this novel methodology, we have been able to perform 

the first comprehensive comparison at the whole genome level between low and 

intermediate risk myeloma precursor condition and MM. The results of the study provide 

strong evidence for two biologically and clinically distinct myeloma precursor condition 

entities: (1) a progressive myeloma precursor condition, which is a clonal entity in which 

myeloma defining genomic events have already been acquired at the time of sampling 

and associated with an extremely high risk of progression to MM; and (2) a stable 

myeloma precursor condition, in which myeloma defining genomic events are rare and 

that follows an indolent clinical course.  
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Results 

Single nucleotide-based substitution mutational signatures 

We interrogated the WGS profile of 32 patients with myeloma precursor condition 

defined according to the International Myeloma Working Group 2014 criteria (MGUS=18; 

SMM=14).7 Only one of the 14 SMM patients was defined as high-risk based on the Mayo 

Clinic prognostic model (PD26424a).3 None of the patients showed signs of progression 

at the time of sample collection and none of the SMM cases had a bone lesion on either 

skeletal radiography, CT, or PET-CT.7 After a median follow up of 24 months from sample 

collection (range: 2-177), 17 out of 32 (53%) patients with a myeloma precursor condition 

progressed to MM and started anti-MM treatment [13/14 SMM and 4/18 defined clinically 

as MGUS; median time to progression: 14.5 months (range: 2-105)] (Figure 1B; 

Supplemental Tables 1-3). In the current study, patients who had subsequent 

progression to MM are defined as having “progressive myeloma precursor condition”. 

Patients with prolonged clinical stability (at least 1 year of follow up without progression 

to MM) were defined as “stable myeloma precursor condition” [mean follow up 69 months 

(range: 12-177)]. The stable myeloma precursors had a significantly lower BMPC 

infiltration compared to progressive cases (Wilcoxon rank-sum test p=0.0005; Figure 

1C), likely reflecting the higher proportion of MGUS (Fisher's exact test p<0.0001). Stable 

myeloma precursor disease had a median mutational burden of 3406 SNVs (range 1130-

8244), that is significantly lower in comparison with the progressive myeloma precursor 

disease (5518; range 2385- 7257; Wilcoxon rank-sum test p=0.034) and MM (5482 range 

982- 15738; Wilcoxon rank-sum test p=0.005). The mutational burden was weakly 

correlated with the BMPC infiltration(p=0.02 and R2=0.125; Figure 1D). To interrogate if 
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the difference in overall mutational burden reflects the activity of different mutational 

processes, we explored the single-base substitution (SBS) mutational signature 

landscape of stable myeloma precursor condition in comparison to that of progressive 

myeloma precursor condition and MM.28,29 Running de novo signature extraction across 

the entire cohort of plasma cell disorders (n=112), all main MM mutational signatures 

were identified: aging (SBS1 and SBS5), AID (SBS9), SBS8, SBS18, and APOBEC 

(SBS2 and SBS13) (Supplemental Figure 1 and Supplemental Table 4).13,25,29 

APOBEC emerged as the most differentially active mutational process across the three 

groups (Figure 2A). Interestingly, only 13% (2/15) of stable myeloma precursor condition 

cases showed significant evidence of APOBEC activity, in comparison with 82% (14/17) 

and 85% (68/80) of patients with progressive myeloma precursor condition (p=0.009) and 

MM (p=0.0006), respectively (Figure 2A-B). Furthermore, the two stable cases with a 

detectable APOBEC signature were characterized by a high APOBEC3A:3B ratio 25,28,30 

a feature which defines a group of MAF-translocated MM patients characterized by 

intense and early APOBEC activity 25,31,32 . The mutational activity pattern in this group is 

clearly different from that observed in the majority of progressive myeloma precursors 

and MM cases, which are characterized by a ~1:1 APOBEC3A:3B ratio (Figure 2C). In 

line with this mutational profile, both stable myeloma precursor cases with APOBEC3A:3B 

ratio had a translocation between IGH and MAFB reinforcing the notion that APOBEC 

activity must be assessed in the light of the APOBEC3A:3B ratio, as this appear to 

highlight different biological and clinical disease entities. 
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Single nucleotide variants in known myeloma driver genes 

 By integrating indels and SNVs, we explored the distribution of mutations in 80 

known myeloma driver genes in the myeloma precursor conditions (Supplemental Table 

5).12,33 To increase the power of the investigation, we included two different whole exome 

sequencing (WXS) datasets: the first comprised of 33 MGUS (2 of which progressed) and 

the second comprised of 947 newly diagnosed MM enrolled in the CoMMpass trial 

(version IA13, Multiple Myeloma Research Foundation Personalized Medicine 

Initiative).19,33 Overall, analogous to previous reports, patients with stable myeloma 

precursor condition were characterized by a significantly lower number of mutations in 

known myeloma driver genes compared with progressive myeloma precursor condition 

(Wilcoxon rank-sum test p=0.002) and MM (Wilcoxon rank-sum test p<0.0001) (Figure 

3A-B).14,17,19 Investigating the patterns of positive selection across the different stages of 

disease using dNdScv,34 we observed a significant signal indicative of positive selection 

in the known myeloma driver genes in progressive myeloma precursor condition and MM, 

but this pattern was not seen in the stable myeloma precursor condition (Supplemental 

Data 1). Calculating the per-gene confidence intervals for dN/dS values under the 

dNdScv model using profile likelihood, only mutations in HIST1H1E (n=2) showed 

evidence for positive selection among the stable myeloma precursor conditions. The 

same analysis among the progressive myeloma precursor conditions and MM (both WGS 

and WXS) showed that multiple driver genes were under selective pressure, including 

mutations involving MAPK and NFkB pathways, and tumor suppressor genes such as 

TP53 (Supplemental Data 1). 
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To further characterize the mutational driver landscape of myeloma precursor 

conditions we ran sitednds to identify known mutational hotspots within known myeloma 

driver genes. In line with the previous analysis, patients with stable myeloma precursor 

condition were characterized by a lower number of mutations in known driver hotspots 

compared to progressive myeloma precursor condition and MM (Figure 3C; 

Supplemental Data 1). Finally, in line with their mutational signature profile and with the 

absence of APOBEC activity, stable myeloma precursor condition had a higher proportion 

of mutations within known AID targets compared to progressive myeloma precursor 

condition and MM (Figure 3D).28,33,35 Overall, these results suggest that the mutational 

landscape of stable myeloma precursor condition is significantly different in comparison 

to progressive myeloma precursor condition and MM, in terms of both number of 

mutations in myeloma driver genes and the mutational processes involved. 

 

Copy number changes and structural variants 

When exploring the cytogenetic landscape, no significant differences in recurrent 

aneuploidies were found between the progressive myeloma precursor condition and the 

MM cases. In comparison to progressor condition and to MM, patients with stable 

myeloma precursor condition were characterized by a significantly lower prevalence of 

known recurrent MM chromosomal abnormalities including gain1q, del6q, del8p, 

gain8q24 and del16q; Supplemental Figure 2 and Supplemental Table 6). This 

observation was validated combining our WGS cohort with additional SNP array copy 

number data from 66 stable myeloma precursor condition, 2 progressive myeloma 
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precursor condition, and 148 MM patients, respectively (p<0.001 for these recurrent 

abnormalities; Figure 4 and Supplemental Table 7-8). 

To further characterize differences in myeloma defining genomic events between 

stable versus progressive myeloma precursor condition and MM, we leveraged the 

comprehensive resolution of WGS to explore the distribution and prevalence of SVs and 

complex SV events, known to play a critical role in MM pathogenesis. Stable myeloma 

precursor cases were characterized by a lower SV burden overall. This was true for single 

SVs (Wilcoxon rank-sum test p=0.0005), but was even more striking for complex SVs 

(Wilcoxon rank-sum test p<0.0001; Figure 5A).22,24,36,37 Only one stable myeloma 

precursor case had a chromothripsis event, and none had evidence of templated 

insertions between either two, or more than two chromosomes. This scenario was 

significantly different in progressive myeloma precursor condition, where chromothripsis 

and templated insertions were detected in 8/17 (47%; p<0.001) and 7/17 (41%; p<0.001), 

respectively. Overall, the progressive myeloma precursor condition SV landscape was 

similar to that observed in MM, itself (Figure 5B-C). This finding was confirmed by looking 

at the genomic distribution of SV: in progressive precursors, and to a greater extent in 

MM, the distribution was significantly associated with H3K27a and chromatin accessibility 

loci (Supplemental Figure 3).24 

We analyzed hotspots hit by recurrent SV in our case series. Sixty-nine hotspots 

were identified in 752 low-coverage long-insert WGS cases from the CoMMpass data 

set.21,24 The median number of these SV hotspots per patient was significantly lower 

among stable myeloma precursor condition compared to MM (Wilcoxon rank-sum test 

p=0.0001; Supplemental Figure 4). Among the stable myeloma precursor condition 
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cases, we identified only 11 SV hotspots: all translocations between the IGH locus and 

CCND1 (n=7), MAFB (n=2), CCND3 (n=1), and LTBR|LAG3 (n=1). Of note, none of the 

stable myeloma precursor condition cases had any SVs involving the MYC/PVT1 

hotspot13,19 in sharp contrast with 35% (6/17) in progressive precursor condition cases 

and 32/80 (40%) MM (Fisher's exact test p=0.03 and p=0.003, respectively). Overall, 

progressive myeloma precursor condition did not show any significant differences in SV 

hotspot prevalence compared to either MM or stable myeloma precursor condition. 

 

Time lag between initiation and sample collection 

Considering myeloma defining genomic events (i.e. SNVs, CNVs, SVs and 

mutational signatures), stable myeloma precursor condition emerged as a distinct 

genomic entity compared to MM. In contrast, the progressive myeloma precursor 

condition demonstrated a genomic profile extremely similar to that of MM. This absence 

of myeloma defining genomic events among stable cases could be due to two possible 

explanations. Firstly, the early detection of the clone by serum protein electrophoresis 

and consequent earlier sample collection in the course of disease might have introduced 

a temporal bias into our analysis (i.e. the earlier the plasma cell clonal detection, the lower 

its genomic complexity). Alternatively, stable cases represent a distinct biological entity, 

characterized by few genomic aberrations and a low propensity to acquire additional 

abnormalities associated with progression. To identify the most likely model, we 

leveraged the molecular-clock approach, recently developed to time landmark events in 

both cancers and normal tissues.25-27,38,39 Notably, this approach is based on the SBS1 

and SBS5 mutational burden pre- and post-chromosomal gain to estimate the time lag 
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between cancer-initiating gains and sample collection. Previous MM molecular time 

estimates25 are in line with a long lag time from initiation to development.40,41 For this 

study, this analysis was performed in three main steps. Firstly, we used the Dirichlet 

process-derived clonal mutational burden of each patient to estimate the relative time of 

acquisition of each large chromosomal gain. In this way, we could identify large 

chromosomal gains occurring within the same time window. Then, we estimated the 

contribution of each mutational signature; collapsing together duplicated and non- 

duplicated mutations within the earliest multi-chromosomal gain event in each patient. 

Finally, we estimated the SBS1- and SBS5-based molecular time of each early multi-gain 

event and converted it to patient years. Overall the age at sampling was not significantly 

different between MM, stable and progressive myeloma precursor condition (Figure 6A). 

However, when we used the molecular timing approach we were able to show that the 

stable myeloma precursor condition cases had a significantly different temporal pattern, 

in which multi-gain events occurred later in the patient’s life (median 53.5 years; range 

28-65) compared to the progressive myeloma precursor condition cases (median 28 

years range 5-46) and MM cases (median 20.5; range 9-56) (Figure 6B-C). These data 

argue against a temporal bias created by early sample collection relative to disease 

initiation in non-progressing samples. Instead the results suggest that while these stable 

entities may eventually progress to MM, based on these temporal estimates, this would 

be predicted to occur at average ages of 90-100 years of age. Overall, our temporal 

estimates suggest that stable myeloma precursor condition represents a different 

biological entity; one that is acquired at a later age in life, without myeloma defining 
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genomic events, and with a much lower tendency to progress compared to progressive 

myeloma precursor condition. 

 

Discussion 

 Early discovery work focusing on monoclonal serum proteins by Dr. Waldenstrom, 

Dr. Kyle, and others led to the emergence of two major schools of thought. Dr. 

Waldenstrom proposed that there were patients who had monoclonal proteins without 

any symptoms or evidence of end-organ damage, representing a benign monoclonal 

gammopathy.42-45 Conversely, the alternate opinion was that some patients with 

asymptomatic monoclonal proteins nevertheless progressed over time to MM, and that it 

was important to not term the process entirely benign. Thus in 1978, Dr. Kyle introduced 

the terminology MGUS, which allowed the field to move forward and to acknowledge the 

uncertainties in clinical outcome.39 The word “undetermined” was used to reflect the fact 

that, at diagnosis, it was not possible to determine which patients would ultimately 

progress to MM.  

Over time, clinical risk scores for myeloma precursors conditions were developed 

based on indirect measurements of disease burden including BMPC percentage and the 

quantity of serum monoclonal protein).3,5-7,9 While such prognostic models have proven 

their utility, they have not been useful for identifying cases with MGUS and low-, and 

intermediate- risk SMM who may have already undergone malignant transformation.5-7,9 

The historical differentiation between SMM and MGUS has been based on an 

arbitrary cut-point of 10% BMPC defined by immunohistochemistry. However, based on 
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clinical experience, it is clear that some MGUS patients can progress rapidly despite their 

apparent low disease burden, and conversely many SMM patients will remain stable 

despite a higher disease burden with a behavior pattern typical of MGUS.2,3,40,46 An ability 

to recognize these two distinct clinical patterns independent of the BMPC percentage 

would offer significant advantages in clinical practice. The use of NGS has progressively 

provided an alternative to tumor burden-based models. Several studies have highlighted 

the importance of the value of genomic events for predicting progression of the myeloma 

precursor conditions. These studies have identified the value of mutations in the MAPK 

pathway and translocations in MYC.5,13-15,18-20 However, until recently, technical 

limitations (i.e. low number of clonal BMPC limiting the ability to conduct sequencing 

assays) led to most of these studies only including SMM cases and not MGUS. Here, 

thanks to the advent of multi-parametric BMPC flow-sorting and the application of low 

input WGS technology,26,27 we have been able to interrogate the WGS landscape of 

MGUS cases circumventing previous problems related to volume of clonal plasma cells 

and contamination by normal plasma cells. Given the ability of WGS to characterize SNV, 

SV, CNV and mutational signatures, we have shown that clinically stable cases of MGUS 

and SMM are characterized by a different genomic landscape and by differences in the 

temporal acquisition of myeloma-associated genomic events in comparison to 

progressive entities. The distribution of genetic events reveals the existence of two 

biologically and clinically distinct entities of asymptomatic monoclonal gammopathies: (i) 

one entity characterized by a sufficient number of myeloma genomic events to confer 

malignant potential and which is associated with progressive disease; and (ii) another 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2020. ; https://doi.org/10.1101/2020.11.06.372011doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.06.372011
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

entity with a lower burden of genetic events characterized by high likelihood of a 

prolonged, indolent, and clinically stable course. 

Taken together, after more than 50 years of investigation of the relationship 

between myeloma precursor conditions and MM, the use of whole genome analysis has 

provided initial exiting evidence that myeloma precursor conditions with low disease 

burden at a high-risk of progression can be identified. Despite its limited sample size, this 

study provides proof of principle that WGS has the potential to accurately differentiate 

stable and progressive precursor conditions in low disease burden clinical states. The 

application of this technology in the clinic has the potential to significantly alter the 

management of individual patients but will require confirmation in larger studies. Going 

forward, improved and biology-oriented strategies to accurately identify patients with 

progressive myeloma precursor condition before clonal expansion i) will allow earlier 

initiation of therapy before onset of end-organ damage to avoid severe clinical 

complications; ii) will prevent patients with precursor conditions from being overtreated.5,9 

 

Methods 

Samples and whole genome sequencing 

This study involved the use of human samples. Samples and data were obtained 

and managed in accordance with the Declaration of Helsinki. The study was approved by 

the medical ethics committees of the Jessa Hospital and Hasselt University (Belgium), 

Memorial Sloan Kettering Cancer Center (US) and Wellcome Sanger Institute (UK). 

Overall 26 samples of myeloma precursor condition and MM were newly sequenced for 
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this study. Of these, 17 samples from 15 patients (15 MGUS, 1 SMM and 1 MM) were 

collected at the Jessa Hospital (Supplemental Table 1). One MGUS case (PD47563) 

and the only SMM case (PD47580) also had a second sample collected after 2 years of 

stable disease and at MM progression, respectively. Biological material from these cases 

used in this publication was provided by the Clinical Biobank of the Jessa Hospital and 

University Biobank Limburg (UBiLim).47 For all samples, BMPCs were isolated from bone 

marrow aspirates and sorted on a BD FACSAria IIITM instrument (BD Biosciences, San 

Jose, CA) using the markers CD19, CD20, CD38, CD45, CD56, CD138, CyIgL (BD 

Biosciences) and CyIgK (Agilent Technologies, Santa Clara, CA). Importantly, gating on 

of the general BMPC population was followed by gating on the pathological light chain -

kappa or lambda-, according to the monoclonal protein in serum. Finally, CD56 positive 

or negative cells were selected depending on the patient characteristics, yielding a pure 

population of immunophenotypically aberrant PCs for sorting. For matched control DNA 

from each patient, bone marrow T cells or peripheral blood mononuclear cells were used. 

The T cells were isolated from the BM aspirates and sorted using the BD FACSAria IIITM 

(BD Biosciences) with anti-CD4 antibodies (BD Biosciences). Overall, we collected a 

median number of 3000 clonal BMPC per patient (range 1490-6000; Supplemental 

Table 2). This number of cells was too low to perform a standard WGS approach, and to 

overcome this, we used the recently published low input DNA enzymatic fragmentation-

based WGS, which has been shown to have high accuracy in defining the WGS 

landscape of normal tissues from few thousands cells (Figure 1A, Supplemental Table 

1 and Supplemental Methods).26,27 
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 For the remaining 8 newly sequenced cases (4 MGUS, 2 SMM and 2 MM) we used 

leftover DNA extracted from CD138-positive BMPC previously collected for SNP array 

investigation routinely performed in diagnostic at MSKCC. Having adequate DNA amount 

(>200 ng) and clonal purity estimation from the previous cytogenetic characterization, 

these samples were sequenced using standard WGS approaches (Supplemental 

Methods). Plasma cell selection was performed by magnetic bead-selection from bone 

marrow. Peripheral blood mononuclear cells were used as matched control. 

To further increase the sample size of our cohort, we included 89 published WGSs 

from 52 MM patients.25,48,49 For 11 patients, samples were collected both at the time of 

SMM and MM progression.13 Overall, in this study we investigated WGS data from a total 

of 32 patients with multiple myeloma precursor condition. 

 

Processing of whole genome sequencing data  

Overall, the median sequence coverage was 38X (range 27-97X; Supplemental 

Table 1). Short insert paired-end reads/FASTQ files were aligned to the reference human 

genome (GRCh37) using Burrows–Wheeler Aligner, BWA (v0.5.9). All samples were 

uniformly analyzed by the whole-genome analysis bioinformatic tools developed at the 

Wellcome Sanger Institute. Specifically: CaVEMan was used for SNVs, indels were 

analyzed with a modified Pindel version 2.0, for the identification of CNVs, ASCAT 

(v2.1.1) and Battenberg were performed. To determine the tumor clonal architecture, and 

to model clusters of clonal and subclonal point mutations, the Dirichlet process (DP) was 

applied 13,25,29. BRASS was used to detect SVs through discordantly mapping paired-end 
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reads (large inversions and deletions, translocations, and internal tandem duplication). 

Complex events such as chromothripsis, chromoplexy, templated insertions were defined 

as previously described.22,24,36,37,50 All SVs not part of a complex event were define as 

single.22,24 

The list of myeloma driver genes (n=80) was generated merging the two largest 

driver discovery studies.12,22 The list of SV hotspots was created by adding MAFB to the 

catalogue of 68 SV hotspots recently identified by our group.21,24 

 

Mutational signature analysis  

Analysis of SBS signatures was performed following three main steps: 1) de novo 

extraction; 2) assignment; and 3) fitting.29 For the de novo extraction of mutational 

signatures we ran two independent algorithms; SigProfiler and the hierarchical Dirichlet 

process (hdp) (Supplemental Figure 1).25,28 Next, each extracted process was assigned 

to one or more mutational signatures included in the latest COSMIC v3.1 catalog 

(https://cancer.sanger.ac.uk/cosmic/signatures/SBS/index.tt). Lastly, mmsig, a fitting 

algorithm designed for hematological cancers (https://github.com/evenrus/mmsig), was 

applied to accurately estimate the contribution of each mutational signature in each 

sample. 
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Molecular time  

The relative timing of each multi-chromosomal gain event was estimated using the 

R package mol_time (https://github.com/nicos-angelopoulos/mol_time).22 This approach 

allows the estimation of the relative timing of acquisition of all large chromosomal gains 

(e.g. trisomies in hyperdiploid myeloma patients) using the corrected ratio between 

duplicated mutations (variant allele frequency; VAF 66%, acquired before the 

chromosomal duplication) and non-duplicated mutations (VAF 33%, acquired on either 

the non-duplicated allele or on one of the two duplicated alleles). Each clonal mutation 

VAF was corrected for the cancer purity estimated combining SNV and CNV data 

(Supplementary Table 1). Only chromosomal segments larger than 1 Mb and with more 

than 50 clonal mutations as estimated by the DP were considered.22,25 Tetrasomies, with 

both alleles duplicated, were removed given the impossibility of defining whether the two 

chromosomal gains occurred in close temporal succession or not.22,25 Using this 

approach, we were able to define if different chromosomal gains were acquired in the 

same or different time windows. Next, to convert the relative molecular time estimate into 

an absolute estimate, we combined chromosomal gains acquired in the same time 

window and re-calculated the molecular time using only the mutational burden of SBS1 

and SBS5. These mutational processes are known to act in a constant way over time (i.e. 

clock-like) in MM (as in all cancers and normal tissues),28,51 and due to this feature we 

can convert the SBS1 and SBS5-based molecular clock into an absolute time estimate 

for the acquisition of these events in each patient’s life.25,38,39 Confidence of intervals were 

generated by bootstrapping 1000 times the molecular time estimate. Only multi-gain 

events with more than 50 SBS1 and SBS5 clonal mutations were included. 
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Validation cohorts. 

 To expand our CNV investigations, we included a validation cohort of 66 stable 

myeloma precursor condition, 2 progressive myeloma precursor condition, and 148 MM 

patients, with available SNP array data at the MSKCC (Supplemental Table 7-8). All 

cytogenetic data were reanalyzed using ASCAT (https://github.com/Crick-

CancerGenomics/ascat). 

 To expand our investigations on nonsynonymous mutations and mutations in MM 

driver genes, WXS data from 33 MGUS patients were imported from EGA 

(EGAS00001001658)19 and analyzed using Caveman for SNVs and Pindel for indels. The 

copy number profile of each case was reconstructed using Facets. Finally, we also 

included as additional validation set 947 newly diagnosed MM enrolled in CoMMpass trial 

(AI15; NCT01454297; phs000748.v1.p1). The CoMMpass data were generated as part 

of the Multiple Myeloma Research Foundation Personalized Medicine Initiative 

(https://research.themmrf.org). 

 

Data analysis and statistics 

 Data analysis was carried out in R version 3.6.1. Standard statistical tests are 

mentioned consecutively in the manuscript while more complex analyses are described 

above. Wilcoxon rank-sum test between three groups was run using pairwise.wilcox.test 

R function with all p value adjusted for FDR. All reported p-values are two-sided, with a 

significance threshold of < 0.05. 
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Data availability 

Sequence files are available at the European Genome-phenome and dbGaP archive 

under the Accession codes: 

• EGAD00001003309: 67 WGS data from 30 multiple myeloma patients  

• phs000748.v1.p1: WXS and low coverage/long insert WGS sequencing data 

from 746 newly diagnosed multiple myeloma patients included in this study 

(CoMMpass trial; IA 15) 

• phs000348.v2.p1 WGS data from 22 multiple myeloma patients 

• EGAS00001001658: 33 WXS MGUS data 
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Figure legends 

Figure 1. Summary of all patients with myeloma precursor condition included in 

the study. A) A cartoon summarizing the low input WGS approach. B) Follow up time for 

all patients with myeloma precursor condition included in the study. Purple and blue lines 

and dots reflect patients that progressed to MM and hadn't had progression at the time of 

study, respectively. C) Comparison of bone marrow plasma cell infiltration between stable 

and progressive myeloma precursor condition. p value was generated using Wilcoxon 

rank-sum test. D) Correlation between bone marrow plasma cell (BMPC) infiltration and 

mutational burden in myeloma precursor condition. p value and R2 were estimated using 

lm R function (linear regression). 

 

Figure 2. Mutational signature landscape of multiple myeloma (MM) and myeloma 

precursor condition. A) Mutational signature contribution across all WGS samples 

included in the study. B) Comparison of APOBEC mutational contribution (SBS2 + 

SBS13) between MM, progressive and stable myeloma precursors. p values were 

calculated using Wilcoxon rank-sum test. C) APOBEC3A:3B ratio of all patients included 

in the study having detectable APOBEC activity. Blue, purple and brown dots represent 

stable, progressive myeloma precursors and MM, respectively. The green and yellow 

boxes on the x-axis reflect cases with and without translocations involving MAF/MAFB, 

respectively. MGUS: monoclonal gammopathy of undetermined significance; SMM: 

smoldering multiple myeloma; SD: stable disease; PD: progressive disease. 
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Figure 3. Mutations in myeloma driver genes. A-B) Prevalence and distribution of 

nonsynonymous mutations in driver genes (n=80) across stable (blue) and progressive 

(purple) myeloma precursor condition and multiple myeloma (brown). C) Proportion of 

cases with at least one significant known hotspot mutation within myeloma driver genes 

in stable and progressive myeloma precursor condition and MM. D) Proportion of 

mutations in driver genes involving known AID targets in stable and progressive myeloma 

precursor condition and MM. SD: stable disease, PD: progressive disease. Asterisks in C 

and D indicate a p<0.01 under Fisher’s exact test of proportions. 

 

Figure 4. Copy number profile of myeloma precursor condition and multiple 

myeloma (MM). Cumulative copy number profile of all patients with either WGS or SNP 

array data available. Cases were grouped according to their clinical stage: stable and 

progressive myeloma precursor condition and MM. Red and blue bars reflect 

chromosomal gain and loss, respectively. Yellow and green lines on the top of each graph 

represent GISTIC peaks with a significantly different prevalence across the three stages 

(yellow: Fisher’s exact test p<0.05 and green: q<0.1). On the first, second and third 

cumulative plots we reported the significant difference between: stable myeloma 

precursor condition vs MM, stable myeloma precursor condition vs progressive myeloma 

precursor condition and progressive myeloma precursor condition vs MM, respectively. 

 

Figure 5. Landscape of structural variants (SV) in multiple myeloma (MM) and 

myeloma precursor condition. A) Prevalence of single and complex SV events across 

all cases included in this study. Blue, purple and brown x-axis labels represent stable, 
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progressive myeloma precursors and MM respectively. Ins: insertion, TRA: translocation. 

B) Genome-wide density of SV breakpoints across stable, progressive myeloma 

precursors and MM. Each patient genome was divided in bins of 1 Mb and, in case of 

presence of multiple SV breakpoints, only one breakpoint was counted. C) Prevalence of 

69 known SV hotspots across stable and progressive myeloma precursors, and MM. SD; 

stable disease, PD; progressive disease. 

 

Figure 6. Timing the acquisition of the first multi-gain event in MM and myeloma 

precursor conditions. A) Comparison of the patients’ age at the time of sample 

collection between stable, progressive myeloma precursors and MM. p values were 

calculated using the Wilcoxon rank-sum test. B) Estimated patient age at the first multi-

gain events with 95% confidence of intervals. Blue, purple and brown dots and lines 

represent stable, progressive myeloma precursors and MM respectively. Grey boxes 

reflect the sample collection time. C) Comparison of estimated patient age at the first 

multi-gain events between stable, progressive myeloma precursors and MM. p values 

were calculated using the Wilcoxon rank-sum test. 
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