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Abstract

Sensory neurons reconstruct the world from action potentials (spikes) impinging on
them. To effectively transfer information about the stimulus to the next processing
level, a neuron needs to be able to adapt its working range to the properties of the
stimulus. Here, we focus on the intrinsic neural properties that influence information
transfer in cortical neurons and how tightly their properties need to be tuned to the
stimulus statistics for them to be effective. We start by measuring the intrinsic
information encoding properties of putative excitatory and inhibitory neurons in L2/3
of the mouse barrel cortex. Excitatory neurons show high thresholds and strong
adaptation, making them fire sparsely and resulting in a strong compression of
information, whereas inhibitory neurons that favour fast spiking transfer more
information. Next, we turn to computational modelling and ask how two properties
influence information transfer: 1) spike-frequency adaptation and 2) the shape of the
IV-curve. We find that a subthreshold (but not threshold) adaptation, the ‘h-current’,
and a properly tuned leak conductance can increase the information transfer of a
neuron, whereas threshold adaptation can increase its working range. Finally, we verify
the effect of the IV-curve slope in our experimental recordings and show that excitatory
neurons form a more heterogeneous population than inhibitory neurons. These
relationships between intrinsic neural features and neural coding that had not been
quantified before will aid computational, theoretical and systems neuroscientists in
understanding how neuronal populations can alter their coding properties, such as
through the impact of neuromodulators. Why the variability of intrinsic properties of
excitatory neurons is larger than that of inhibitory ones is an exciting question, for
which future research is needed.

Author summary

Intracellular information transfer from synaptic input to output spike train is
necessarily lossy. Here, we explicitly measure the mutual information between a
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neuron’s input and spike output and show that information transfer is more lossy and
heterogeneous for excitatory than for inhibitory neurons. By using computational
modelling we show that the shape of the input-output curve as well as how fast a
neuron adapts to its input collectively determine the rate of information loss. These
insights will help both experimentalists and modellers in designing and simulating
experiments that investigate how network coding properties can adapt to the
environment, for instance through the effects of neuromodulators.

Introduction 1

Perception and other brain functions require information transmission and signal 2

transformation at each processing step. Specifically, for perception, stimuli that impinge 3

on sensory receptors are transferred via the brain stem and thalamus to cortical 4

networks: each of these processing steps results in information transfer and compression, 5

due to intracellular information transfer from synaptic input current to spike train. The 6

spike train of a single neuron though, can contain only a limited amount of information 7

about an incoming stimulus [1]. However, the working range of a neuron is typically 8

limited, more limited than the range of inputs a neuron might receive. A neuron’s 9

ability to adapt its working range to the properties of the stimulus is crucial for its 10

ability to transfer information about the stimulus to the next processing level [2–5]. For 11

example, if the input amplitude is too low, a neuron that cannot adapt will not respond, 12

whereas when the input amplitude is too large, a neuron that cannot adapt will enter 13

depolarization block or its output firing rate will be saturated, both resulting in a 14

neuron that does not respond adequately to changes in input and hence in a neuron 15

that does not transfer information. Therefore, neurons need to continually adapt their 16

working range (i.e. their excitability) in order to fit the dynamic range of the input. 17

They can do this by reducing synaptic strength [6, 7] or by shifting (gain shift) or 18

widening (gain modulation) their intrinsic excitability [8–10], This changing of the 19

intrinsic input-output curves happens on different timescales: from fast (spike frequency 20

adaptation [11]) to slow (homeostatic scaling, for reviews see [7, 12]). The dynamics of 21

such adaptation mechanisms impact the effectiveness of the adaptation in relation to 22

the stimulus dynamics: if the adaptation is too fast (relative to the input statistics), it 23

has no practical effect, but if it is too slow, it is constantly saturated and has no 24

dynamic effects. Here, we focus on the relatively fast adaptive changes in intrinsic 25

excitability and ask how such mechanisms influence information transfer in cortical 26

neurons and how tight their properties need to be tuned to the stimulus statistics for 27

them to have an effect. 28

We start by measuring the intrinsic information encoding properties of putative 29

excitatory (regular-spiking) and inhibitory (fast-spiking) neurons in L2/3 of the mouse 30

barrel cortex. We measure the effects of several intrinsic neural characteristics on the 31

information transfer from input current to output spike train, using a combination of 32

ex-vivo experiments [13, 14] and computational modelling. We aim to unravel how both 33

the threshold behaviour and the I-V curve shape of excitatory and inhibitory neurons 34

affect information transfer, using a recently developed method to estimate the mutual 35

information between input and output in an ex-vivo setup [15]. This method has several 36

advantages: instead of the traditionally long (∼ 1 hour) experiments that are needed to 37

obtain a single mutual information estimate [16–20], this method needs only about 5 38

minutes of recording to obtain an information transfer estimate. Moreover, the 39

properties of the input current can be adapted to fit different cell type properties, and it 40

has an optimal observer model so that the measured information transfer can be 41

compared with the ‘optimal’ Bayesian Neuron information transfer [21]. Using this 42

method, we can simultaneously measure the information transfer from input current to 43
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output spike train and assess intrinsic cell properties, thereby showing how intrinsic cell 44

properties correlate with information transfer. In particular, putative excitatory 45

neurons show high thresholds and strong adaptation, making them fire sparsely and 46

resulting in a strong compression of information between input and output. Their 47

intrinsic properties are quite heterogeneous, showing a large variability. Putative 48

inhibitory neurons on the other hand have intrinsic properties that favour higher firing 49

rates, corresponding to a higher information processing rate. Their response properties 50

are more stereotypical than those of excitatory neurons. 51

The Bayesian neuron that is optimal for this task has two properties that distinguish 52

it from a standard leaky integrate-and-fire model: 1) spike-frequency adaptation and 2) 53

a non-linear I-V curve that results amongst others in the suppression of 54

hyperpolarization. To untangle how these mechanisms influence information transfer, 55

we turn to computational modelling. Firstly, we use an exponential integrate-and-fire 56

(expIF) model with two types of adaptation: subthreshold adaptation [22,23] and 57

threshold adaptation [24] and research the effects of these two types of adaptation on 58

the information transfer in the aforementioned mutual information protocol. We find 59

that subthreshold adaptation increases the information transfer if tuned well, whereas 60

threshold adaptation increases the working range of the neuron over a broad range of 61

parameters. So despite the fact that at first glance these to forms of adaptation appear 62

to serve a similar purpose (i.e. reducing the firing rate of a neuron for strong stimuli), it 63

turns out that their effects are quite different. Secondly, we assess the effects of 64

changing the shape of the I-V curve (the right-hand-side of the membrane voltage 65

equation). We model the effects of suppression of hyperpolarization by adding an 66

instantaneous ‘h-current’ to the expIF neuron, the effects of an instantaneous 67

subthreshold potassium current, and the effects of changing the leak conductance of the 68

neuron. We find that a well-tuned subthreshold (but not threshold) adaptation, the 69

‘h-current’, and a properly tuned leak conductance can increase the information transfer 70

of a neuron, whereas threshold adaptation can increase its working range. 71

Materials and methods 72

Experiments 73

All analyzed current clamp and simulation data and the code to analyze and simulate 74

them can be found in this repository: https://doi.org/10.34973/4f3k-1s63. The voltage 75

clamp data are part of the dataset of da Silva Lantyer et al. (2018) [13]. 76

Ethics statement 77

Animals used were Pval-cre and SSt-cre mice from 9 to 45 weeks kept with unlimited 78

access to water and food, housed in a 12-hour light/dark cycle. All experimental 79

procedures were performed according to Dutch law and approved by the Ethical 80

Committee for Animal Experimentation of Radboud University (RU DEC) as described 81

before (for further details, see [25,26]). Each mouse was perfused with iced and 82

oxygenated (95%O2/5%CO2) Slicing Medium (composition in mM: 108ChCl, 3KCl, 83

26NaHCO3, 1.25NaH2PO4H2O, 25 Glucose.H2O, 1CaCl2.2H2O, 6MgSO4.7H2O, 3 84

Na-Pyruvaat) under anaesthesia with 1,5ml Isoflurane. 85

Slice electrophysiology 86

The brain was covered in 2% agarose and submerged in a Slicing Medium after which it 87

was sliced in 300 µM thickness using a VF-300 compresstome (Precisionary Instruments 88

LLC) and then incubated for 30 min in 37◦C artificial cerebrospinal fluid (ACSF, 89

October 12, 2023 3/33

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2023. ; https://doi.org/10.1101/2020.11.06.371658doi: bioRxiv preprint 

https://doi.org/10.34973/4f3k-1s63
https://doi.org/10.1101/2020.11.06.371658
http://creativecommons.org/licenses/by-nc/4.0/


composition in mM: 1200NaCL, 35KCL, 13MgSO4.7H2O, 25CaCl2.2H2O, 100 90

Glucose.H2O, 12.5NaH2PO4.H2O, 250NaHCO3), oxygenated (95%O2/5%CO2). The 91

bath was then transferred to room temperature. Slices were allowed to accomodate to 92

room temperature for 30 min and were kept in this bath until use. Slices were placed 93

into the recording chamber under the microscope (Eclipse FN1, Nikon) and perfused 94

continuously at a rate of 1 ml/min with the oxygenated ACSF at room temperature. 95

Patch pipettes for whole-cell recordings were pulled from borosilicate glass capillaries, 96

1.0 mm outer diameter, 0.5mm inner diameter, on a pipette-puller (Sutter Instrument 97

Co. Model P-2000), until an impedance of 8±2 MΩ for the tip was obtained. Pipettes 98

were filled with a solution containing (in mM) 115CsMeSO3, 20CsCl, 10HEPES, 99

2.5MgCl2, 4Na2ATP , 0.4NaGTP , 10Na−phosphocreatine, 0.6EGTA, 5QX − 314 100

(Sigma). The whole cell access was obtained after reaching the gigaohm seal and 101

breaking the membrane. Upon entering the cell and the whole-cell mode, the membrane 102

potential was kept fixed at -70mV, outside stimulation. 103

Input current generation 104

Data acquisition was performed with HEKA EPC9 amplifier controlled via HEKA’s 105

PatchMaster software (version 2.90x.2), and subsequent analysis with MatLab 106

(Mathworks, v.2016b). Three types of experiments were performed: current clamp (CC) 107

step-and-hold, current clamp (CC) frozen noise, and voltage clamp (VC). 108

The current clamp (CC) step-and-hold protocol was performed in every cell and 109

used to distinguish between cell types, according to the firing rate and spike shape 110

(Fig 1). The protocol consisted of clamping the neuron at a baseline current Ibaseline, 111

corresponding to the one required to keep its membrane at -70mV, and providing a 112

500ms long stimulus of fixed current value I = Ibaseline + (40pA ∗ step number), for a 113

total of 10 steps, reaching a maximum current injected of Ibaseline + 400pA. Between 114

each current injection step, a 5.5s recovery window was allowed. 115

Information transfer was measured using the ‘frozen noise’ method introduced by 116

Zeldenrust et al. [15]. To measure information transfer from input to spike train in short 117

periods of time, instead of the long measurements needed for the traditional methods 118

(see Introduction), the noisy input current injected into a neuron in the current clamp 119

setting was generated as the output of an artificial neural network (ANN) that 120

responded to a randomly appearing and disappearing preferred stimulus or ’hidden 121

state’ (Markov process) x: a binary variable that can take the values of 1 (preferred 122

stimulus present, ‘on-state’) and 0 (preferred stimulus absent, ‘off-state’, see Fig 2A). 123

This hidden state is switched on and off according to a Markov process with rates ron 124

and roff. The advantage of using such a binary hidden state stimulus is that there is no 125

need to reconstruct the full input current (which is high-dimensional and therefore 126

requires long recordings), but it is sufficient to reconstruct the binary stimulus, for 127

which less data is needed. The N = 1000 neurons of the ANN fired Poisson spike trains, 128

whose firing rates were modulated by the hidden state stimulus, so that each neuron 129

fired with rate qion when x = 1, and qioff when x = 0. These rates were drawn from a 130

Gaussian distribution with mean µq (see Table 1) and standard deviation σq =
√

1
8µq. 131

Each spike was convolved with an exponential kernel with a unitary surface and a decay 132

time of 5ms. The spike trains from different presynaptic neurons contribute to the 133

output with weight wi = log(
qion
qioff

). In order to choose the parameters of this input 134

current two considerations needed to be made: 135

1. The Markov process had rates ron and roff, which correspond to a switching time 136

constant τinput =
1

ron+roff
: since excitatory neurons do not fire at rates higher 137

than a few Hz, but the inhibitory neurons show a much broader working range, up 138
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Fig 1. Cell Classification with the CC step-and-hold protocol. A, B: We
selected neurons to record from the mouse somatosensory cortex (barrel cortex), in L2/3.
Visually, the shape and size of soma were a good indicator of the cell type: smaller and
roundish shapes would point towards fast-spiking neurons, while slightly larger and
triangular shapes would point to regular spiking (putative excitatory) neurons. C:
Example responses of an excitatory cell to a constant injected current. D: Example
responses of an inhibitory cell to a constant injected current. E: Cell classification using
agglomerative clustering based on the maximum firing frequency and spike width. Cells
were classified as inhibitory (blue) when they had a small spike half-width combined
with a high maximum firing rate and as excitatory (red) with a large spike half-width
and low maximum firing rate. In pink the cell(s) where the agglomerative clustering and
the initial classification disagreed (see Materials & Methods). F: Maximum firing
frequency distribution for incremental current injection amplitudes for inhibitory (blue)
and excitatory (red) neurons. G: Same as F, but for the latency of the first spike. H:
After-hyperpolarization distribution. I: Spike half-width distribution. For threshold
behaviour in the current-clamp step-and-hold protocol, see Supplementary Fig. S1.
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to 100 Hz (Fig 1), the information transfer could not be measured in the two 139

types of neurons with the same switching speed of the hidden state τinput, but the 140

switching speed of the hidden state needed to be adapted to the working range of 141

the neuron type. Fortunately, the method allows for keeping the information 142

about the hidden state in the input constant while changing τinput, by adjusting 143

the mean firing rate of the ANN µq (see Fig 2B). So the information transfer in 144

the two neuron types could still be compared by choosing a time constant τinput of 145

50 or 250 ms for inhibitory/fast spiking or excitatory/regular spiking neurons 146

respectively, with matching values of µq of 0.5 Hz or 0.1 Hz respectively (see Table 147

1, so that the mutual information between the input current and the hidden state 148

(MII) was about 0.3 bit (Fig 2E). This target mutual information between the 149

input current and the hidden state was chosen so that the input current was 150

informative about the hidden state, but not too informative. 151

2. The input generated by the ANN responding to the Markov Process (IMarkov(t)) 152

is dimensionless. Therefore, this dimensionless theoretical “input current” needed 153

to be scaled to Ampère so that it could be injected into the neuron in a current 154

clamp setup. Therefore, the injected current was defined as 155

Iinjected = Ihold + IscaleIMarkov(t). Here, the neuron was clamped a baseline 156

current Ibaseline, corresponding to the current required to keep its membrane at 157

-70mV, and Iscale was set at 2100 pA for excitatory and 700 pA for inhibitory cells 158

(see Table 1). 159

The scripts for generating this current can be found in this GitHub repository: 160

https://github.com/DepartmentofNeurophysiology/Analysis-tools-for- 161

electrophysiological-somatosensory-cortex-databank. 162

Table 1. Input parameters for the ex-vivo experiments.

Parameter Excitatory cells Inhibitory cells

Number of artificial neurons N 1000 1000
Hidden state time constant τinput 250 ms (ron = 1.3 Hz, ron = 2.7 Hz) 50 ms (ron = 6.7 Hz, ron = 13.3 Hz)
Average firing rate artificial neurons µq 0.1 Hz 0.5 Hz
Baseline input current Ibaseline (set so the cell was at -70 mV, see Fig 2) (set so the cell was at -70 mV, see Fig 2)
Amplitude input current Iscale 2100 pA 700 pA
Analysis window size 100 s 20 s
Number of measured cells 144 72 (+ 9 control)
Number of trials 220 78 (+11 control)

Analysis 163

Cell classification 164

Cells were classified using the following procedure: before the frozen noise injection, for 165

each cell, the response to a current-clamp step (CC-step) protocol was recorded. From 166

these recordings, the maximum firing rate, the average spike-halfwidth, and the average 167

after hyperpolarization (AHP) amplitude were extracted (Fig 1). On-site, the cells were 168

classified by the experimenter based on the firing rate and the spike width. Based on 169

this initial classification the cell received the frozen noise input current with either 170

τinput = 250 ms (excitatory neurons) or τinput = 50 ms (inhibitory neurons). Offline, 171

the initial classification was verified using an agglomerative clustering protocol 172

(MATLAB ‘clusterdata’) to cluster the data into 2 groups (separated following Ward’s 173

method(Ward, 1963)), according to the maximum firing rate and the average spike-half 174
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Fig 2. Input for the CC frozen noise protocol. A: Overview of the frozen noise
method for input generation and measurement of mutual information (copied with
permission from [15]) B: Mutual information between the input current and the hidden
state, for different values of the switching speed of the hidden state (τinput) and the
average firing rate of neurons in the ANN (average over 10 trials). The white squares
denote the used values for the input for the inhibitory (top left) and excitatory (bottom
right) neurons. C: Average (over the trial) input current and D: membrane potential for
all trials. Green data points/lines denote the control experiments where the inhibitory
neurons received the input current that was otherwise given to the excitatory neurons.
E: Mutual information between the hidden state and the input current, for all trials.
Note that because frozen noise was used, every frozen noise trial was actually the same.
Therefore, there are not many different realizations and hence not many different MI
values. F: Example injected frozen noise current for an excitatory neuron. The grey
shaded area corresponds to times when the hidden state was 1. G: Example injected
frozen noise current for an inhibitory neuron. H: Example resulting membrane potential
of an excitatory neuron. I: Example resulting membrane potential of an inhibitory
neuron.
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width (normalized to zero mean and unit standard deviation) reached during the 175

CC-Step protocol (Fig 1E). There was a single cell where the initial classification and 176

the post-hoc classification were in disagreement (Fig 1E, pink star). We decided to keep 177

this cell in the original (inhibitory) group due to its position between the two clusters. 178

Calculation of mutual information 179

The mutual information between the hidden state and the input (MII) or a spike train 180

(MIspike train) was estimated with the help of the hidden state x (see Input current 181

generation and Fig 1A). The method was explained in detail in Zeldenrust et al. 182

(2017) [15] and followed derivations from Denève (2008) [21] and Lochmann and Denève 183

(2011) [27]). Code for how to calculate the mutual information can be found in the 184

following repository: https://github.com/DepartmentofNeurophysiology/Analysis-tools- 185

for-electrophysiological-somatosensory-cortex-databank as well as with the data. 186

In short, the mutual information was calculated using the following steps. The 187

estimated log-odds ratio L̂ that the hidden state is 1, given the history of the input 188

until now I(t) can be estimated by integrating the following differential equation 189

(see [15,21] for the derivation): 190

dL̂

dt
= ron(1 + e−L̂)− roff(1 + eL̂) + I(t)− θ, (1)

where θ =
∑N

i=1 q
i
on − qioff is the constant offset of the input, which is chosen to equal to 191

0 by generating the input as explained before (drawing qion and qioff from a Gaussian 192

distribution). Using the estimate of the log-odds ratio from equation (1) over time, we 193

can now estimate the conditional entropy by averaging over time: 194

Ĥxy = ⟨x log2
(

1

1 + e−L̂

)
+ (1− x) log2

(
1− 1

1 + e−L̂

)
⟩time. (2)

Because the hidden state follows a memory-less Markov process, its entropy at every 195

moment in time equals 196

Hxx = P1 log2(P1)− (1− P1) log2(1− P1). (3)

Here, P1 = ron
ron+roff

is the prior probability that the hidden state equals 1. With the 197

canonical MI = Hxx −Hxy , the mutual information between the input and the hidden 198

state can now be estimated. Similarly, the mutual information between a spike train 199

and the hidden state can be estimated by integrating equation 1 where the input I(t) is 200

now replaced by the spike train input given by 201

Ispike train(t) = w · ρ(t), (4)

where ρ(t) is the spike train of the neuron and, and its weight w is given by 202

w = log2
q̂on
q̂off

= log2

(
# spikes while x = 1

# spikes while x = 0
· total duration x = 0

total duration x = 1

)
. (5)

Parameter θ =
∑N

i=1 qon − qoff is calculated similarly based on the observed qon and qoff 203

in the spike train. 204

Note that even though theoretically MI ≤ 0, due to our approximation it can 205

happen that our estimate of Hxy > Hxx, due to the integration method, and hence that 206

we find a small negative value of the MI between a spike train and the hidden state. 207

These are often cells that fire either at very low rates or have firing patterns that for 208
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other reasons deviate from a Poisson-like response (i.e. cells that stop firing during the 209

experiment). However, to maintain a complete overview of the data, we decided not to 210

discard those that have a low firing rate. However, we did exclude files with negative 211

values in the input current (where the wrong input current was saved) and files with a 212

vanishing firing rate. 213

In this manuscript, we mostly report on the unitless ‘Fraction of Information’ (FI) 214

in the output spike train: 215

FI =
MIspike train

MIinput
. (6)

The FI quantifies how much information about the hidden state is transferred from the 216

input current to the spike train, and thus quantifies which fraction of the information is 217

kept during the spike-generating process. 218

Threshold detection 219

The membrane potential threshold of each recorded spike in the Current Clamp (CC) 220

experiments was determined from the experimentally recorded membrane potential 221

using the method explained in [24]: in a window from 1 to 0.25 ms before each spike 222

maximum, the earliest time in the window at which either the first derivative exceeded 223

18 mV/ms or the second derivative exceeded 140 mV/ms2 was designated as the 224

threshold-time, and the threshold value was determined as the corresponding membrane 225

potential of that time point. 226

ROC curves 227

A Receiver Operator Characteristic (ROC) curve shows how well a system can be 228

classified into two binary classes by comparing the number of correctly detected 229

positives or ‘hits’ to the number of false positives or ‘false alarms’ depending on a 230

threshold parameter. Here, we assumed every trial had its own threshold, and we 231

defined a ‘hit’ as a period during which the hidden state was 1, in which at least 1 232

action potential was fired, and a ‘miss’ as a period during which the hidden state was 1, 233

in which no action potentials were fired. Similarly, we defined a ‘false alarm’ as a period 234

during which the hidden state was 0, in which at least 1 action potential was fired, and 235

a ‘correct reject’ as a period during which the hidden state was 0, in which no action 236

potentials were fired. So each period in which the hidden state was 1, was either defined 237

as a ‘hit’ or a ‘miss’, and each period in which the hidden state was 0, was either 238

defined as a ‘false alarm’ or a ‘correct reject’. The total number of hits was divided by 239

the total number of periods during which the hidden state was 1, which resulted in the 240

fraction of hits 0 ≤ fh ≤ 1. Similarly, the fraction of ‘misses’, ‘false alarms’, and ‘correct 241

rejects’ were defined as the fraction of periods during which the hidden state was 1 but 242

no spike was fired, the fraction of periods during which the hidden state was 0, but a 243

spike was fired and the fraction of periods during which the hidden state was 0, and no 244

spike was fired, respectively. We calculated the fractions of hits, misses, false alarms, 245

and correct rejects for each spike train, as well as for a corresponding Poisson spike 246

train of the same length and with the same number of spikes. Note that for these 247

Poisson spike trains, the hit fraction is actually below the hit fraction = false alarm 248

fraction line, due to the nature of the hidden state: because the hidden state is more 249

often 0 than 1 (P1 < 0.5), a random spike will have a higher chance of occurring during 250

a period where the hidden state equals 0. Therefore, the false alarm fraction will be 251

higher than the hit fraction for Poisson spike trains. 252
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Fitting of exponential functions 253

In the results, we fit saturating functions to how FI (eq (6)) depends on different input 254

variables x ∈ {Iscale, r, rn}: 255

FI(x) = FImax

(
2

1 + e−λx(x−xoffset)
− 1

)
, (7)

where r is the firing rate of an output spike train, and rn = r · τinput is the unitless 256

firing rate normalized by the switching speed of the hidden state τinput. We fit 257

parameters FImax and λ, and in the case of x = Iscale also Iscale, offset (in the case of 258

x ∈ {r, rn} the offset value is set equal to 0). To fit these curves, we use Matlab’s ‘fit’ 259

function, which automatically calculates 95 % confidence intervals. When the data does 260

not only saturate, but decreases again after the maximum, we include only data up to 261

the maximum. 262

Calculation of membrane capacitance and conductance using dynamic IV 263

curves 264

We used the derivation of Badel et al. (2008) [28] to calculate the membrane capacitance 265

(Cm) and conductance (gm) for each analysis window. In short, we calculated dVm

dt from 266

the recorded traces, and calculated the variance of
Iinj
C∗

m
− dVm

dt between the values of 267

−76 ≤ Vm ≤ −74 mV for different values of C∗
m. The membrane capacitance Cm was 268

determined as the value of C∗
m for which the variance was minimized : 269

Cm = argmax
C∗

m

Var(
Iinj
C∗

m

− dVm

dt
)

Next, we defined the membrane current as 270

Im = Iinj − Cm
dVm

dt

and binned the Im − Vm curve in bins of 5 mV and calculated the average for each bin. 271

A linear fit was made for subthreshold voltage values (−200 ≤ Vm ≤ −60 mV), and the 272

slope was defined as the membrane conductance gm. We excluded files where this fit 273

did not succeed (the value of gm was found to be negative). 274

Spike-triggered average 275

The whitened and regularized spike-triggered average (STA) was calculated as 276

STA(t) = (XTXλµXTXI) \ (XT ρ) (8)

where X is a stimulus-lag matrix, where each row is the stimulus vector with a different 277

lag (see [29–32]), XTX is the correlation matrix and I is the identity matrix. Operator 278

‘\’ denotes multiplication with the inverse, and T denotes a transpose. Parameter λ is a 279

regularization (i.e. smoothing) parameter which was set to 10 and µ(X
TX) is the mean 280

of the diagonal of the correlation matrix. Finally, ρ denotes the spike train. The 281

resulting STA was normalized with the L2 norm. 282

Following the derivation of Slee et al. (2005) [33], the inner product of all 283

spike-triggering stimuli with the STA was calculated for each trial (P(stimulus—spike), 284

the posterior distribution), as well as the inner product of the same number of 285

random-triggered stimuli (P (stimulus), the prior distribution. With the 286

random-triggered stimuli, the prior distribution of the input was calculated, and 287
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compared to the distribution of spike-triggering stimuli (the posterior distribution). 288

With Bayes’ law, the shape of the threshold function could be calculated: 289

P (spike|stimulus) ∼ P (stimulus|spike)/P (stimulus) (9)

However, if the distributions are not smooth due to limited sampling, the threshold 290

function cannot be calculated. Therefore, the difference in mean between the prior and 291

posterior was calculated for each neuron, and the distribution of means over all neurons 292

was shown. 293

To assess the variability between the STAs calculated for each cell, we calculated the 294

inner product between all pairs of STAs of inhibitory cells and between all pairs of STAs 295

of excitatory cells. Because excitatory cells fire less, the STAs are based on a lower 296

number of spikes for excitatory cells than for inhibitory cells. This in itself could 297

introduce a higher variability of the STAs. To control for this, we also calculated the 298

STAs for the inhibitory cells based on a comparable number of spikes as for the 299

excitatory cells: we matched each inhibitory trial to an excitatory trial and reduced the 300

number of spikes by only including the first spikes until they had the same amount of 301

spike, and discarding the rest. Subsequently, we calculated the STA based on this 302

reduced number of spikes, normalized them, calculated the posterior and prior for these, 303

and calculated the inner product between all pairs of these STAs. 304

Simulations 305

We performed two types of simulations: an optimal observer for this experiment, the 306

optimal ‘Bayesian neuron’ [21], and a more biologically realistic exponential 307

integrate-and-fire (expIF) neuron with subthreshold and/or threshold 308

adaptation [22–24]. 309

Optimal observer: Bayesian Neuron 310

Next to the possibility of information estimation in short time windows, the in vitro 311

information transfer method [15] has another advantage: the availability of an optimal 312

observer model. This ‘Bayesian neuron’ [21] is a spiking neuron model that optimally 313

integrates evidence about the hidden state from the ANN described above. It is optimal 314

given an efficient coding or redundancy reduction assumption: it only generates new 315

spikes if those spikes transfer new information about the hidden state, that cannot be 316

inferred from the past spikes in its spike train. In practice, the neuron performs a leaky 317

integration of the input, in order to calculate the log-odds ratio L for the hidden state 318

being 1 (NB Note the similarity with equation 1): 319

dL

dt
= ron(1 + e−L)− roff(1 + eL) + I(t)− θ, (10)

where ron and roff are the switching speeds of the hidden state, and 320

θ =
∑

( i = 1)Nqion − qioff is the constant offset of the input generated by the ANN as 321

before, which is chosen to be equal to 0 in this paper. The neuron compares this 322

log-odds ratio from the input, L, with the log-odds ratio of the hidden state being 1 323

inferred from its own spike train, G: 324

dG

dt
= ron(1 + e−G)− roff(1 + eG). (11)

Each time the log-odds ratio based on the input (L) exceeds the log-odds ratio based on 325

the output spike train (G) by an amount η
2 , a spike is fired: 326

if L > G+
η

2
:

{
a spike is fired

G → G+ η
. (12)
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For the optimal observer, the parameters of the Bayesian neuron (ron, roff, θ) are the 327

same as the ones chosen for the hidden state and the ANN for generating the input. As 328

the model is made as an optimal observer for this input, the input does not have to be 329

scaled (Ibaseline = 0; Iscale = 1), making η the only free parameter of the Bayesian 330

neuron model. This precision parameter η describes the distance between the threshold 331

and the reset of the Bayesian neuron, or in other words, the precision with which G 332

tracks L. This parameter is varied in order to obtain the different firing rates in the 333

Results section (from 0.25 to 6 in steps of 0.25). Note that this neuron model has a 334

form of threshold adaptation: if it did not spike for a long time, G decays to its prior 335

value Gprior = log ron
roff

. With each spike, G is increased by η, and more input (larger L) 336

is needed to fire a spike, thereby reducing its firing rate. 337

The simulated neurons received the same frozen noise input as used in the 338

experiments (see Input current generation), but unscaled (Ibaseline = 0; Iscale = 1). The 339

simulations were performed in Matlab, using a standard forward Euler with a time step 340

of 0.05 ms. 341

ExpIF neuron with (sub)threshold adaptation and non-linear I-V curve 342

In order to obtain more biologically interpretable results, and to disentangle the 343

subthreshold and threshold effects of adaptation, we used the expIF neuron with 344

subthreshold [22,23] and/or threshold [24] adaptation. The equations are given by 345

Cm
dVm

dt
= (gL(EL − Vm) + gL∆T e

(V m−θ)
∆T + I(t)− w + I{h,K}) (13)

τw
dw

dt
= a(Vm − EL)− w (14)

τθ
dθ

dt
= θ∞ − θ, (15)

(16)

where w describes the subthreshold adaptation and the threshold θ decays to a steady 346

state 347

θ∞ = p ∗ (Vm − Vi) + Vt +Ka ∗ log(1 + e
(Vm−Vi)

ki ). (17)

A spike is defined when Vm passes a cutoff value Vcutoff and is reset to a reset potential 348

Vr = Vt + 5∆T : 349

if Vm > Vcutoff :


a spike is fired

Vm → Vr

w → w + b

. (18)

Moreover, we added the following instantaneous currents to the right-hand side of the 350

membrane potential equation (13) in order to simulate non-linearities in the I-V curve: 351

Ih(Vm) = ghk∞,h(Vm)(Vh − Vm) (19)

k∞,h(Vm) =
1

1 + e
V h
half

−Vm

kh

(20)

and 352

IK = gKk∞,K(Vm)(VK − Vm) (21)

k∞,K(Vm) =
1

1 + e
V K
half

−Vm

kK

(22)
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To assess the effect of adaptation, we simulated 4 parameter regimes: 1) no 353

adaptation, 2) subthreshold adaptation only, 3) threshold adaptation only, and 4) 354

combined adaptation (both subthreshold and threshold adaptation), with the 355

parameters given in Table 2. To assess the effect of a non-linear I-V curve, we simulated 356

3 parameter regimes: 1) we added an instantaneous hyperpolarization-activated 357

depolarizing current, similar to an h-type current: ‘vary gh’, 2) we added an 358

instantaneous depolarization-activated hyperpolarizing current, similar to a 359

subthreshold potassium current: ‘vary gK ’, 3) and we varied the leak-conductance: 360

‘vary gL’, with the following parameters given in Table 3. Note that for large values of 361

Iscale the simulations diverge: the membrane potential diverges and no further spikes 362

are fired. These simulations are not included in the analyses. 363

Table 2. Parameters for the adaptive expIF model with (sub)threshold adaptation

regime → no subthreshold threshold combined
parameter ↓ adaptation adaptation adaptation adaptation

Cm 50 pF 50 pF 50 pF 50 pF
EL = Vr -70 mV -70 mV -70 mV -70 mV
gL 10 nS 10 nS 10 nS 10 nS
∆T 1 mV 1 mV 1 mV 1 mV
τw n/a varied n/a varied
a 0 nS 4 nS 0 nS 4 nS
b 0 nA 0.0805 nA 0 nA 0.0805 nA
τθ n/a n/a varied varied
p 0 0 0 0
Vi -67 mV -67 mV -67 mV -67 mV
Vt -63 mV -63 mV -63 mV -63 mV
Ka 0 mV 0 mV 5 mV 5 mV
ki 5 mV 5 mV 5 mV 5 mV
gh 0 nS 0 nS 0 nS 0 nS
gK 0 nS 0 nS 0 nS 0 nS
Ibaseline 0 nA 0 nA 0 nA 0 nA
Iscale varied varied varied varied

Parameters for equations 13 - 18.

The simulated neurons received the same frozen noise input as used in the 364

experiments (see Input current generation), but with a different scaling (see Tables 2 365

and 3). Simulations were performed in Brian 2 [34], using a standard forward Euler 366

with a time step of 0.025 ms. 367

Results 368

The goal of this research was to explore the relationship between intrinsic excitability 369

and information transfer. To that end, we first performed ‘classical’ step-and-hold 370

current clamp experiments in the mouse barrel cortex. Next, we used the ‘frozen noise’ 371

protocol [15] to measure information transfer together with adaptive properties in these 372

two cell types. After that, we turn to computational modelling to entangle how different 373

biophysical mechanisms influence information processing in model cells. Finally, we 374

return to the experimental recordings to verify the results obtained from computational 375

modelling. 376
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Table 3. Parameters for the expIF model with non-linear I-V curve

regime → vary gh vary gK vary gL
parameter ↓
Cm 50 pF 50 pF 50 pF
EL = Vr -70 mV -70 mV -70 mV
gL 10 nS 10 nS varied
∆T 1 mV 1 mV 1 mV
τw n/a n/a n/a
τθ n/a n/a n/a
gh varied 0 nS 0 nS
V h
half -82 mV n/a n/a nS

kh -9 mV n/a n/a
Vh -30 mV n/a n/a
gK 0 nS varied 0 nS
V K
half -60 mV n/a n/a nS

kK 9 mV n/a n/a
VK -70 mV n/a n/a
Ibaseline 0 nA 0 nA 0 nA
Iscale varied varied varied

Parameters for equations 13 - 21.

Information transfer in inhibitory and excitatory neurons 377

Excitatory neurons fire at low rates 378

Whole-cell recordings were made from pyramidal cells and interneurons in layer 2/3 379

(L2/3) of mouse barrel cortical slices [13]. Cells were classified as either ‘excitatory’ or 380

‘inhibitory’ based on their electrophysiological responses to a standard current-step 381

protocol (Fig 1, see Materials & Methods). In response to depolarizing steps, excitatory 382

neurons show strong spike-frequency adaptation, limiting their maximum firing rate 383

(Fig 1 and Supplementary Table S1, see also [13]), whereas inhibitory neurons fire at 384

much higher rates. 385

To measure the information transfer from input current to output spike train, 386

traditionally long (∼ 1 hour) experiments were needed to obtain a single mutual 387

information estimate [16–20]. To estimate the information transfer in a shorter time 388

period we used a recently developed method [15] that uses the output of an artificial 389

neural network (ANN) to generate the frozen noise current input used in our ex-vivo 390

experiments (Fig 2A, see Materials & Methods). Such a frozen noise input constitutes 391

an optimum between giving naturalistic stimuli (as far as possible in an ex-vivo setup, 392

given that we do not have access to the spatiotemporal input distribution a cell would 393

normally receive), being able to assess information transfer, and being able to assess 394

membrane properties (which are typically only stably accessible in slice experiments). 395

The ANN responds to a randomly appearing and disappearing preferred stimulus or 396

’hidden state’ x (Markov process). This hidden binary state can either be ‘on’ (i.e. 397

x = 1) or ‘off’ (i.e. x = 0), and switches randomly between these states with time 398

constant τinput. The neurons in the ANN respond to this hidden state with 399

Poisson-generated spike trains, of which the firing rate depends on the hidden state (i.e. 400

each neuron i responds with a rate of qion when x = 1 , and a rate of qioff when x = 0). 401

The mutual information between the input current and the hidden state depends on 402

three properties of the ANN: the number of neurons (N), the average firing rate of the 403

neurons (µq), and the time constant of the hidden state (τinput). We can now compare 404

the mutual information between the input current and the hidden state with the mutual 405
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information between the output spike train and the hidden state. This has the 406

advantage that because the hidden state is low-dimensional (it has only two states), the 407

mutual information can be estimated in a short time-window. 408

Because of the differences in maximum firing rate between the excitatory and 409

inhibitory cells, it was not possible to use the exact same frozen noise input current for 410

the two cell types: τinput had to be large for the excitatory neurons (neurons firing at a 411

low rate cannot transfer information about a fast-switching stimulus, so the hidden 412

state had to switch slowly), but this is not the case for the inhibitory neurons (which 413

fire at high rates, so the hidden state can switch fast, i.e. a small value for τinput should 414

be used). However, the information in the input could be kept constant by adapting the 415

firing rates of the neurons in the ANN µq (Fig 2, see also Materials & Methods). This 416

resulted in the parameters in Table 1 for the frozen noise experiments to generate the 417

input currents shown in Fig 2. 418

Inhibitory neurons show broadband information transfer; Excitatory 419

neurons transfer less information and at low frequencies 420

By using the ‘frozen noise protocol’ as described before (see Materials & Methods 421

and [15]), the information transfer from the hidden state to the output spike train of a 422

single neuron can be estimated in a short time window. In order to obtain the 423

information transfer from the input current to the output spike train, we define the 424

unitless fraction of transferred information (FI) as the mutual information between the 425

spike train and the hidden state (MIspike train divided by the mutual information 426

between the input current and the hidden state (MIinput, see eq (6). The FI quantifies 427

how much information about the hidden state is transferred from the input current to 428

the output spike train, and thus quantifies which fraction of the information is kept 429

during the spike-generating process. In Fig 3, we show the FI as a function of the firing 430

rate r, for inhibitory (blue) and excitatory (red) neurons, and compare it to the FI 431

obtained from the ‘Bayesian Neuron’ (BN) model [21] for which parameters (see 432

Materials & Methods) were optimized for the input generated for the excitatory neurons 433

(pink) or inhibitory neurons (turquoise). Excitatory neurons transfer more information 434

at low firing rates (<∼8 Hz) compared to inhibitory neurons. This is due to our choice 435

of slower switching speed (i.e. large τinput) of the hidden state for excitatory neurons: a 436

fast-switching hidden state cannot be properly tracked by neurons firing at a low firing 437

rate (see also [15]). To compare inhibitory and excitatory neurons, we normalized the 438

firing rate of each neuron relative to the switching speed of the hidden state: 439

rn = r · τinput (unitless). The FI was plotted as a function of this normalized firing rate 440

in Fig 3B. The FI increases up to a maximal value at about rn = 1.5, after which the 441

FI appears to decrease again. Apparently, at very high firing rates, the transferred 442

information goes down due to too many spikes during x = 0. We fitted a saturating 443

function (see Materials & Methods) to the measured values, where FImax is the 444

saturation value and λrn is the rate with which this saturation value is reached (both 445

unitless). We fitted the data up to rn = 1.5, because we do not have a mathematical 446

description for the type of curve that saturates and then dips again (but note that all 447

panels and figures contain all data points, including those for rn > 1.5). In Fig 3E and 448

F, the fit values and their 95% confidence intervals are shown. Inhibitory experimental 449

and BN values saturate around similar values (FImax = 0.65 (0.64 - 0.66) and FImax = 450

0.64 (0.63 - 0.65) respectively), with experiments having a slightly lower rate (λrn = 5.8 451

(5.6 - 6.0) and 7.7 (7.3 - 8.0) respectively). Excitatory neurons saturate at lower 452

experimental values (FImax = 0.51 (0.48 - 0.54)) and slightly lower BN values (FImax = 453

0.58 (0.54 - 0.63), and the saturation rates are also lower (λrn = 4.5 (4.0 - 4.9) and λrn 454

= 6.1 (5.0 - 7.2) respectively). This shows that in the case of the excitatory neurons, the 455

experimentally recorded spike trains transmit less information than the spike trains of 456
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the BN, whereas in the inhibitory case, the model and experimental spike trains perform 457

similarly. This means that inhibitory neurons perform close to optimal for representing 458

the hidden state, whereas excitatory neurons do not. As a control, we presented the 459

input for the excitatory neurons also to inhibitory neurons (Fig 3, green, FImax = 0.63 460

(0.52 - 0.75), λrn = 2.6 (1.6 - 3.7)); these inhibitory neurons fired at a higher normalized 461

rate (Fig 3 C) and performed better than the excitatory neurons. In conclusion, 462

putative interneurons transfer more information than putative excitatory neurons. 463

Inhibitory neurons perform well as classifiers 464

The setup with the hidden state makes it possible to show ’receiver-operator curves’ 465

(ROCs): we define a ’hit’ as a period during which the hidden state was 1 (up-state), in 466

which at least 1 action potential was fired, and a ’miss’ as an up-state in which no 467

action potentials were fired. Similarly, we define a ’false alarm’ as a period during which 468

the hidden state was 0 (down-state), in which at least 1 action potential was fired, and 469

a ’correct reject’ as a down state in which no action potentials were fired. We then 470

define the ’hit fraction’ as the number of hits divided by the total number of up-states, 471

and similarly the false alarm fraction for the number of false alarms divided by the total 472

number of down-states. In Fig 4A the results are shown, for the same five conditions as 473

discussed above. For each experiment, a control experiment was simulated by generating 474

a Poisson spike train with the same number of spikes as the original experiment. Note 475

that this ’control’ is below the line hit fraction = false alarm fraction because the 476

hidden state is more often 0 than 1 (P1 = 1
3 ). Since the hidden state is longer in the ’0’ 477

state, the probability that a random spike occurs when the hidden state equals 0 is 478

higher, hence the probability of a false alarm is higher than the probability of a hit. 479

Inhibitory neurons perform comparably to the BN, as shown in Fig 4, whereas the 480

excitatory neurons perform less optimally than their model counterparts. We performed 481

control experiments where input currents generated for excitatory neurons were injected 482

into inhibitory neurons, (green triangles in Fig 3 and 4). The results suggest that 483

interneurons perform comparably to (on the same curve as) excitatory neurons, but 484

with a lower discrimination threshold (i.e. with a higher firing rate), which is in 485

agreement with our previous observation that inhibitory neurons responded with a 486

higher firing rate than excitatory neurons. Note that inhibitory neurons fire slightly less 487

spikes during the up-states (Fig 4B) and the normalized firing rate in the up-state is 488

somewhat lower for the inhibitory neurons (Fig 4F ). Since the excitatory neurons fire 489

more spikes during the down states (Fig 4C and 4G), this corresponds to a lower 490

efficiency for excitatory neurons and a worse performance on the binary classification 491

task (Fig 4A). Indeed, the number of spikes per down state (Fig 4C) and normalized 492

firing rate in the down state (Fig 4G) differs between inhibitory and excitatory neurons 493

(Supplementary Tables S2 and S3). Note that most ’incorrect’ spikes are actually fired 494

shortly after a down switch (Fig 4H-K), so they might be ’correct’ spikes that were a 495

few milliseconds too late. In conclusion, putative interneurons are better binary 496

classifiers than putative excitatory neurons. 497

Dynamic threshold of both neuron types 498

To assess how intrinsic properties of the putative interneurons and pyramidal cells 499

correlate with their information transfer capabilities in this setup, we next assess the 500

threshold adaptation of these neuron types. In Fig 5, we show the threshold behaviour 501

of the inhibitory and excitatory neurons. The membrane potential threshold of each 502

spike was determined based on the method of [24] (see Materials & Methods). We show 503

the distribution of the membrane potential as a function of the inter-spike interval (ISI, 504

Fig 5A and E). For both inhibitory and excitatory neurons, the membrane potential 505
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Fig 3. Inhibitory neurons transfer more information. A: Fraction of information
kept during the spike generating process (FI, see eq. (6) as a function of the firing rate,
for inhibitory neurons (blue) and excitatory neurons (red). In green, the control
experiments where the inhibitory neurons received the input current that was normally
given to the excitatory neurons (τinput = 250 ms). In turquoise and pink, the
simulations with the Bayesian Neuron (Materials & Methods, see Table 1 for parameter
values). B: Fraction of information kept during the spike generating process, as a
function of the normalized firing rate (normalized by the switching speed of the hidden
state: rn = r · τinput, see Table 1). The solid lines denote fits of the data up to a
normalized firing frequency of rn = 1.5 (eq. (7), Materials and Methods).
Colors/markers the same as in A. C: and D: Normalized firing frequency and FI
distribution of the spike trains in all conditions. E: Zoom of B. F: and G: Fit values and
their 95% confidence intervals (error bars) for parameters FImax (F) and λrn (G), see
eq. (7). Data from 144 excitatory neurons (220 trials), 72 inhibitory neurons (78 trials)
and 9 control inhibitory neurons (11 trials). NB Note that even though theoretically
MI ≥ 0, due to our approximation, our estimate of MI can take small negative values
(see Materials & Methods).
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Fig 4. Binary classification. A) Receiver Operator Curve (ROC), where the hit rate
was defined as the fraction of up-states, in which at least 1 action potential was fired.
Similarly, the false alarm rate was defined as the fraction of down-states, in which at
least 1 action potential was fired. In black the results for Poisson spike trains with firing
rates matched to those of the experimental/simulation conditions are shown. B)
Distribution of the number of spikes per period where the hidden state was 1 (up state),
for inhibitory neurons (blue) and excitatory neurons (red). C) Same as B), but for
periods where the hidden state was 0 (down state). D) Firing rate r distribution in the
up-state. E) Firing rate r distribution in the down-state. F) Normalized firing rate rn
distribution in the up-state G) Normalized firing rate rn distribution in the down-state.
H) Delay (in ms) of each correct spike since the state switches from down to up. I)
Delay (in ms) of each incorrect spike since the state switches from up to down. J)
Normalized delay (delay/τ , unitless) of each correct spike since the state switches from
down to up. K) Normalized delay of each incorrect spike since the state switch from up
to down. The results of hypotheses test for A-F are in Supplementary Table S2 and S3.
Data from 144 excitatory neurons (220 trials), 72 inhibitory neurons (78 trials), and 9
control inhibitory neurons (11 trials).

October 12, 2023 18/33

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2023. ; https://doi.org/10.1101/2020.11.06.371658doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.06.371658
http://creativecommons.org/licenses/by-nc/4.0/


Fig 5. Dynamic threshold. A-C) Inhibitory neurons. D-F) Excitatory Neurons. A)
Distribution of membrane potential threshold values (see Materials & Methods) for each
inter-spike interval (ISI); normalized per ISI. B) Average spike shape (shaded region
denotes standard deviation). Vertical lines denote the windows in C. C) Heatmap and
regression for the relation between the threshold and the average membrane potential in
the given window. D-F) Same as in A-C, but for excitatory neurons. This is all in the
Frozen Noise protocol, for threshold behaviour in the current-clamp step-and-hold
protocol, see Supplementary Fig. S1.

threshold goes up with short ISIs, as expected, and for long ISIs the threshold is low. 506

This effect has a long time scale (at least several tens of milliseconds), longer than 507

expected based on the relative refractory period alone (typically less than ten 508

milliseconds). The thresholds of excitatory neurons are almost 10 mV higher than those 509

of inhibitory neurons (Fig 5A,E, Supplementary Fig 1A-C). Next to the ISI, the 510

threshold also depends on the history of the membrane potential (Fig 5C,F): we 511

calculated the regression between the action potential threshold and the average 512

membrane potential in different windows preceding the spike. There is a strong 513

correlation between the threshold and the membrane potential immediately preceding 514

the spike for both neuron types, which reduces gradually with time before the spike. 515

However, for both neuron types, some relation between the membrane potential several 516

tens of milliseconds before the spike and the threshold is still visible. The current clamp 517

step protocol (Supplementary Fig 1) confirms the overall higher thresholds 518

(Supplementary Fig 1A,B) and strong spike-frequency adaptation (Supplementary Fig 519

1D) for excitatory neurons. The threshold adaptation rate however, shows significant 520

differences between fast spiking and regular spiking neurons at current injection 521

intensities ranging from +240 to +320pA, while they do not show significant changes at 522

lower or higher intensities, possibly due to low firing rates or reaching a steady state 523

firing rate. (Supplementary Fig 1C, Table S1). 524

So in conclusion, both inhibitory and excitatory neurons show a dynamic threshold 525

behaviour, with inhibitory neurons having much lower thresholds, so they can fire at 526

high rates, whereas the dynamic threshold of excitatory neurons promotes low-frequency 527

firing and shows stronger adaptation. 528

Information transfer in simulated neuron models 529

In the experimental data, we saw that both fast-spiking interneurons and regular 530

spiking excitatory neurons transfer a significant amount of information about the 531
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hidden state, not much less than the optimal Bayesian neuron, as they adapt their spike 532

threshold to the dynamics of the stimulus. The goal of this research was to explore the 533

relationship between intrinsic excitability and information transfer. The Bayesian 534

neuron that is optimal for this task has two properties that distinguish it from a 535

standard integrate-and-fire model: 1) spike-frequency adaptation and 2) a non-linear 536

I-V curve. To untangle how these mechanisms influence information transfer, we turn to 537

computational modelling. We use an exponential integrate-and-fire (expIF) model and 538

adapt both its adaptation and the shape of the IV-curve, to explore how these affect 539

information transfer. 540

Information transfer in neuron models with (sub)threshold adaptation 541

In the previous section, we saw that both inhibitory and excitatory neurons show a 542

dynamic threshold behaviour, suggesting that both cell types have in theory the 543

adaptation mechanisms that can influence information transfer, as is also present in the 544

Bayesian Neuron. In biophysical models, spike-frequency adaptation can be 545

implemented in different ways [11]. Particularly, in the expIF model, it has been 546

implemented as either a subthreshold process [22,23] or as an adaptation of the spike 547

threshold [24]. We research the effects of these two types of adaptation on the 548

information transfer in the aforementioned mutual information protocol. 549

In Fig 6C, we first note that the ‘slow’ input to the excitatory neurons is apparently 550

more difficult to transfer than the ‘fast’ one: the exact same expIF model transfers less 551

of the ‘slow’ input information (red) than of the ‘fast’ one (blue). Next, in Fig 6D-G, we 552

show that adding threshold adaptation does not increase the amount of information that 553

is transferred by the neuron. However, it does shift its working range towards higher 554

values of the input amplitude Iscale, effectively increasing its working range. Contrasting, 555

in Fig 6H-K, we show that adding subthreshold adaptation does increase the maximum 556

information transfer when it is properly tuned, i.e. when the time constant of 557

adaptation fits the input properties. However, too slow adaptation suppresses the firing 558

rate too much (Fig 6J,K), resulting in a reduction of information transfer. 559

We ask whether the effects on information transfer are a result of a higher firing rate, 560

or of a better detection. Therefore, we turn to the ROC curves discussed before. In Fig 561

7 we show that both forms of adaptation do not change the shape of the ROC curve. 562

However, we do note that for the ‘slow’ input, the expIF neuron performs much worse 563

than both the Bayesian neuron and the experimentally recorded neurons. 564

In conclusion, we see that subthreshold, but not threshold, adaptation can increase 565

the maximum information transfer. Threshold adaptation, on the other hand, can 566

increase the working range of the neuron. Moreover, an expIF neuron performs worse 567

than both the Bayesian neuron and the experimentally recorded neurons. Since the 568

Bayesian neuron differs from the expIF model in its IV curve, we next determine how 569

information transfer is influenced by the shape of the IV curve. 570

The shape of the IV curve 571

We assess the effects of changing the shape of the I-V curve (the right-hand side of the 572

membrane voltage equation). The Bayesian neuron, tailor-made to transfer information 573

efficiently for this type of input, has two features that distinguish it from a classical 574

integrate-and-fire model: an adaptation mechanism, discussed in the previous 575

paragraph, and a non-linear IV-curve, as can be seen in Fig 8A: the amplitude of the 576

IV-curve increases exponentially when moving away from the steady-state value (dotted 577

vertical line). We add such non-linearities in the expIF neuron in a biologically realistic 578

way, to see how they would influence the classification (ROC curve) and the information 579

transfer. Firstly we model the effects of the suppression of hyperpolarization (i.e. 580
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Fig 6. Effects of the dynamics of adaptation on information transfer. A-C)
No adaptation. D-G) Threshold adaptation. H-K) Subthreshold adaptation. L-N)
Combined adaptation. Left column: ‘slow’ input (time constant hidden state τinput =
250 ms). Middle column: ‘fast’ input (time constant hidden state τinput = 50 ms).
Right column: ‘slow’ and ‘fast’ input together. A) Fraction of information (FI, black)
and normalized firing rate rn (pink) as a function of the input amplitude Iscale for the
expIF model without adaptation. B) same as A but for the ‘fast’ input. C) Fraction of
information as a function of the normalized firing rate for the ‘slow’ (red) and ‘fast’
(blue) input for the expIF model without adaptation. D) Fraction of information
(colorbar) as a function of the input amplitude Iscale for the expIF model with threshold
adaptation with different adaptation time constants τadap (vertical axis) receiving the
‘slow’ input. E) Same as D, but for the ‘fast’ input. F) Fraction of information as a
function of the normalized firing rate for the ‘slow’ input or the expIF model with
threshold adaptation with different adaptation time constants τadap (colours). G) Same
as F, but for the ‘fast’ input. H-K) Same as D-G, but for the expIF model with
subthreshold adaptation. L-N) Same as A-C, but for the model with both threshold
(τadap = 1 ms and subthreshold (τadap = 10 ms adaptation.
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Fig 7. Effects of the dynamics of adaptation on binary classification. A)
Receiver Operator Curve (ROC) (see also Fig 4) for the expIF neuron with threshold
adaptation (colors denote time constant) receiving ‘slow’ input. Note that the
adaptation does not change the shape of the ROC curve, and that the neuron performs
much worse than the Bayesian neuron (pink). B) Same as A, but for subthreshold
adaptation. C) Same as A, but for the neuron receiving ‘fast’ input and the response of
the Bayesian neuron in turquoise. D) Same as C, but for the neuron with subthreshold
adaptation.

increasing slope of the IV curve when hyperpolarizing the cell) by adding an 581

instantaneous ‘h-current’ to the expIF neuron (see Materials & methods), as shown in 582

Fig 8B. Next, we model the effects of the suppression of depolarization (i.e. increasing 583

slope of the IV curve when depolarizing the cell) by adding an instantaneous 584

subthreshold potassium current, as shown in Fig 8C. Finally, we also change the overall 585

slope, but not the shape of the IV curve, by changing the leak conductance of the 586

neuron, as shown in Fig 8D. In Fig 8F and J, we show that adding the ‘h-current’ (with 587

conductance gh) does not change the shape of the ROC curve. However, its effect is 588

similar to lowering the detection threshold (i.e. the values shift over the curve towards 589

higher hit and false alarm fractions). On the contrary, the addition of the potassium 590

current (with conductance gK) does not change the shape of the ROC curve, but its 591

effect is similar to an increase in the detection threshold (i.e. the values shift over the 592

curve towards lower hit and false alarm fractions, Fig 8G and K). Changing the overall 593

slope of the IV curve (i.e. the ‘leak conductance’ gL) does change the shape of the ROC 594

curve (Fig 8H and L): for the slow input current (τinput = 250 ms) it needs to be tuned 595

to a lower value (gL ≈ 1 nS) than for the faster input current (τinput = 50 ms) for 596

optimal information transfer and classification. 597

The effects seen in the ROC curves are confirmed by the information transfer 598

measurements: in Fig 9A, D, G and J we show that adding an ‘h-current’ can strongly 599

increase the information transfer of the expIF neuron, by increasing its firing rate. 600

Adding a subthreshold instantaneous potassium current shows the opposite effect: it 601

decreases both firing rates and information transfer (Fig 9B, E, H and K). Finally, the 602

slope of the IV curve needs to be matched to the input statistics: the slow input needs a 603

flatter IV-curve (lower gL) than the fast input for information transfer (Fig 9C, F, I and 604

L). 605
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Fig 8. Effects of the IV-curve shape on binary classification. A-D) IV-curves
(i.e. right-hand side of the membrane voltage equation) for the Bayesian Neuron (A)
and for the expIF neuron (without adaptation) with added ‘h-current’ (B),
‘subthreshold potassium current’ (C) and while varying the membrane conductance (D),
colours denote conductances (see legends below). E-H) Receiver Operator Curve (ROC)
(see also Fig 4) for the expIF neuron with different IV curve shapes (colors denote time
constant) receiving ‘slow’ input. Note that only gL changes the shape of the ROC curve.
I-L) Same as E-H, but for the neuron receiving ‘fast’ input.

Fig 9. Effects of the IV-curve shape on information transfer. A) Fraction of
transferred information FI as a function of the input amplitude Iscale for the expIF
model with added instantaneous ‘h-current’ with different values of conductance gh
(vertical axis) receiving the ‘slow’ input. B) Same as A but for the subthreshold
instantaneous ‘potassium current’ (gK). C) Same as A but for the leak conductance gL.
D-F) Fraction of information as a function of the normalized firing rate for the ‘slow’
input or the expIF model with different IV shapes (colours). G-L) Same as A-F but for
the ‘fast’ input.
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In conclusion, we saw that the recorded excitatory neurons perform better for slow 606

input than the expIF model with or without adaptation; in fact, these neurons perform 607

similarly to the optimal simulated model (the Bayesian Neuron). Recorded inhibitory 608

neurons perform close to optimal for fast input, a result well captured with an expIF 609

model that includes an adaptation mechanism. Threshold adaptation increases the 610

working range of the expIF model, but does not increase, or even slightly reduces, the 611

amount of transferred information. Subthreshold adaptation, on the other hand, does 612

not increase the working range but does increase the maximum transferred information 613

if correctly tuned. Neither form of adaptation changes the shape of the ROC curve. The 614

slope of the IV curve does play an important role in the information transfer and needs 615

to be tuned to the statistics of the input. To check this conclusion, we will next assess 616

this statement in our experimental recordings. 617

Back to the recordings: dynamic IV curve unravels the relationship between 618

membrane conductance and information transfer 619

We assess the relation between the slope of the IV-curve and the information transfer, 620

by determining the dynamic IV-curve [28] for each of our recordings (see Materials and 621

Methods). In figure 10, we show the fraction of transferred information (FI) as a 622

function of the membrane conductance gm and membrane capacitance Cm (Fig 10 A 623

and B) and as a function of the membrane time constant τm (Fig 10 C and D). As in 624

the expIF model simulations, we can conclude that the fraction of transferred 625

information depends on the slope of the IV-curve: we see a clear inverse relation 626

between membrane conductance and transferred information. However, the recorded 627

neurons show quite a large variability of intrinsic properties, in particular the regular 628

spiking excitatory neurons. To assess how this large heterogeneity of excitatory neurons 629

influences their response properties, we calculate their spike-triggered averages. 630

Back to the recordings: Response heterogeneity of the Spike-Triggered 631

Average 632

In Fig. 11, we show the normalized spike-triggered averages (STAs) for spikes of 633

inhibitory (A and E) and excitatory neurons (C). The filter was whitened and 634

regularized (see Materials & Methods). Next, the projection values of spike-triggering 635

and random currents were calculated (see Fig 11B for an example for 1 cell), and the 636

distance between the means of the distributions for random and spike-triggering 637

currents was calculated for each cell (Fig 11D). The average STAs for all inhibitory (Fig 638

11A, blue) and excitatory (Fig 11C, red) neurons were quite similar, but the traces for 639

individual neurons (grey lines) were much more variable for excitatory neurons than 640

inhibitory neurons. This indicates that the excitatory neurons have a higher variability 641

in their feature selectivity of incoming current stimuli than inhibitory neurons, as was 642

expected from the higher intrinsic variability discussed in the previous section. However, 643

it is also possible that this is an effect of the lower number of spikes available for 644

excitatory neurons. To control for this possibility, we calculated the STAs for spike 645

trains of inhibitory neurons, where the number of spikes was reduced to match an 186 646

excitatory trial (Fig 11E, brown). For all three groups (inhibitory, excitatory, and 647

inhibitory control spike trains) we calculated the inner product between all calculated 648

STAs. Fig 11F shows the distributions of these inner products, and it is clear that both 649

inhibitory full and control spike trains are much less variable (inner product closer to 1) 650

than the excitatory spike trains (two-sample Kolmogorov-Smirnov test E-I p = 0, E-C 651

p < 1e− 223, I-C p < 1e− 228). The distribution of all distances between the means is 652

shown in Figs 11D. The distances between the distributions, measured in standard 653

deviations of the prior (random triggered currents) distribution, are much higher for 654
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Fig 10. Effects of the dynamic IV-curve shape on information transfer of
recorded neurons. A) Fraction of transferred information FI as a function of the
membrane conductance gm and capacitance Cm for inhibitory neurons. B) Same as A),
but for excitatory neurons. C) Fraction of transferred information FI as a function of
the inverse of the membrane time constant τm for inhibitory neurons. D) Same as C),
but for excitatory neurons.
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excitatory neurons than for inhibitory neurons, indicating that excitatory neurons are 655

more selective (p-values two-sample t-test: E-I p < 1e− 28, E-C p < 1e− 24, I-C 656

p = 0.14). In conclusion, excitatory cells fire less than inhibitory cells and are therefore 657

more selective, but at the same time, there is more variability between excitatory 658

neurons in what input features they respond to than between inhibitory cells. 659

Conclusion and discussion 660

In summary, we measured the differences in information transfer between (putative) 661

inhibitory interneurons and excitatory pyramidal cells in the cerebral cortex. We 662

utilised a technique in which the input current was generated by an Artificial Neural 663

Network (ANN), with each artificial cell firing Poisson spike trains whose firing rate was 664

modulated by the absence or presence of the stimulus [15]. We discovered that 665

excitatory cells are more selective due to their greater information compression. 666

Inhibitory neurons exhibit a near-optimal response, transferring a great deal of 667

input-related information at relatively rapid rates. In a computational model, the 668

mechanisms that can explain such differences in information transfer were investigated. 669

We evaluated the effects of (sub)threshold adaptation and the IV curve’s shape. We 670

discovered that adaptation increases information transfer (subthreshold adaptation) and 671

the working range (threshold adaptation). In addition, the shape of the IV-curve plays 672

a crucial role in determining the information transfer: the slope must correspond to the 673

input characteristics, and the suppression of hyperpolarization, such as by a ’h-current,’ 674

can increase the information transfer. The effects are summarised in Table 4. Although 675

the current experimental data does not permit an explicit test of the effects of 676

(sub)threshold adaptation and/or ’h-current,’ the relationship between information 677

transfer and the slope of the (dynamic) IV-curve (the membrane conductance) can be 678

evaluated. As predicted, we observe an inverse relationship between membrane 679

conductance and information transfer. Finally, we find that both the intrinsic 680

(membrane conductance) and response (STA, FI) properties of excitatory neurons are 681

more heterogeneous, compared to inhibitory neurons. 682

Table 4. Conclusions of the Exponential IF model simulations

Mechanism Max information transfer Working range ROC curve

threshold adaptation unchanged/reduced increased / shift to unchanged
higher amplitudes

subthreshold adaptation increased unchanged unchanged
(if tuned properly)

steepness increased depends on tuning better detection
IV curve (gL) (if tuned properly) if tuned properly
hyperpolarized part increased at the cost of shift to lower amplitudes unchanged shape
IV curve (gh) higher firing rate shift towards higher rates
depolarized part decreased shift to higher amplitudes shape unchanged
IV curve (gK) shift towards lower rates

It has been shown repeatedly, that the spiking behaviour of cortical neurons can be 683

fitted relatively well with a simple threshold model with an extra feedback 684

variable [22,24,35–45] and the heterogeneity in such cell properties has been 685

investigated in excitatory (but not inhibitory) cells [46]. With this manuscript, we add a 686

functional dimension to these basic properties of cortical spike initiation: We show how 687

different mechanistic features of cortical cells can influence their information transfer 688

and binary classification. Of course, we did not explore all mechanisms available to the 689
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Fig 11. Linear filtering properties of recorded neurons. A) Whitened and
regularized (see Materials and Methods) Spike-Triggered average (STA) for inhibitory
neurons. The STAs for individual neurons are shown as thin grey lines, and the average
over neurons is shown as a thick coloured line. B) Example of a prior (random triggered,
black line) and posterior (spike-triggered, blue line) distribution of stimulus projection
values for a single inhibitory neuron. C) Same as A), but for excitatory neurons. D)
Distribution of the differences between the means (see arrow in B) between the prior
and posterior distribution over all neurons.-E) Same as A), but for the reduced (i.e.
fewer spikes) spike trains of the inhibitory neurons. F) Distribution of the inner
products between the STAs for the three groups (note that because the STAs are
normalized by the L2-norm, the maximal value of the inner product is limited to 1).
Data from 144 excitatory neurons (220 trials) and 72 inhibitory neurons (78 trials).
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cell. For instance, in this simplified cell model we could not assess the difference in 690

information transfer between ‘type 1’ (or integrator) and ‘type 2’ (or resonator) cells, as 691

this can only be modelled as a difference in the bifurcation from resting to spiking (a 692

saddle-node versus a Hopf bifurcation). Moreover, we used the expIF model as a 693

proof-of-principle of the effects of different intrinsic cell properties on information 694

transfer and did not extensively fit the model to the experimental data. Indeed, the 695

recorded spike trains are better classifiers than even the best-performing expIF model 696

for the slow input current, suggesting that there are more relevant dynamic properties 697

that are not captured by such a simplified model. However, using such a simple setup 698

allows us to make several predictions that can be tested experimentally: we predicted 699

that 1) blocking ‘h-currents’ will decrease the amount of information that is transferred 700

2) blocking subthreshold potassium currents will not have such an effect, and 3) there is 701

an optimal range for the membrane conductance. 702

The heterogeneity of neuron properties has received much interest lately: for 703

instance, it has been shown that heterogeneity in neural populations can increase coding 704

robustness and efficiency [47], help optimize information transmission [48], increase 705

network responsiveness [49], promote robust learning [50], help to control the dynamic 706

repertoire of neural populations [51] and improve the performance on several 707

tasks [52, 53]. Here, we show that in particular, the population of excitatory neurons of 708

the barrel cortex shows a large variability in their intrinsic and response properties. 709

Why the variability of the properties of excitatory neurons is larger than that of 710

inhibitory ones is an exciting question, which is a subject for future experimental and 711

computational evaluation. Moreover, the intrinsic properties of cortical neurons are 712

under top-down influence by neuromodulators such as serotonin, acetylcholine and 713

dopamine [54,55]. Using the protocol described herein, it will be possible to investigate 714

how these neuromodulators affect the intrinsic neural properties and, consequently, their 715

information transfer. This will help reveal how the specific actions of these 716

neuromodulators on the intrinsic properties of specific cell classes affects information 717

transfer in the cortex. By investigating the relationship between intrinsic neuron 718

properties and information transfer, we can begin to predict the effect of top-down 719

processes on cortical processing. 720
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Fig 12. S1 Fig Threshold behaviour in the current clamp step-and-hold
protocol. A) Thresholds of all spikes during the step protocol. B) Thresholds of the
first spikes after the step current initiation. IC Threshold adaptation: difference in
threshold between the first and the last spike of the response. D) Last ISI length
relative to the first ISI of the response. Excitatory (red) and inhibitory (blue) neurons.
NB Results for significance testing in table S1.

S1 Table. Supplementary Table S1: Statistical tests of the comparison between 722

excitatory and inhibitory neurons in the current clamp step protocol. 723
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S2 Table. Supplementary Table S2: Statistical tests of the comparison between 724

excitatory and inhibitory neurons in the frozen noise protocol (see main text Fig. 5). 725

P-values were compared to a threshold of 5% / 6 groups = 29 0.83 % (Bonferroni 726

correction). 727

S3 Table. Supplementary Table S3: Statistical tests of the comparison between 728

excitatory and inhibitory neurons receiving the control frozen noise stimulus (see main 729

text Fig. 5). P-values were compared to a threshold 34 of 5% / 6 groups = 0.83 % 730

(Bonferroni correction). 731
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